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PERSISTENTLY OPTIMAL PLANS FOR NONSTATIONARY
DYNAMIC PROGRAMMING:
THE TOPOLOGY OF WEAK CONVERGENCE CASE!

By ROBERT P. KERTZ AND DAVID C. NACHMAN
Georgia Institute of Technology

In this paper, we study a nonstationary dynamic programming model
{(Sps 8,), (4, &), D,,, g, u : n > 1} with standard Borel state spaces (S, S,)
and action spaces (4,,, @,), upper semicontinuous admissible-action correspon-
dences D,, weakly continuous transition laws g,, and Borel measurable total
reward function u# : S; X 4; X - - - - R_. We establish existence of a per-
sistently optimal (degenerate) plan for this model under regularity and
boundedness assumptions on conditional expectations of u, but require no
special separable form of u such as intertemporal additivity. The methods of
proof utilize results on weak convergence of probability measures and selection
theorems in the context of optimization of functions over correspondences. We
give two characterizations of the persistent optimality of a feasible plan: the
first that the plan be both thrifty and equalizing, and the second that the plan
satisfy an optimality criterion that entails period-by-period optimality.

1. Imtroduction. Modifications and extensions of the fundamental work of
Blackwell [4] on discounted dynamic programming and of Strauch [41] on negative
dynamic programming have been made by Hinderer [20], Schil [38], Furukawa
[11], Furukawa and Iwamoto [12], [13], [14], and Kreps [27], [28], [29]. In most of
these models the primitive data are all stationary or the primitive data are partially
nonstationary; but suitable reformulations can be made to place the model within
a stationary setting, for example, as in the results of Schéil ([38], page 197) and
Bertsekas ([2], page 271). In particular, the total reward function either is a sum of
discounted or negative reward functions depending only on state-action-state
triples involved in single stages of control, or, in the extensions, is a function with a
staged structure exhibiting some degree of mathematical separability between
stages. Under an expected total reward function criterion (expected utility
criterion) with the “correct” combination of conditions on the primitive data, either
stationary or Markov optimal plans are shown to exist. These proofs of existence of
optimal plans rely on iterative, finite-horizon to infinite-horizon methods.

The extension of the classical negative dynamic programming model which is
considered here allows for all of the primitive data to be nonstationary. In
particular, no direct assumption is made requiring that the total reward (utility)

Received May 4, 1977.

IThis research was supported, in part by the National Science Foundation under Grant No.
SOC75-14663.

AMS 1970 subject classifications. Primary 49C15, 60K99; secondary 60B10, 62C05, 90C99, 93C55.

Key words and phrases. Nonstationary discrete-time dynamic programming, persistently optimal
plan, optimality criterion, optimality equations, gambling, general expected utility criterion, maximiza-
tion and selection theorems, weak convergence of probability measures.

811

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Probability.

Www.jstor.org



812 ROBERT P. KERTZ AND DAVID C. NACHMAN

function possess some staged structure. This degree of generality is natural in many
dynamic choice problems in economic theory; for example, in problems of con-
sumption and production choices over time and in the related problems of optimal
economic growth ([17], Chapter XXI; [43], Chapter 9; [26]) and in studies of
existence of sequences of temporary equilibria in market economies that evolve in
time with agents facing uncertainty about future market conditions ([40], [15], [16],
[21], [25)).

In this general setting we establish existence of persistently optimal plans
(Theorem 3.4). As discussed by Dubins and Sudderth [9], Hinderer ([20], page 132),
and Schil ([38], page 197) under the appellation “strongly optimal plans,” per-
sistently optimal plans are a natural counterpart in the nonstationary setting of
stationary optimal plans in the stationary setting.

Our approach to the existence question generalizes the approach developed by
Jordan [22] and extended in [25]. Central to this approach is the view of the
decision maker as choosing at each stage or period of the problem a probability
measure for the remaining infinite future. Such choice is constrained in a natural
way by the present and future admissible action correspondences. Existence of
solutions and regularity properties of optimal value functions are proved using
maximization theorems of Schal [37], [38] for the choice problem of each stage. The
generalization of the optimality criteria of dynamic programming is then used to
establish consistency among the choices at each stage and to establish the existence
of a persistently optimal plan.

The nonstationary dynamic programming model (NDPM) with general expected
utility criterion is described in Section 2 with a minimum of assumptions. In this
section we identify the principal objects of the analysis including the relation F” of
attainable measures on the infinite future (2.6), discuss the optimality concepts
germane to our analysis, and pose the basic existence question for our model.

In Section 3, we list the Assumptions (W) for our class of problems and state the
main result, Theorem 3.4, that under Assumptions (W) persistently optimal plans
exist. Section 3 closes with the derivation of some preliminary consequences of
these assumptions.

In Section 4, we derive the needed regularity properties of the relation F” from
the corresponding properties of the admissible action correspondences and from
the assumed regularity of the laws of motion of the system. Many of the proofs of
results in this section are straightforward extensions of proofs of theorems of Schal
[39]. In Section 5, we use these properties of F” together with selection-maximiza-
tion theorems of Schil [37], [38] to prove the main result (Theorem 3.4).

In Section 6, we characterize persistently optimal plans as those plans which
satisfy optimality criterion (5.1) and as those plans which are both thrifty and
equalizing, where these terms, defined in (6.1) and (6.3), are analogues of those
found in the gambling literature ([8], [42], [38]). We also exhibit a connection of the
persistently optimal plans to the appropriate optimality equations and compare our
results to those in related extensions of the negative dynamic programming model.
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The interesting mathematical issues in the study of existence of solutions to
(NDPM) turn on the regularity properties of the laws of motion of the system and
the concomitant regularity of the admissible action correspondences. A primary
concern of investigations of this kind then is the compatibility of topologies used to
express regularity of measure valued functions and those used to express regularity
of admissible action correspondences (set valued functions). In the present investi-
gation we employ the topology of weak convergence on spaces of probability
measures ([3], [33]) and the usual (upper) semicontinuity concepts of set valued
functions taking values in (compact) subsets of a metric space ([30], [1]). In a
subsequent paper [24], we investigate the existence question in the context of the
ws®-topology of Schal [39].

2. Notation, definitions, and statement of the problem. Let N denote the set of
positive integers, R the set of real numbers, R_ = R U {—c0}, and R the
set of extended real numbers. For any nonempty set X we denote by B'(X) the
collection of nonempty subsets of X, and for (X, %) a measurable space we denote
by P (X) the set of all probability measures on % . For a topological space X, we
denote by B (X) the o-algebra of Borel subsets of X. The following sets of
functions will be of interest in the sequel. For X a topological space, let

(21) B(X)={f:X—> R: fis bounded and B (X)/B(R)-measurable}

(22) B(X)={f:X— R_ : fis bounded above and % (X)/ B (R _)-measurable }
(23) C(X) = {f € B(X) : fis continuous}

- (24) C(X) = {f € B(X) : fis upper semicontinuous }.

We assume throughout the sequel that for X a topological space, P (X) is a
topological space endowed with the weak topology induced by C(X), i.e., the
topology of weak convergence [33]. We note that if X is a separable metric space,
then % (X) is separable and metrizable ([33], Theorem 6.3, page 43), and B (P (X))
is countably generated. For measurable spaces (2, ) and (X, ®), by a transition
probability from £ to X we mean a function p : € X % — [0, 1] such that for each
w € Q, w(w, +) is a probability measure on B, and for each B € B, u(:, B) is a
% /% ([0, 1])-measurable function; or, equivalently, we mean a function p : @ —
®(X) such that the function w— w(w)(B) is F /B ([0, 1])-measurable for each
B e ®. If X is a metric space, then every % /% (P (X))-measurable function
@ : Q> P(X) is a transition probability from @ to X, and if X is also separable,
then @ : @ - P (X) is a transition probability if and only if ¢ is F/B (P (X))-
measurable ([35], Lemma 6.1; [7], Theorems 2.1 and 3.1).

A nonstationary dynamic programming model (NDPM) is a sequence of objects
(S, S,) (4,, &,), D,, q,, u: n € N} defined as follows:

@) (S,, S,) is a measurable space with ¢-algebra S,, the state space at
time n.
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(i) (4,, @,) is a measurable space with o-algebra &,, the action space at
time n. The sets H, = S; X A, X - - - XS, and H" =4, X §,,; X
A,,, X -+ are denoted as the spaces of past histories and of future
histories at time n, HE=A,X S,, X+ X4, XS, m>n,
and H, = S; X A, X S, X - - - . These spaces are given the product
2.5 c-algebras, denoted by I(,, IC*, G, and I(, respectively.
(iiiy D, is a mapping D, : H, — @, N B'(4,) in which D,(h,) represents the
set of admissible actions under the history 4, € H,.
(iv) g, is a transition probability from H, X A4, to S,.,. The sequence
(g,)nen constitutes the laws of motion.
(v) u is a measurable mapping u : H,, — R_. The function  is called the
total reward (or utility) function.
A plan for such a model is simply a sequence 7 = (7,),cy, Where for each
n € N, =, is a transition probability from H, to 4,. A period-n plan is a sequence
(Tp)msn that is the tail (from n onward) of a plan. A feasible plan for NDPM) is a
plan 7 = (,),cy consisting of feasible controls, where =, is a feasible period-n
control if for each h, € H,, m,(D,(h,)|h,) = 1, i.e., if m, assigns probability one to
the set of actions admissible at history 4,. A feasible period-# plan is then the tail
from n onwards of a feasible plan. The collection of all feasible period-n controls is
denoted by IT, and the collection of all feasible period-n plans by II".
To each period-n plan (7,,),,s, is associated a stochastic process {(a,, $o)Ym>n
of action-state pairs on H” having probability measure (79)"(h,) = 7,9,7,.19,+1
-« - (h,) given by the product measure theorem of C. Ionescu Tulcea [32], for
history h, € H,. We point out that (vg)" is a transition probability from H, to H",
and hence we may view (7g)" as a function from H, to % (H"). A focal point of
our analysis of (NDPM) is the set of images of these functions as 7 varies over the
feasible plans. Formally, we are concerned with the relation (set valued function)
F": H, > R (P (H")) given by

26)  F(h)={v€P(H") :v = (rq)"(h,), some(,),, € II")

that associates to each history 4, the set of attainable probability measures on the
future. Of course at this point we have assumed nothing about (NDPM) that
ensures that F” is in fact nonempty valued. This ambiguity is clarified in Lemma
3.1 of Section 3. For now, we proceed as though all objects are well defined.

Let G(F") denote the graph of the relation F" defined in (2.6), i.e., G(F") =
((h,, v) € H, x P(H") : v € F*(h,)}. Let u, : G(F") - R be defined by

2.7) u,(h,, v) = [ya(h,, h")v(dn").

We assume that u satisfies some properties which guarantee existence of these
integrals, for example, u € B(H ). We refer to u, as the expected period-n payoff
function. The optimal expected period-n payoff v, : H, — R is then defined by

(28) vn(hn) = SuvaF"(h,,)un(hn’ V)’
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An optimal period-z plan is a feasible period-» plan (7,,),,,, € II" such that for
eachh, € H,,

(2'9) un(hn’ (Wq)n(hn)) = Un(hn)'

A persistently optimal plan then is a feasible plan 7 = (7,), < such that for every
n €N, (7,),>, 18 an optimal period-n plan, i.e., for every n € N and every
h, € H,, (2.9) holds.

Our objective in this paper and a subsequent study [24] is to present conditions
on the initial data (2.5) (i)~(v) of the (NDPM) that yield the existence of a
persistently optimal plan.

3. Assumptions and preliminary results. We make the following assumptions
regarding the (NDPM). For each n € N, we assume:
W(). The spaces S, and 4,, are standard Borel spaces (nonempty Borel subsets
of Polish spaces) endowed with the relative (metric) topology and with
S, =ND(S, and @, = B(4,).
W(i). D, : H, - ©(4,) is upper semicontinuous ([30], page 173), where C(4,)
denotes the nonempty compact subsets of 4,,.
W(ii). g, : H, X A, — ?(S,,,) is continuous (in the product topology on H,
X 4,).
W(@v). u, € é( G(F™)), where G(F") has the relative topology from the product
topology on H, X ¥ (H").

We note first that the existence problem is well defined under these assumptions. In
particular, we have the following result.

LEMMA 3.1.  Under W(i) and W(ii), for every n € N, 11, % ¢, and F,(h,) # ¢ for
every h, € H,.

Proor. Fixn € N, and let A, : H, — B'(?(4,)) be given by
(3.2) Ay(h,) = {p € P(4,) : supp(p) C D,(h,)},

where supp( ) denotes the support of the measure p ([33], Chapter I1.2). By [19],
Theorem 3, A, is upper semicontinuous and compact valued on H,. By [33],
Theorem 6.2, page 43, 9P (4,) is metrizable as a separable metric space, and hence
by [10], Theorem 1, there exists a IC, /B (P (4,,))-measurable selection 7, of A,. It
then follows from the remarks following (2.4) that =, € II,. Thus for every n € N,
IT" # ¢, and hence F"(h,) # ¢, for every h, € H,. [’

‘REMARK 3.3. Since the relations D, and A, are alike under W(i) and W(ii) with
respect to the hypotheses of the Engelking selection theorem [10], there exists an
JC, / @,-measurable selection of D, i.e., a Borel measurable function 8, : H, — 4,
such that B,(h,) € D,(h,) for each h, € H,. In the sequel, we identify such
measurable selectors of D, as (degenerate) elements of II,.
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We now state the main result of this paper.

THEOREM 3.4. Under Assumptions W(i), W(ii), W(iil), and W(iv) there exists a
(degenerate) persistently optimal plan.

The proof of this theorem is given in Section 5 and is based on the properties of
F" which are proved in Section 4.

To simplify the derivations in the sequel, we employ the following operator
terminology. For eachn € N andw € ﬁ(H,, +1), define the functions L,w and U,w
by

(35) an(hn’ an) = fw(hn’ an’ sn+1)qn(dyn+llhn’ an)’
(3.6) U,w(h,) = sup, ep,n)L.W(h, a,)-

Then L, may be viewed as operating between B(H,,, and B(H, X A,). Also
clearly U,w is bounded above, but in general, for any 4,, D,(h,) may be uncount-
able, and the measurability of U,w cannot be ensured.

We gather some standard results for these operators below in Lemma (3.7) that
are used in Sections 4 and 5. The proofs of part (i) and (i) of Lemma (3.7) follow
from [39], Lemmas 3.4 and 5.1(a), and [38], Propositions 10.2 and 10.1.3. The proof
of part (iii) is essentially that used in [41], Theorem 8.2 and [20], Theorem 14.4. We
note here that the result ([39], Lemma 3.4) that underlies the proof of part (i) of this
lemma also implies that if the total reward function u is in C(H «), then Assump-
tion W(iv) is satisfied.

LeMMA 3.7. Assume W(i), W(ii), and W(iii). Then:
(l) (a) FOI' every w € C(Hn+l)[C(Hn+l)]’ an € C(Hn X An)[C(Hn X An)]'
(b) For every w € C(H, ), U,w € C(H)).

(ii) For {w;};,en C C(H,, ), if w0 pointwise, then U,w;|0 pointwise, as
J —> co.

(iii) For n,m € N, n < m, and for each w € C(H,),
Un ce Um—lw(hn) =SUP(r,---,m,) €I, X - - - XHmf W(hn, hmn

X Tpln " ° 7Tm—lqm—l(dh:tlhn)

for every h, € H,.

REMARK 3.8. With regard to part (i) (b) of Lemma (3.7), we note that in general
it is not the case that U,w € C(H,) even when w € C(H,,,) and consequently
L,.w € C(H, X A,). In general, further regularity (such as lower semicontinuity) of
the relation D, is required for continuity of U,w (see [1], pages 115-116 and [18],
pages 29-30).

4. Regularity of F". The objective of this section is to establish that the
relation F" of (2.6) is upper semicontinuous and compact valued (Theorem 4.12).
Except in Lemmas (4.2) and (4.4), we assume W(i), W(ii), and W(iii) throughout.
We begin with some useful characterizations of G(F") and of elements of F"(h,).
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For m, n € N, m > n, define the relation E; : H, —» B'(H)) by

4.1)
E;(hn)-_— {ht: =(an’sn+l’. T ’sm) EHm”q;El)j(hn’ t ’S)‘)’n <1<m - 1}

for all 4, € H,. Under Assumptions W(i) and W(ii), E,. has a closed graph.

Given n € N and v € P(H"), for every m > n, let ». and », denote the
marginal probability measures under » of the (coordinate) random vectors
@y $pvrr s " 0 5 0y $nep) and (@, 0 0 - ¢ 5 @,,), TESpectively, where these map-
pings are the projections of H” onto the appropriate factor spaces. We then have
the following representations of G(F™).

LemMA 4.2. Under W(i) and W(ii),
(@ G(F™) ={(h,,v) € H, X P(H") : vp(Er, (k) = 1, and v} = v,.q,(h,), for
every m > n}.
(b) G(F") = {(h,, ») € H, X P(H") : v = (wq)"(h,) for some period-n plan
(T)m>n Jor which
4.3) Tudy * * * Tl (B 1(B|,) = 1, for every m > n}.

ProoOF. The proof that G(F") is contained in each of these sets is straightfor-
ward. The proof that G(F") contains each of these sets is closely analogous to the
proof of Lemma 13.1, part (b), of [20], page 94; see also Lemma 7.2 of [41], page
884. In particular, the proof rests on a theorem for decomposition of probability
measures on products of SB-spaces ([20], Corollary 12.5, page 88) and on a
corollary to the Blackwell and Ryll-Nardzewski selection theorem ([5], page 223),
Corollary 12.7 of [20], page 89. []

We can interpret part (b) of the lemma in the following sense: for period-» plans
(7,.)m>n Which represent the probability measure » € % (H") in that » = (wg)"(h,),
the additional requirement that there be such a period-» plan which is feasible is
equivalent to the requirement that there be such a period-n plan which satisfies
(4.3) for every m > n.

By a measurable selection for the relation F”, we mean a function, say m, : H,
— P (H"), that is IC, /B (P (H"))-measurable, and hence a transition probability,
such that for each h, € H,, m,(h,) € F"(h,). The following lemma gives a con-
sistency result for measure-valued functions m; that are connected by feasible
period-k controls, i < k < n, to measurable selections for F”".

LEMMA 4.4. Under W(i) and W(ii), if m, is a measurable selection for F" and

m €EI, k=1,---,n—1, then the function m;, = mq, - -+ m,_1q,_,m, is a
measurable selection for F',i =1, ,n— 1.

Proor. Given m,, a measurable selection for F*, and m, €I, k =1,- - -,
n — 1, then m; = myq, - - - m,_,q,_,m, is a transition probability from H, to H' by

the product measure theorem of C. Ionescu Tulcea ([32], page 162). We show that
for each b, € H,, m(h,) € F'(h).
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The proof is a modification of parts (b) and (c) in the proof of Theorem 14.1 in
[20], page 99. For probability measure p on J(,, pm, is a probability measure on
I, with associated coordinate-representation process (£}, a;, {5,a,, * - - ). From
Corollary 12.7 in [20], we have the representation pm, = po,Y,0,,1Y,+, - - Where
v is a regular conditional probability of {; ., given (), &}, - - -, &, ;) under pm,
and o, is a regular conditional probability of a, given (§, ay, - - -, ) under pm,
satisfying o, (D, (h,)|h,) = 1 for all b, € H,, k > n. Then there exists T € IC, for
which p(T) = 0 and m,(h,) = 6,7,0,, Y41 - - (h,) for all h, € T°. Now, since
m,(h,) € F"(h,) for each h, € H,, we have the representation m,(h,) = (7*q)"(h,),
with (),,5, € II", for each h, € H,. Combining these two representations and
Lemma A8 of [20], we obtain m,(h,) = (09)"(h,), with (g,),,s, € IT", for each
h, € T¢. Finally, take p = §,,mq; - - - m,_,g,_,, where §,, is the probability
measure degenerate at h,. Observe that for every @ € I/,

T * Ty 1Gn—1M(20R;)

= fT‘(h,)mn(Q(htf)lhi’ hi)'”iqz‘ te Wn—lqn—l(dhrflhi)
= J7¢h)0nnOn+1 " " (Q(hri)lhi’ hi)"’.“li ce Wn—lqn—l(dhp”hi)

=mq; Tn—19-1%29%n+1 " " ° (thz)’

where £°(h;) and Q(h)) are, respectively, the A,-section of ¢ and the A'-section of Q.
Thus m(h) = mg; - * * Ty_1Gy_10,90,41 " * - (h) € F'(h). [

~ The proofs of the following two lemmas are analogous to those of Lemmas 5.4
and 5.5 of Schal ([39], page 361).

LemMma 4.5.  If A, is relatively compact in H,, then F'(A,) is relatively compact in
PH™).

ProoOF. From Lemma 4.2 of Schil ([39], page 358), it suffices to show that for
each m > n the set of probability measures {» o (n,)~'; » € F"(A,))} is relatively
compact in P (H,); here n, = (&,, $,+1»* * * » $mn)» the coordinate-representation
vector on H)i. For each » € F"(A,), ve () ' =m,q, - * Tp_1qn_(h,), for
some h, € A, and some 7; € II,, n < i < m. Hence from Lemma 3.2 of Schal ([39],
page 353) the task reduces to showing for each m > n, and any sequence {f},cn
C C(H,,) with f]0 pointwise, that
(4.6) lim,_, sup, eA,,SU-par,eH,,n<i<me,:fj(hp:)‘77nqn © T 1Gm—1(dRp|h,) = 0.
From Lemma (3.7) (iii) we have that-(4.6) is equivalent to
4.7) lim;_, sup, cp U, - - - U,_,f(h,) =0.

Now, from Lemma (3.7) (i) and (ii) we obtain that U, - - - U, _,f, € é(H,,) and

U, -+ U,_l0 pointwise as j — co. From Dini’s theorem, given as Proposition
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9.2.11 in Royden ([36], page 162), we obtain
lim; , sup, cx U, - - U,_1f(h) =0
where A is the closure of A, in H,. Then (4.7) follows. []
LeMMA 48. G(F") is closed in H, X P (H").

Proor. For each m > n, let {w,; },en C C(H,,,) be a sequence of functions
which separate elements of P (H,., ) (see the proof of Theorem 2.6.2 in [33], page

43). For v € P(H"), we set W, () = [w, (hr, Dva(dhl,) and W, (h, v) =
T Wi (B2 o DVm@n(dh . 1|h,) Where v, and »,, are defined at the beginning of this

section. Let
(4.9) By = {(h, ») € H,x 9(H"); foreach j=n,---,m
V‘I(E‘n+l(h )) =1 and wmk(”) = —mk(hn’ ”)}

where E, (h,) is defined in (4.1). Using (4.2) (a) and the separating property of the
sequences {w,, } xen> We obtain that

(4.10) G(Fn) = ﬂm>,, ﬂkENAmk.
Thus it suffices to show that for each m >n and kK € N, A, is closed in
H, X $(H"). Since for j =n,---,m, E’ ; has a closed graph, it follows from

[23], Corollary (3.27) and the continuity of the mappings w,,, and w,,, that A, , is
closed. []

CoroLLARY 4.11. If A, C H, is closed, then {(h,, v); h, € A, and v € F"(h,)}
is closed.

THEOREM 4.12. F" is upper semicontinuous and compact valued on H,.

ProOOF. Let {h,;};~0 1 ... be asequence from H, with limk_,wh,,k = h,, and let

m*(h,) € F"(h k) for each k € N. Lemma (4.5) ensures that {m*(h,)},cy has a
subsequence {m*(h,.)} such that m*(h,.) converges to some » € P (H") weakly
as k' — oo. Corollary (4.11) gives that » € F"(h,g). []

It follows from Theorem 4.12 that the relation F” may be viewed as a function
defined on H, taking values in C(%®(H")), the nonempty compact subsets of
% (H"). Since H", and hence P (H"), is a separable metric space, the space
C(% (H™)) endowed with the Hausdorff metric topology is a separable metric space
(see Theorems 3.3, 3.6, 4.5, and 4.9 of [31]). Let & denote the Borel subsets of
C(P (H™)). Then we have from Theorem 4.12 and [6], page 359, the following.

‘COROLLARY 4.13. F" is IC, / & -measurable.

5. Existence of persistently optimal plans. The main objective of this section is
to prove Theorem 3.4. We need the following definition. We say that a plan
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7 = (m,),en € I1' satisfies the optimality criterion if for each n € N and h, € H,,
(51) fvn+1(hn’ ay, sn+l)'”nqn(d(an’ sn+1)|hn)

= supanED,,(h,,)fDn+l(hn’ a,, sn+l)qn(dgn+l|hn’ an)’

where v, , is defined as in (2.8). We first show there is a (feasible) plan satisfying
the optimality criterion and a measurable selection m}* of F" which satisfies
u,(h,, m*(h,)) = v,(h,) for all h, € H,, for each n € N (Theorems 5.2 and 5.3).
Using these results, we then prove Theorem 3.4. Throughout this section, we
assume W(i), W(ii), W(iii), and W(iv).

For a measurable map z, : H, — 4,, we denote by §, the corresponding transi-
tion probability degenerate at z,(h,) for each h, € H,. If z, is a measurable
selection for D,, then §, is a feasible period-n control, i.e., §, € II,.

THEOREM 5.2. For each n € N, there exists a measurable selection z} for D, such
that the feasible plan m = (8,4),c y satisfies the optimality criterion (5.1).

Proor. From Lemma (3.1), Theorem (4.12), and W(iv), together with Proposi-
tion 10.2 of [38], page 189, we obtain that v,, defined in (2.8), is in é(H,,), for each
n € N. Thus, from (3.7) () (a) L,v,,, € é(H,, X A,), for each n € N, and we can
apply Theorem 12.1 of [38], page 191, to obtain the mappings (z*),c, With
associated plan 7 = (8,4),cn € IT! which satisfies the optimality criterion. []

THEOREM 5.3. For each n € N, there exists a measurable selection m} for F"
which satisfies u,(h,, m}(h,)) = v,(h,) for all h, € H,.

ProOF. Let i, = u, on G(F") and = — oo off of G(F"); from Lemma 4.8 and
W(v), 4, € C‘(H,, X @P(H™)). Thus from results (3.1), (4.12), and (4.13) and Theo-
rem 12.1 of [38], page 191, there exists a measurable selection m} for F” satisfying
u,(h,, my(h,)) = Sup, ¢ prgyit,(hy,, v) = v,(h,) for all h, € H,. []

We note that we have not proved existence of a persistently optimal plan in
Theorem (5.3), for as A, varies, the feasible period-n plan used in the representation
of m¥(h,) as an element of F"(h,) may vary.

ProOF OF THEOREM 3.4. For each n € N, let z} be the measurable mapping
from Theorem 5.2 for which the associated plan 7* = (8,,),cn satisfies the opti-
mality criterion (5.1), and let m} be the measurable selection for F” from Theorem
5.3. We show that

(54 u, (b, m,’,"(h,,)) = u,,(h,,, (sz‘q)n(hn))"
for all h, € H,, where (8,.9)" = 8,44,8,s g,4; - - . It will then follow from
Theorem 5.3 that #* is a persistently optimal plan.

Fork=0,1,-- -, definew,, ,: H,— R_ by

(5.5) Wa(h,) = w,(h,, m¥(h,)) = v,(h,)
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and for k € N,
(5.6) Wori(hy) = “n(hm 80q, - - - 6:,’,"+k_,qn+k—lm:+k(hn))‘
From results (4.4), (5.2), and (5.3), it follows that
(Pus 8000+ * * 8sr., Gusi—1Misi(hy)) € G(F")
for each h, € H,. We show that
(5.7) Wosk S WyinsOnH,  foreachk > 0,
and
(5.8)  lim supy_ W, k(h,) < u,(h, (8,.9)"(h,)), foreachh, € H,.

To obtain (5.7), fix k >0, let h,,, € H,,,, let v € F"**(h,,,), and let
(Ty)m> nsx € II"** be such that » = (7q)"**(h, ). From Theorem 5.2 it follows
that for every a, ., € D, (B, 1 1),

SOkt 1Pniies 20 k(P )s Stk )G 1( s 1|t 0 2ot k(P i)
> (Vi e tPnsies Gpies Spt et D+ k(i 1) Ppt > @i ic)s
and hence by definition of v, ;,;, we have that
J R (S S sn+k+1)82,,‘+kqn+k(d(an+k’ Spr it V| Prsi)
(59) > [Opiha1t(Pasioo Butios Skt DTt ks k(A (@ io Sy x DI Psic)
> [u(hy, i R"%)r(dn"5).
Since » € F"**(h,,,) was arbitrary, it follows from (5.9) that for each 4,,, €
H,
(5.10) O, 4k41(Pysps o Sn+k+1)6z;+kqn+k(d(an+k’ Spsi D nr) > Oppi(Byi)-
From Theorems 5.2 and 5.3 and from (5.10) then, we have that for each 4, € H,,
Wosi+1(h,) = Su(h,, h")sz; q," - 8z;+,;qn+km:+k+1(dh"|hn)
= [V i 1(Pps h:+k+l)82;,"' T Bz,,‘+kqn+k(dh:+k+1|hn)
> [Opi(Bs B i) @ - Bin Guiic—1(dhys | By)
= Wy i(hy),
and (5.7) holds. (5.8) then follows immediately from W(iv), (5.5), (5.6), and (5.7).

Together, (5.7) and (5.8) imply that for each 4, € H,, (5.4) holds, and hence that
a* is a persistently optimal plan. [] '

6. Characterizations of persistently optimal plans. In this section we mention
two characterizations of persistently optimal plans which are immediate con-
sequences of the previous results. We also comment on some relationships between
this work and that in the literature. Throughout this section we assume W(i), W(ii),
W(iii), and W(iv).
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The first characterization is motivated by the analysis of optimal plans in [8] and
[42] and requires the following definitions.

DEFINITION 6.1. A plan 7 = (1), € II' is thrifty if for each n € N
(6.2) (1) = [0 41 (Bas @y S, 4 )T, (d( @y 5,11) 1),
for all b, € H,.
DEFINITION 6.3. A plan 7 = (7,),cy € II' is equalizing if for each n € N
(64)  u,(h,, (79)"(h,))
> lim supy [ Op 4 k(Pps By ) Tu * * * Tk 1Gnt - 1R k1),

forall h, € H,.
The key element in the proof of the first characterization is the following result.

LemMMA 6.5. For each m = (7)) >, € 11" and h, € H,,
(6.6) {fvn+k(hn’ b))y * '”n+k—1qn+k—1(dh:+k|hn)}k=o, L.

is a nonincreasing sequence (with zeroth term given by v,(h,)) which is bounded below
by u,(h,, (mq)"(h,)).
Proor. From results (4.4) and (5.3) we have for 7, , € I1,,

O k(Pai) > thy (B Tt kBnt kM k1B 1))

= [kt 1Pasior Guior St ier D Tnt kB ik( (@ iier S ier DI Pns i)
for each 4, ,, € H,,; hence the sequence in (6.6) is nonincreasing. The sequence
is bounded below by u,(h,, (7q)"(h,)) since for each k>0 v, .(h,,,) >
ZA (S (mq)"**(hy,4)), for each b, € H, . [

THEOREM 6.7. A feasible plan is persistently optimal if and only if it is both thrifty
and equalizing.

PrROOF. Suppose 7 € IT! is persistently optimal. Then v,(h,) = u,(h,, (7q)"(h,))
for all h, € H,, for each n € N, and hence from Lemma 6.5, v,(h,) =
fvn+k(hn’ h:+k)'”nqn o '”n+k—lqp!-0:k—1(d :+k|hn) = un(hn’ (Wq)”(hn)) for each k €
N. This implies that « is thrifty and equalizing. On the other hand, if = € II' is
thrifty and equalizing, then

vn(hn) = fvn+k(hn’ h:+k)77nqn T "Tn+k—lqn+k—l(dh:+k|hn)
= lim supjfvn+j(hn’ hnn+j)'”nqn e Wn+j—1qn+j—l(dhnn+j|hn)

< u,(hy (19)"(h))

for all h, € H,, for each n € N, and hence from Lemma 6.5 = is persistently
optimal. []
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Observe that in the proof of existence of a persistently optimal plan (Theorem
3.4) we use results (5.2) and (5.3) to show the candidate is thrifty (5.7) and we use
(5.3) and the stability implied by W(iv) to show the plan is equalizing (5.8).

The second characterization of persistently optimal plans is in terms of plans
which satisfy the optimality criterion (5.1).

THEOREM 6.8. A feasible plan is persistently optimal if and only if it satisfies the
optimality criterion (5.1).

Proor. That a feasible plan satisfying the optimality criterion is persistently
optimal follows as in the proof of Theorem 3.4. Suppose then that 7* = (7}),cn is
a persistently optimal plan; and for 4, € H, fixed, take 4, € D,(h,). Define #, by
#,(h,) = 8, if h, = h, and #,(h,) = m¥(h,) if , #h,. Then #, EII,, and # =
(mf, - - @iy, Fp oy, - - - ) satisfies (7q)"(h,) € F"(h,). Thus by (2.9) and (6.2)

fvn+1(hn’ an’ sn+l)'”:qn(d(an’ sn+1)|hn) = un(hn’ (77¥q)n(hn))
Uy (hay (79)"(hy))
= fvn+l(hn’ én’ Sn+l)qn(dgn+l|hn’ dn)‘

A%

Since g, was arbitrary in D,(h,), we obtain that 7* satisfies the optimality criterion.

0

The concept of optimality equations for dynamic programming has been dis-
cussed at length by Hinderer [20] (see also [34]). A sequence of functions (W,),cn
with w, : H, — R is said to satisfy the optimality equations of the (NDPM) if for

~everyn € Nand h, € H,,
(69) wn(hn) = supa,,ED,,(h,.)fwn+l(hn’ Ay Sn+1)qn(dgn+l|hn’ an)‘

The following result relates persistently optimal plans to solutions of these
equations.

PrOPOSITION 6.10. Suppose 7* = (7}),en € IT! is a persistently optimal plan.
Then the sequence (W), cy, defined by w¥(h,) = u,(h,, (7*q)"(h,)) for each h, €
H,, satisfies the optimality equations (6.9). If, in addition, a sequence (W,),c y of the
form w, (k) = u,(h,, (mq)"(h,)), for all h, € H, and some 7 € II', satisfies the
optimality equations, then w,(h,) < wk(h,), for all h, € H,.

ProoF. If 7* is persistently optimal plan it follows from (6.8) and (2.9) that

w:(hn) = f{fu(hn’ Ays Sp+ 1 hn+l)(77*q)n+l(dhn+l|hn’ ay, Sn+l)}
X ’”:qn(d(am Sn.+1)|hn)
= fvn+1(hn’ a, Sn+l)77:qn(d(an’ Sn+1)|hn)

= SuPa,,eD,,(h,,)fvn+l(hm a,; Sn+1)qn(dgn+1|hn’ an)

= Supa,,ED,,(h,,)fw:+l(hn’ ay, Sn+1)qn(dgn+l|hn’ an)
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for all 4, € H,. The second part follows from the definition of a persistently
optimal plan. [j

REMARK 6.11. Finally we observe some contexts in which the Assumptions W
hold and hence to which Theorem 3.4 applies, when the total reward function has
representation u = I5_,r,, where r, € ﬁ(H,,). Assumptions W hold if W(i), W(ii),
and W(iii) hold and if u = 272 ,r; where r; € é'(I{j) for each j € N and one of the
following uniformity conditions hold:

(6.12) 2l < oo
(6.13) 2ilntl < oo
(6.14) limM—>oosupN>MsuphweHw2y=M+l’:i(hj) =0

6.15) (@) fE;‘ilrj+(hn, hj")v(dh") < oo for each (h,, ») € G(F"); and
(i) lim,,_, SUpy~ pSUPG, weaE) 2j'v=M+1’j(hn» ’b'")”(dhn) =0.

In each case, upper semicontinuity of u, in W(v) can be verified by using
Proposition 10.1.1 of Schil [38]. Conditions (6.12) and (6.13) are the convergence
(C) and negative (EN) cases respectively in [20]. Conditions (6.14) and (6.15) are
motivated by conditions (GA4) and (C) in Schél [38]. We note that conditions (GA),
(C), and (W) of Schal [38] do imply that u,(k,, -) € é(F "(h,)) for each h, € H,
but appear not to imply (6.15) (ii) or upper semicontinuity of », in W(iv). That is,
in assuming that the total reward function has the additive, separating form, Schél
is able to prove optimality results without the uniformity in the A, variable which
we require through our Assumption W(iv). In particular, we use this additional
‘requirement to obtain v, € é(H,,) for each n € N, and existence of a plan which
satisfies the optimality criterion and which is thrifty. On the other hand, Schil
avoids this additional requirement by using the iterative, finite-horizon to infinite-
horizon method, together with the regularity and boundedness assumptions on
{r;};en and {g;};cy in the finite horizon. His counterpart to the optimal expected
period-n payoff apparently need not be upper semicontinuous or bounded above
unless some additional requirement implying W(iv) is imposed (see Corollary (16.3)
of Schal [38]). :
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