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ON THE INTEGRABILITY OF sup|S, /n| FOR SUBSEQUENCES

By ALLAN GUT

Uppsala University

Let {S,; n > 1} denote the partial sums of i.i.d. random variables and let
{m; k > 1} be a (strictly) increasing subsequence of the positive integers. We
determine necessary and sufficient conditions for E sup,|S,, /m| < oo.

1. Introduction. Let {X,; n > 1} be a sequence of i.i.d. random variables and
let {S,; n > 1} denote their partial sums. In 1937 Marcinkiewicz and Zygmund [8]
proved that

(1.1) E sup,|S,/nfP < o, p>1,
provided
(12) E|X ||lglX,| < o0, p=1 andE|X,|fP <, p>1

(Here and throughout 1g x = max{1, log x}, lg, x = 1g Ig x, etc.)

In 1962, Burkholder [1] proved the necessity for p = 1. For p > 1 this is obvious.

Several other proofs of this result have been given and the problem has also been
generalized to other normalizing sequences and to random variables with multidi-
mensional indices; see [5] and further references given there.

In this paper we are considering the generalization which consists of taking the
supremum over subsequences of the natural numbers. In this direction the follow-
ing result was established by Gabriel [4], Lemma 3.4.

(1.3) Let {X,; n > 1} be ii.d. nonnegative random variables. For every (strictly)
increasing subsequence {n,}%., of the positive integers such that
e

inf, —— = ¢ > 0,

L]
the following are equivalent:
(i) EX, g X, < oo,
(i) E supy S, /n < 0.

REMARK. The nonnegativity is only used in the proof of (ii) = (i).

Jean-Pierre Gabriel has encouraged me to investigate this problem for the case
¢ = 0. The resulting theorem is presented in Section 2 together with some examples
and remarks. Proofs are given in Sections 3 and 4. Section 5, finally, contains an
additional result.

2. Results. In this section we present the theorem and some examples and
remarks.
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(2.1). THEOREM. Let X and {X,; n > 1} be i.i.d. random variables. Let {n}i-,
be an increasing subsequence of the positive integers; let Y be its inverse, i.e.,

(2.2) Y(x) = min{k; n, >[x]} = card{k; n, <[x]};
and set v, = m_,/n, k=2,3,--- . Then

(2.3) E sup,|S, /| < o0

if and only if

(24.a) E|X|lglX| < o,  whenliminf,_ v, >0
(2.4.0) E|X|Y(|X]|) < o0,  whenlimsup,_ v, <1

Examples and remarks.
(2.5) It is clear that the two cases overlap. In fact, if 0 <liminf, ,, v, <
lim sup,_, ., v, < 1, it is easy to check that y(x) ~ log x (i.., both cases yield the
same conclusion).
(2.6) If P(X > 0) = 1 and lim inf,_, , v, > O one rediscovers (1.3).
(27) The cases n, = 2 and n, = k% d=2,3,- - - yieldy, =3 and 279 <y, > 1
respectively, i.e., (2.3) holds if and only if E|X|lg|X| < oo.
(2.8) For n, = k! one has y, = k~'> 0 and y(x) ~ Ig x/Ig, x and so (2.3) holds if
and only if E|X [Ig|X|/1g,| X| < oo.

2

(29) For n, = 22 withm 2’s, m=1,2,- - - we obtain y, — 0 and Y(x) ~1g,, x,
i.e., (2.3) holds if and only if E|X|lg,,|X| < oo.
(2.10) A device, useful in many proofs, is to show that a desired conclusion holds
for a given fixed subsequence of the positive integers and that the object under
investigation behaves “nicely” between the points of subdivision. For a classical
. example, see Chung [2], Theorem 5.1.2, page 103, where the strong law of large
numbers is proved via the subsequence n, = k% In fact, the most common
subsequences are those of (2.7) above and it is therefore no surprise that we obtain
the same result for subsequences which do not grow too rapidly as for the original
case, i.c., when the supremum is taken over all n. It may be noted that the essence
of the proof of (2.3) = (2.4.a) is to show that

E sup,|S,, /m| < 00 = E sup,|S,/n| < oo.

(2.11) The case lim inf,_, v, = 0 and lim sup,_,,, v, = 1 is not covered by the
theorem. The following two examples show that there is no general solution for

that case.
For the first example, let n,, = k! and n,,,, = k!+1, k =3,4,5,- - - (with
mn=kk=12---,5). Since

E sup|S, /m| < E supy|S,. /Nyl + E supylS,,, ../ M+l

it follows from (2.8) that E|X|lg|X|/lg,|X| < oo is sufficient for (2.3) to hold.
(Since supy|S,, /m| > supy|S,,, /nx/ it is necessary too.)

N
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For the other example, let I, = {i; k!<i < (k+ 1)}, k=1,2,3,- - -, and set
B, = U 2olpgy1and B, = U 2,1, Let {n,}7-, and {n]}¥_, be the elements of
B, and B, respectively (in increasing order). Both subsequences satisfy the condi-
tions lim sup,_, , v, = 1 and lim inf,_, v, = 0. Furthermore,

(2.12) EVy < EV'+ EV” < 2max{EV’, EV"},
where
Vr =sup,|S,/n|, V' =sup,ep|S,/n| and V" =sup,cplS,/n|.

Now, choose {n,}7-, to be the subsequence corresponding to the larger of EV’
and EV"”. It follows from (2.12) that

E sup|S, /m| < 0= EVy < oo,

which, in view of [1], implies that E|X|lg|X| < oo is a necessary condition. (Since
sup|S, /| < sup,|S,/n| it is also sufficient.)

3. Proof of (2.4) = (2.3). Throughout ¢ and C denote arbitrary constants. Set
ny, = 0 and define
X, = X,I{|X,| <n}, X =X,-X);
Vo= Sk i X= S, = Sy, Yi=Zk, X, ¥ =Y- Y
W = sup[n; '+ Yy, W= supklnk_1 Y, W’ = sup,|n; - Y/|;
V= SquI”k_l : Snkl = Squl”k_l - Zia Yl
It is clearly no restriction to assume EX = 0.

(2.4.2) = (2.3). Since ¥ < sup,|S,/n| the conclusion follows immediately from
the result of Marcinkiewicz and Zygmund [8], mentioned in the introduction.

(2.4.b) = (2.3).
@3.1) E|X| < 0 =3F_n7 2 Var(Y]) < co.
PROOF.
Spang? Va(Yy) = Zp_nc 2k, +1Var(X))
< ZPaZfen, ,+1’_2 Var(X!) = Z3_;n"%: Var(X;) < C- E|X]|.

For the last inequality see, e.g., [2], 126—127, the proof of the strong law of large
numbers.

(32) E|X|< o0o= EW' < 0.

PrROOF. We wish to show that JeP(W' > x)dx < o for some x, > 0. Set
F(x) = P(X < x). By using thie fact that EY, = 0 we obtain

|[EY| = 2% e, +1EX] | = 2% e |+1f|x|>1x dF| < (m — nk—l)f|x|>nk_||x|dF

< S \xy>n,_ |X|dF = o(n) as k — co.
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Thus, for x > 1,0 <e < 1, k large,

P(|Y{| > mx) < P(|Y; — EY;| > n(x — €)) < (n(x — €))% Var(Y}).

Consequently
P(W' >x) <SP\ P(Y{| >mx) < C-(x —¢) 2 =k, 2 Var(Yy)

<C-(x—¢) % E|X|

by (3.1) and so the integral above is finite.

(33) EIX|Y(X]) < 0= EW”" < .

PrOOF.

EW” = Esupy|n;'- Y| < e ElYY| < Seanc !t E?k-nk_,+lE|‘Xi”l
<ZEmc ' (me = me_y) - EIX|I{|IX] > n_,} < 3P_,E[X|I{|X]| > ne_1}
<E|X|+ ZELEIX|I{|X] > n} = E|IX| + 25.,25% S, <ixi<n. | X|dF
= E|X| + zﬁl(zj-ll)fn]<]x|<ry+||x|dF
= EIXI + Eﬁ-ljfry<|x|<ry+,lxldF = EIXI + E;O-I‘I/(nj)fry<|xl<ry+|lxldF
S EX| + 27210 <prcn. | XIW( X dF
<E|X|+ E|X|y(X]).

(3.4) E|X|Y(|X]) < 00 = EW < o0.
This is immediate from (3.2) and (3.3) since W < W’ + W”.

(3.5) EIX[$(X]) < 0= EV < , ie., (2.4b) = (2.3).

Proor. From the strong law of large numbers we have P(V < o) = 1. Since,
by (3.4), EW < oo, the conclusion follows from Hoffmann-Jergensen [6], Corollary
3.4, page 167.

The proof of this part is complete.

4. Proof of (23) = (2.4). We first note that E|X| < oo is an obvious neces-
sary condition. It is therefore no restriction to assume that EX = 0. Further, since
uniformly bounded random variables have moments of all orders it is no restriction
to assume that X is unbounded and also that 0 < P(|X| < 1) < 1 (cf. [4], [5]).

(4.1) E|X|< 0=4 =12 ,P(Y,] <n) > 0.

ProoF. We wish to show that S°_, P(|Y,| > n,) < oo, which is well known to
be equivalent to the assertion that-4 > 0.
From (3.2) above we know that, for large £,

P(1Y{ > n) < (m(1 — €)7*- Var(¥y).
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Furthermore,
P(\ Y| >n) < P(Y{| > n) + Sk, . P(X| > ).
Thus
ek LAY > 1) < 2, (m (1 — 3))_2' Var(Yy) + 284 2t +1 PUXi| > 1)
< cSeon % Var(Y)) + 2%, P(IX| > n) <c- E|X]|.
The last inequality follows from (3.1) and from the fact that E|X| < o0 &
S P(X| >n) < .
(2.3) = (24.a). We first show that (2.3) implies that E sup,|S,/n| < oo for
symmetric distributions, from which (2.4.a) follows according to Burkholder’s

result [1], mentioned in the introduction. After this the symmetry assumption is

removed.
Thus, suppose that the distribution is symmetric. Since W < 2V we know that

EW < .
Let n,_, <n < n;. Then

) 1S, /0| < |(S, = S,,_)/ il + 1S,/ M—1ls
ie., .

SUP,, _ <n<n)Su/ 1l < SUP, _ cncn |(Sy = Sy )/ Ml + 1S, _ /Ml

Further, since sup,|S,/n| = supsup,, | <,,<,,k|S / n| we obtain

E sup,|S,/n| < E squsuPn,‘_,<n<n,‘|(Sn S, _ ,)/”k i| + E sup,|S e ,/nk—ll

< ZRE SUP,  cncn (S, — S, _)/mi| + EV.

Since EV < oo by assumption we must show that the last sum is finite or,
equivalently, that
(4.2) R 121 P(SUP,, _ cnn|Sy = S, _ | >mom_) < 0.

Since lim inf, . y, > 0 we have y, > ¢ for k large, which together with Lévy’s
inequality, vields
P(SuPnk_l<n<nk|Sn - Snk_,| >m- nk—l) < P(supnk ,<n<nk|S S ,| > menk)
< 2P(|S, — S, _| > men) =2P(|Y,| > men).

Thus, (4.2) holds true if
(43) P2 P(|Y] >m-n) < oo.

However, (4.3) follows easily from the facts that A > 0 (see (4.1)) and EW < co.
This is seen as follows:

P(W >m) = l(H P(|Y;| < ;- m)) P(|Y,| > n,m)
> A I..P(Y > nem).
Finally,
o0 >EW > 3%_P(W >m) >AZ5_23.P(| Y| > n.m)

and (4.3) is proved.
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We now know that (2.3) = (2.4.a) for symmetric distributions. To desymmetrize
we use standard arguments. If X°, V*, etc. denote the symmetrized random
variables we have EV < oo = EV* < oo (since EV* < 2EV) = E|X°|lg|lX°| < oo.
One way to conclude that E|X|Ig|X| < oo is to note that {X, X°} constitutes a
martingale and therefore, by convexity, {|X|lg|X|, |X°[lg|X*|} constitutes a sub-
martingale. The conclusion now follows from the fact that a submartingale has
increasing expectations.

(2.3) = (2.4.b). As before we assume that 0 < P(|X| < 1) <1, EX =0 and
unboundedness, but no symmetry. Recall that 4 = [I7_,P(|Y,| < n,) > 0 by (4.1).

Since lim sup,_, ., v, < 1 we have y, < 1 — ¢ for large k and so

By using the previous methods, together with an argument by Erdés and Katz,
see [3] and [7], page 317, we obtain

P(W >m) > A-S2_,P(|Y,| > n-m) > AZZ_ P(IYs] > (m — m_)m/e)

= Az?co-kop(lsnk—nk_,l > (m — nk—l)m/e)

> i (m — m_ ) P(X| > c(ny, — ny_y)m)

> eSS mP(X| > ¢ mem) > ¢ TR m P(IX| > c - mm),
whence, using partial summation,

0 > EW > 3232 mP(1X| > c-mem) = cZ2(2, majm) PIX| > &)

> 22 (2 pmmm) i Pci < |X| < i + 1))

i=j
= 32,2 (2 ey P(ci < |X| < (i + 1))
> 22 (2 pmaite) Plci < |X| < (i + 1)) > cE|X|Y(|X|/c) ~ E|X|$(|X])-
The last inequality follows because
znkm<,~nk = 2,,k<,-(2m<,-/nkl)nk = 2,,k<,[l/nk] * nk ~Enk<‘i = i‘ Cal'd{k; nk < i}
= i-y(i),
and the final relation is simply a matter of scaling.

This completes the proof.

5. Complements. In his paper [1] Burkholder also shows that (1.1) and (1.2)
are equivalent to

5.1) E sup,|X,/n| < oo.

This means that the largest summand is of essentially the same magnitude as the
largest partial sum. In the case of subsequences we have two quantities which could
be of interest, namely W = sup,|Y,/n| = sup,|Ck,  +1X;)/nl and W=
supy | X, / ml-

(5.2) The proofs in Sections 3 and 4 also reveal that (2.3) and (2.4) are equivalent to
EW < co.
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(5.3) For EW this is not the case. Suppose that 32_,n, ' < 0. Then EW <
Sen ' E|X| < oo if E|X| < co. Conversely, EW < oo trivially implies that
E|X| < o and so

(5.4) E sup;|X, /m| < o= E|X| < oo,

provided $¢_,n; ! < 0.
In particular, this is already the case if, e.g., n, = k- (Ig k)%, a > 1.
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