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ASYMPTOTIC NORMALITY OF SUM-FUNCTIONS OF SPACINGS

By Lars HoLst
Uppsala University

Take n points at random on a circle of unit circumference and order them
clockwise. Let S§™, - - -, S{™, be the mth order spacings, i.e., the clockwise
arc-lengths between every pair of points with m — 1 points between. Ordinary
spacings correspond to the case m = 1. A central limit theorem is proved for
Z,=37_ h(nS, - - - ,nSy,,,_1)» Where h is a given function. Using this,
asymptotic distributions of central order statistics and sums of the logarithms of
mth order spacings are derived.

1. Introduction. Let U, U, - - -, U,_, be i.id. with a uniform distribution
over [0, 1]. The corresponding order statistics are 0 < Uy < Uy < + -+ < U,y
< 1. Define Ugy =0, U, =1 and Uy, =1+ Uy_, for k > n. The successive
distances between the order statistics S = Uy..j) — Uy, are usually called spac-
ings. For an integer m > 1 generalized spacings of the form

S = Upgsmy — Uy k=0,1,---,n—1,
are considered in the present paper. Sometimes these are called mth order spacings,
or mth order gaps. A huge literature exists on usual spacings, see, e.g., the reviews
by Pyke (1965), (1972).

In connection with directional data it is natural to consider the uniform distribu-
tion over a circle of unit circumference. When » points are taken at random from
this distribution the successive arc-lengths (with respect to one of the n points
chosen at random) have the same distribution as Sy, Sy, « -+, S,_;. Also the mth
order spacings have obvious interpretations. The spacings can be used for testing
uniformity in various ways, see, e.g., Rao (1976). For this purpose mth order

spacings are useful too, see Cressie (1978).
Let h be a given real measurable function and consider the random variable

Zn = 2'llc-=lt)h(nsk)'

A complete characterization of the possible limit laws when n — oo was given by
Le Cam (1958). It is easy to prove that nS, converges in distribution to I'(1, 1),
where I'(a, 1) stands for a gamma-distribution with mean a and scale-parameter 1.
However, the dependence is not asymptotically negligible, so classical limit theo-
rems cannot be used directly. Analogously nS{™ converges to I'(m, 1). The S{™’s
are “more” dependent because of the overlapping. Using a central limit theorem
for m-dependent random variables and a generalization of Le Cam’s method it is
proved below that

Z'('m) = ';(;:)h(nsk, ct nSk—m+l)
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is asymptotically normally distributed if 0 < Var(h(Xy, - - -, X,,_,)) < oo where
Xop * * +, X,,_, are independent and I'(1, 1) random variables. In particular follows
asymptotic normality of S7_LIn(nS{). This case has been studied by Cressie
(1976) in detail.

Let Sgy > -+ > 8y >+ > 8 be the order statistics of the ordinary
spacings. From the results of Le Cam (1958) the limit distribution of the extreme-
values and the central order statistics can be deduced. Below asymptotic normality
is proved for the central order statistics of mth order spacings. The corresponding
lower-extreme values has been studied by Cressie (1977); upper-extreme values can
be studied analogously.

The problems considered in this paper have been motivated on the circle of unit
circumference, but it is not difficult to see that because the order m is finite, all the
asymptotic results will be identical on the unit interval.

2. Asymptotic normality. For notational convenience let X, X}, - - - , X, _, be
iid. T'(1, 1) rv’s in the following, and set ‘
Xnsj = X
and

T, = 2}"-_01)( k+j*

THEOREM. If

Eh(Xg -+, X,,_1) =0, 0< Var(h(Xy -+, X,_,) < oo,
then
B(n'%z',’c:})h(nsk, S, nSk+m—l)) — N(0,4 — B?), n— oo,
where
4= 2;'n-_—lm+ICOV(h(XO’ R Xm—l)’ h()(j’ ) Xj+m—l))
and
B=m 271 Cov(h(Xy, - - -, X,,_,), T).
PrOOF. In the lemma below it is proved that for M < n — 3 the characteristic
function of ¥ "w(nS,, - - - , nS;,,,_1) can be written
- 0 : —l -m .
gu(t) = a, lf_wE(exp(ztn U (X s Kiewm—1) + WZE_o( X — 1)))

-E(exp(iuZi 2y (X — 1)))du,
where, using Stirling’s formula,
a,=2mn""le "/ (n — 1)~ (27/n)%, n— .

Let n, M — oo in such a way that M/n— a, 0 < a < 1. From the central limit
theorem it follows that

E(exp(iuZi_hy (X — 1)/n'/?)) > e~ Q- /2,
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Either by direct calculation or using a local central limit theorem it can be shown
that
1 o
12 o E(exp (i (X = 1)/12))ldt — 2 exp(= (1 = a)u?/2)dh.

By a variant of the Lebesgue dominated convergence theorem (see Rao (1973),
page 136) it now follows

2aa(1) = 8a(1) = (2m) T2 f, (1, we ™ 2,
if

fM(t, u) = E(Cxp(itn_%zll‘(’;o’”h(Xk, T Xk+m—l)
+iun~ TZY_ (X, — 1)) = £t 0).

Obviously, the random variable

'%Ei':o'”h(Xk, o Xeemon) “"_%Ef-o(xk -1
has the same asymptotic distribution (if any) as
1 -m
nT2ZYC(th(Xy, - s Xgem—1) + (T, — m)/m)

(recall that T, = 37X, ). By the central limit theorem for m-dependent
sequences (see, e.g., Billingsley (1968), page 174)

B(n-zlzil:om(th(Xk’ c s Xpmor) + (T — m)/m)) - N(o, ao’(t, u)),
where
o*(t,u) = Var(th(Xg, - + * , X,,,_,) + uTy/m)
+237 5 Cov(th(Xg, =+ 5 Xpyoy) + uTo/m, th(X, -+ -, Xy o)) + uT;/m).

Hence it follows that

fM(t’ u) ’—)f;x(t’ u) = exp(— aaz(t’ u)/2),

and, therefore,

2u(t) = 2(1) = @7) 7212 exp(— (a0(t, w) + (1 = @)u?)/2)du.
It is easily seen that g () - 1 when a \y 0. Hence, by Le Cam (1958), page 13,
Lemma 5,

(exp(itn' 3 bh(nS,, - - -, nSk+m;,))) —lim, ,,8,(?)
= 7)1 _exp(—o¥(t, u)/2)du.
Now an elementary calculation gives
o¥(t, u) = (Var(h(Xy, - -+ , X,,_1))
+ 22}"._11C0V(h(X0’ L X (X Xj+m—1)))
+2tum"(Cov(h(Xo,- LX) To) + 275 'Cov(h( Xy, * + * » Xpp1)» T))
+3M1Cov(A(X), -+, Xyypi)s Tp)) + 47 = A + 2tuB + 12,
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with 4 and B as in the assertion. Hence
(277)—%f°_°wexp(— o(t, u)/2)du = exp(—t*(4 — B?)/2)
which proves the theorem.
LEMMA. For any real measurable function g on R™ with M < n — 3
E(exp(itg(nSg, - + - , nSy))) = Qm-n""1-e~"/(n— 1)~
J®E(exp(itg(Xo, « - -, Xpy) + uZg~ (X — 1)))du.
Proor. Using conditional expectation
E(exp(itg(Xo - + - » Xpp) + S5 'X,))
(2.1) = 12 E(exp(itg(Xo, - * + , Xpy) + iZ5~'X,)|Za7 X, = 5)- £,(s)ds
= [ e E(exp(itg(Xo, - -+, X,))|Z5™X, = 5)-(s)ds,

where f,(s) is the density of 3§~ 'X,, which is I'(n, 1)-distributed. As the X’s are
independent

| E(exp(itg(Xo, - - - Xpy) + iuZg™X))| < | E(exp(iuZhri 1 X))| = |1 = iwf™ =",

Thus, the left hand side of (2.1) is integrable because M < n — 3. Therefore, by
Fourier’s inversion formula it follows from (2.1) that

E(exp(itg(Xo, = + + , Xp))|Z5 ™ X = n) - f,(n)
(2.2) = (27) 7' [ pe ™" - E(exp(itg(Xo * - - » Xpy) + iuZg™'X,))du.
It is a well-known fact that
L((nSg, -+, 1S,_1)) = E((Xo» * -+ » X,_1)|Z5™'X, = n).
Using this, the assertion follows from (2.2).

ReMARK. The idea of using partial inversion for obtaining characteristic func-
tions of conditional distributions goes back at least to Bartlett (1938).

In the following two corollaries the function & satisfies A(x,, - - - , x,,,) = h(x,
+ -+ - +x,). Asymptotic normality in this special case was proved by Cressie
(1976); he did not, however, derive the asymptotic variance.

COROLLARY 1. When n — oo,
B(n_% S~ (In(nS{™) — ¢(m)))) — N(0, ¢?),
with
o= (2m? = 2m + )Y'(m) — 2m + 1,
where \ is the di-gamma- or psi-function with
Y(m) = 2;"-:111'_l -
Y(m) = =375 + 7°/6,
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and vy is Euler’s constant.
PROOF. As T, = S7,'X; is T(m, 1)-distributed
Eln Ty = [PIn(x)x™ e~ /T(m)dx = I"(m)/T(m) = ¢(m).
Therefore, consider in the theorem the function A(x) = In x — Y(m). As
Var(ln Tp) = [&(In x — $(m))’x™"'e™/T(m)dx = §'(m) = £2,,j 72,

the assumptions of the theorem are satisfied. Using the method of Cressie (1976),
pages 346347, it is possible to obtain-after some lengthy calculations that

SmzlCov(ln Ty, In T,) = m(m — )Y/ (m) — (m — 1).
Hence the constant 4 in the theorem can be written
A =Y (m) + 2m(m — 1)Y'(m) — 2(m — 1).
The number B is much easier to calculate. First
Cov(ln Ty, T,) = Cov(Iln Z7,'X,, ™ f~1X. )
= B((n 557 X)SpE X, ) — wom)(m — B)

=(m—-k}ym+1)—(m—-ky(m)=1—-k/m
and, therefore,
B=m '(1+2272/(1 — k/m)) = 1.

Thus
A — B?=(2m?* - 2m + )¢ (m) — 2m + 1,

proving the assertion.
Using the theorem the asymptotic distribution of the central order statistic S((,;'g,
- 0 <p < 1, can be obtained as follows.

COROLLARY 2. For0<p <1
E(n*(nSGR — u,)) — N(O, 02), n o,
where
p = F,(1)
= (p(1 = p) + 2272 )0 = (ol )))/ ()’
= [4(F(W)* fruoi py — w)du — P2,

with f(x) = x""'e™*/I(r), the density of the T(r, 1)- dzstrzbutwn and F/(x) =
[3f(¥)dt, the corresponding distribution function.

Proor. Using indicator functions it follows that
P(nS(m§ <p + x/n%) = P(Z’,’;},I(nSi”‘) < + x/n%) > np)
= P(n 7S (I(nSE™ < B,) —p) + n'%E'}c’_})I(p,, <nSfM <, + x/n%) > 0).
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After some elementary calculations one obtains
E(n_%Z','('_})I(pp <nS{M < p, + x/n%)) - xf, (1),
and
Var(n'%E'};})I(p? <nS™ < p, + x/n%)) -0,
when n — o0. With A(x) = I(x < p,) — p in the theorem
£(n=TS32b(I(nSE™ < ) — p)) = N(0, 4 — B).
Combining the results above gives

P(nSG3 < 1, + x/n¥) > 1 = ®( = x4, (1,)/ (4 — B)?)
= O(xf,( 1)/ (4 - BY7),

where ® is the standardized normal distribution function.
The constants 4 and B remain to be calculated.
As Ty is I'(m, 1)
Var I(Ty < p,) =p- (1 - p).

Let the independent random variables U, V, X be I'(k, 1), I(m — k, 1), T'(1, 1). By
elementary calculation it follows that

Cov(I(Ty < p,), Ty) = Cov(I(U + V < p,), V)
=EI(U+V<p)V)-—p-(n —ﬁk)=(m— KYP(U+ V + X <p,)
—p(n—k).
In a similar way
Cov(I(Ty < n,), T)) = m(P(U + V + X <p,) — p).
Hence
B=m"" (m+2372{(m - K))(P(Ty + X <p,) — p)
=-—m-pre %/ml= —uf ().

With the same notation one finds

Cov(I(Ty < ), I(T, < p,)) = [&(P(U < g, — 0))’f,(v)dv - p?

= [6(P(U < w))’fy (4, — wdu — p* = ¢
Thus .
A~ B*=p(1 - p) + 2572 le, = (mofu( 1))
proving the assertion. '
REMARK. The author has not been able to get a simple expression for 27 lc,.

But the given expression is easy to compute numerically for given values of p and
m.
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