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ON THE MULTIVARIATE LAW OF THE ITERATED LOGARITHM

By JOHN A. BERNING, JR.
Duke University

A Hilbert space law of the iterated logarithm is proved which generalizes
Kolmogorov’s law for bounded random variables and which generalizes results
of Teicher for unbounded random variables. The result for identically distrib-
uted random vectors is a consequence. The key idea is the requirement of the
convergence of the average of the covariance operators.

1. Introduction. The best early result on the law of the iterated logarithm is
due to A. N. Kolmogorov [2], whose hypotheses required bounded random vari-
ables growing at a rate depending on their variances. Recently, Teicher and others
have significantly extended this result to unbounded random variables by giving
sufficient conditions giving the law; see [12] and [1]. In another direction, the law
of the iterated logarithm has been extended by Kuelbs and others, primarily by the
use of the central limit theorem, to the case of random vectors with values in a
Hilbert space or Banach space; see for example [5]. The present work is primarily
an extension of Teicher’s work to finite-dimensional and Hilbert space valued
random vectors.

An interesting feature of the multidimensional law is the more subtle limit set,
essentially an ellipsoid. In getting away from the identically distributed case,
however, an equally interesting difficulty involves settling on appropriate require-
ments for the variances of the random vector components. A natural condition is

_one which generalizes a conditon on the covariance matrices yielding the finite-di-
mensional central limit theorem; see [8], page 25. This condition is that the average
of the covariance matrices converge to a limit matrix; it is trivial in one dimension.
The generalization used for the Hilbert space setting is that the average of the
covariance operators converges to a limit operator (which then has an intimate
relationship with the a.s. limit set). This condition is the fundamental idea in the
paper, and seems to be previously unexplored. It would be interesting to determine
the accessibility of the infinite-dimensional central limit theorem from this condi-
tion.

In the finite-dimensional case, the convergence of the average of the covariance
matrices means convergence of matrices entrywise. In the Hilbert space case,
however, convergence of the average of the covariance operators is operator
convergence, which could refer to weak operator convérgence, strong operator
convergence, or norm convergence, among others. What is actually needed is the
even more stringent trace class convergence. This is discussed briefly in Section 2.
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It will be evident from the proofs that weaker forms of convergence do not suffice,

so that in some sense this is the right condition.
Section 2 begins with Theorem 1, a finite-dimensional generalization of

Kolmogorov’s law. It is in line with Sheu’s work [11] and the proof uses many of
the same ideas, particularly the reduction via a linear transformation to the
one-dimensional case. It is a nontrivial generalization in its introduction of the
condition of convergence for the covariance matrices, and more significantly, in its
handling of the subtle difficulties arising from a singular limit matrix. Theorem 2
provides an extension of Kolmogorov’s law to the Hilbert space setting, and relies
on the finite-dimensional result for its proof.

In Section 3, results analogous to those of Teicher are proved for random vectors
with values in a Hilbert space. Theorem 3 is the principle result here, and relies
heavily on Theorem 2. Some immediate corollaries of this result yield results which
improve those of the literature by demanding existence only of the second mo-
ment; see [5], page 397. Theorem 4 generalizes a necessary condition given by
Teicher.

Upon completion of these results, the author was introduced to some recent
work of Kuelbs [4] in which a result similar to Theorem 2 is proved. The similarity
is in the hypothesis of boundedness for the random vectors, and both results
depend on an exponential estimate due to Yurinskii [15]. However, instead of the
covariance operator convergence used here, Kuelbs uses a condition essentially
requiring uniform approximation by finite-dimensional random vectors. His condi-
tion seems generally different, but is clearly more restrictive in the finite-dimen-
sional case. Moreover, his condition suggests the sufficient conditions for the
covariance operator convergence presented in Theorem 5 here. Again this indicates
that the convergence condition is closer perhaps to the proper requirements for the
situation. However, it should also be noted that the results in [4] apply to the more
general situation of Banach space valued random vectors.

2. Bounded random vectors. Throughout the following, R? will denote p-di-
mensional real Euclidean space with vectors a = (a,, . . ., a,), and H will denote a
real separable Hilbert space with inner product < -, -» and norm || - ||. z, will
denote a random vector in R? or H; that is, a measurable function from a
probability space (2, F, P) to (R?, B) or (H, B) where B is the o-algebra of
Borel sets. The expectation of Z, is denoted E(Z,) and defined by E(Z,)) = x
where E{Z,,y) = {x, y) for all y. The covariance of Z, is denoted by Cov(Z,) =
T, and defined by {T,x, y) = E{Z,, x){Z,,y) — {E(Z,), x){E(Z,), y) for all x
and y. See [7] for details and properties. Also, log log s? will be abbreviated LLs?.

For the limit matrix = in Theorem 1, let p be any mean zero probability measure
on R” with covariance matrix =; for example, u could be the mean zero Gaussian
measure (see [7]). Then, following the notation of Lemma 2.1 of [3], u generates a
subspace H, of R”" consisting of all elements of the form x= = [g.(xz*)z du(z), for
x € R". The inner product and norm induced on H, by u are respectively given by
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(X2, yZ), = [pixz'N2y") du(z) = xZy" and ||xZ||, = (xEx"). Let K, be the
unit ball of H, with regard to || - |[,..

THEOREM 1. If {Z,} are independent random vectors in RF with E(Z,) = 0 and
Cov(Z,) = =,, if for some positive constants {s?}, s?o0, s2, /52— 1, ess sup |Z,|
< e,,s,,(LLs,f)'% for some sequence &,)0, and (1/s)Z7_\2, — =, and if p is a mean
zero probability measure on RP with covariance matrix 2, then the a.s. limit set D of
(@2LL)™ 72,2} is K,

ProoF. The first step justifies the use of Theorem 3.1 of [3]; it is shown that if
a € R", then

1
¢)) lim sup,,,,(257LLs;) " *2)_1aZ] < sup,cgax’ as.

Observe that Var(aZ/) = a3;a* so that (1/ sHZ"_, Var(aZ/) — aZa’.
Suppose first that aXa’ = 0. It follows from the hypotheses that s2/ a1 — L
Let ¢ > 1 and let n, <n, < ... be such that s, ~c’. Now ess sup |aZ,| <
|ale, s,(LLs>)"% so Var(aZ!) < |afe2s3(LLs?)™". Let b, = s,(LLs?)? and 12 =
(1/b)2%,,  +Var(aZ). Then ess sup |aZ,| = o(b,/LLb,) and 2,_,e"2/"2 < o0.
It follows from a result of Loéve([6], page 258) that (szLIJZ)'izj'_laZ ! 50 as.
This of course yields (1) for this case.

Suppose now that aZa’ # 0. Then 27_, Var(aZf /(aEa’)%) ~ 5?2 so that from
Kolmogorov’s law ([6], page 260),

_1 1
lim sup,,_, o(2s2LLs?) " *27_,aZ}/ (aEa’); =1 as.
Therefore, with reference to Lemma 2.1 of [3],
_1 1
(2 lim sup,, . (2s57LLs}) " 227_,aZ} = (aZa’)? = sup, g ax’ as,

and (1) holds for this case also.
Theorem 3.1 of [3] now applies and asserts, since R? may be considered compact
by adding oo, that

oo d((zstm,f)‘%E;ﬂzj, K)=0 as,

where d(z, K,) = inf, ¢ |z — x|. Thus D C K,.

To show that K, C D, one argues as in Proposmon 2.7 of [11], using (2) and the
fact that [xZ? < LxEx’ for some constant L and for all x € R?. This completes
the proof.

In this theorem, if 3 # 0, then it is necessarlly true that 52, ,/s2 — 1. If 2 = 0, it
is straightforward to see that lim sup s2,,/s? < oo is sufficient. Although not so
apparent, it is also true that lim inf s2,,/s? > 1 suffices when = = 0.

In the ensuing results, convergence of symmetric, positive semidefinite, trace
class operators on the Hilbert space H arises, and this convergence takes place in
the trace class norm | - ||4. If A is an operator on H, the absolute value of 4 is
defined to be |A4| = (4 ’A)%. An operator 4 is a trace class operator if

lim



ON THE MULTIVARIATE LOG LOG LAW 983

24| g 8> < oo for some cons{ g, }. In this case, ||4|, = Z,{|4|g, & is the
trace class norm of 4 and is independent of the cons{ g.}. If 4 is a trace class
operator, then tr(4) = X,{Ag,, g.> converges for any cons{g,} and is indepen-
dent of the choice of { g, }. The trace class operators are complete under || - ||, and
are closed under addition, scalar multiplication, and composition with any bound-
ed operator. Moreover, if X is a bounded operator and A is a trace class operator,
then [[AX [« < [ X ||| 4]+, [ XA|l« < [IX][[|4]lx; [tr(4)] < [|4]|4, and [|[4]| < [|A]]4
In particular, trace class convergence implies norm convergence. These properties
are the ones used in what follows; for proofs and further details, see [9] or [10].

For the limit operator T in Theorem 2, 3 and 4, let u be any mean
zero probability measure on H with covariance operator T; again, u could be
taken as the mean zero Gaussian measure with covariance operator 7. With
reference to Lemma 2.1 of [3] as before, u generates a Hilbert space H, continu-
ously embedded in H and consisting of all elements of the form T(x) =
Julx, 2>z dw(z) for x € H. The inner product and norm on H, are given by
T(x), T(¥)>, = [ulx, 25y, z) du(z) and || T(x)||, = <T(x), T(J€)>2 Let K, be
the unit ball of H, with respect to || - ||, and recall that K, is a compact subset of
H. See [3] for details.

The following result due to Yurinskii is used; see [15], page 491.

THEOREM (Yurinskii). If {£,} are independent random vectors in H which satisfy
E@¢) =0, E||§|* < k!b?K™2/2 for m > 2, and B2 = b? + - - - + b2, then

P[|I§ + - - - +&,) > xB,] < 2exp{— (x*/2)/ (1 + 1.62xK/B,)}.

THEOREM 2. If {Z,} are independent random vectors in H with E( ) = 0 and
Cov(Z,) = T, such that for some positive constants {s?}, s}, s2,,/s2—1, ess
sup || Z,|| < &,s,(LLs>)" 2 for some sequence ¢,|0, and (1/s)3 =1 L= Tin || - |4
and if u is any mean zero probability measure with covariance operator T, then
{(2s3LLsz)'%2’~'_lZ.} is a.s. relatively compact and the a.s. limit set D is K.

ProOF. Recall from the hypotheses that s?/s?,, — 1. Let 8 > 1 and let n, < n,
. be such that s,,' ~ B’

Let {g.} be a cons for H and let Q, be the orthogonal projection onto
SP{ &m+1> Bnaz - - - }- It will be shown that for any ¢ > O there exists M so that
m > M implies

1
3) P[I(252LLs?) 2 5)_,0,(Z)] > ¢ io.| =0.

Let D, = [||I27.,0,.(2Z)| > e(ZsiLLsz)% for some n, < n < n,,]. To show (3), it is
sufficient to show P(D, i. o) 0. For d, = sup, .., PllIZ}210.(Z) —
2719a(2)N > (e/ 2)(2s2 LLsz) ], it follows from Chebyshev’s inequality that d, —
0 uniformly in m. F urthermore

P(D)<(1—-4d)'P > (e/2)(s, /s,,m)(ZLls,i)%

274-1 -

(T
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From (1/ s2) T,— Tin || - ||+ and properties of || - ||, it follows that

2n'HlQm /=12;‘:l(2k>mE< gk><zi, gk>)

Ny

”H-l

1
= 2k>m<;'2_27§i7}8k, 8> = Zrom T8> &k as r—oo.

2]

Then for n > 0, there exist N and M such that »r > N and m > M imply the
following E|Z7210.(Z)* < v’s?,, d <3, s,/s,, >3 and 1+
1. 62(822 /48n7e, . (LLB"/ LL,B’“)Z 2. The result of Yurinskii then applies and
asserts, forr > Nand m > M,

L osni0.(2)| > (/2. /5, )LL)

j=1

"r+|

< 2(log B) "¢/ /328

Thus for 1 chosen so that £2/328%% > 1, 3, P(D,) < c and by the Borel-Cantelli
lemma, P(D, i.0.) = 0. This establishes (3).

Let P, be the orthogonal projection onto Sp{ g, * -, &,}- Then Cov(P,(Z,)
= P, T,P, which is finite-dimensional. Moreover,

. 1
—1;2;_,,7;. > Tin || - |l implies —37_,P, TP, = P, TP,

n n

Theorem 1 now applies to {(2s3LLs3)'%E;=1Pm(Zj)}. The proof of Theorem 2 is
completed using Theorem 1 and (3) just as in Theorem 3.1 of [3] and its proof.

3. Unbounded random vectors. The same notational conventions are used in
this section as in the preceding one, particularly in regard to the measure
associated with the limit operator 7 and the limit set K, coming from p; again see
Lemma 2.1 of [3] for details.

THEOREM 3. If {Z,} are independeht random vectors in H with distributions { j1,}
and with E(Z,) = 0 and Cov(Z,) = T,, if for some positive constants {s?}, s} o0,
spr/si—> 1, and (1/s,)2_,T,—> T in || - ||lx, if p is a mean zero probability
measure on H with covarzance operator T, and if for some 8 > 0 and for all ¢ > 0,

(1) =2, P[||Z,|| > 8s(LLs)?] < oo,

L sn

#)) T j=lf[[[zu>esj(LlJ»2)‘%]”z”2 dl‘j(z) = o(1), and

3) 2,- 1(52LL52) f[es,(LLs}) 2<||z|| < 8s,(LLs 2)21”2”2 dﬂ,(z) < oo, then
{(2s2LLs2)‘52;'=IZ } is a.s. relatively compact, and the a.s. limit set D is K,.
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Proor. Let Z, = Z I([||Z,| < e,,s,,(LLs,f)'%]) where I(A4) is the indicator func-
tion of the set 4 and where ¢,0. Let 7,, = Cov(Z,). Then for any y € H,
(T, yy = E(Z; — E(Z;),y)* < EXZ,,y)*
1
= E((Zp yVI([1Z,]l < 08,(LLs2)?]) < ECZ, p)* = (T 3).

Thus, in addition to being symmetric, 7, — 7, is positive semidefinite and in
particular |2}'_|7} - 7;’[ =21 - T Then from condition (2), noting that
some ¢,]0 may replace € as in [1],

_13 1T~ 1 L) = —:—2 (21T = 7))
- éz;_,zk(@gk, g — <T/8&0 &)
-‘—z;f_ SKE(Z) - E(Z), 85
2—1;2;_15”2,1(["2,” > g5(LLs?) *])[ 0.
This in turn implies that (1/s,%) £7.,T/ > T in || - ||. Theorem 2 now applies to

{Z/ — E(Z/)} and asserts that {(2s3LLs2)_52”_ (Z/ — E(Z)))} is as. relatively
compact with a.s. limit set equal to K,.

Finally {Z, — (Z, — E(Z}))} is dealt with exactly as in Theorem 1 of [12],
except that the norm || - || replaces the absolute value | - | and an appeal must be
made to the general Toeplitz-Kronecker lemma; see [14]. This completes the proof
of the theorem.

Exactly as in Theorem 1, when T 0, s2, | / s> — 1 necessarily holds, and when
T = 0, either lim sup s”,,/s2 < oo or lim inf 57, ,/s2 > 1 actually suffices. More-
over, when T = 0, condition (2) is automatically satisfied. Notice also that condi-
tions (1) and (3) are implied by the following single condition: for some a € (0, 2],
and for all € > 0, .

) S AGLLS) P [usi>eg(ersp)™ 2 121" diy(2) < oo.
Thus conditions (1), (2), (3) could be replaced by conditions (2), (4).

Two special cases of Theorem 3 are particularly worth noticing. The first
is the case where H is finite dimensional; that is, H = R” for some p. In this case,
the convergence of the covariance operators becomes just entrywise convergence of
the covariance matrices, and the results give conditions under which normalized
sums of finite-dimensional, possibly unbounded, random vectors converge to a
possibly degenerate ellipsoid. The second is the case in which 7, =T for all n.
Then s> = n and the convergence of the covariance operators is trivial. Second
moments are the highest moments required in the hypotheses of this case, and in
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this respect, the results improve the results in the literature; see, for example, [5],
page 397.

The weighted independent identically distributed case provides another instance
of the above results. This is a generalization of the careful study in the random
variable case made by Teicher [12]. The idea is to start with independent identically
distributed random vectors {Z,} in H with common distribution p and with
constants {o,} letting s; = £7_,07. Theorem 3 is then applied to the sequence
{0,Z,}; again the convergence of the covariance operators is trivial, and conditions
(1), (2), (3) become restrictions relating {g,} and p. Teicher’s work in the weighted
independent identically distributed case depends on considerations of the rate of
growth of the o,’s, and his results are readily extended to the Hilbert space setting
considered here. The most important case of independent identically distributed
random vectors, with o, = 1 for all n, is in particular directly accessible from
Theorem 3, although this result for the Hilbert space case has been previously
established by other means.

In generalizing conditions (1), (2), (3) to the multivariate case, various possibili-
ties arise which are not present in one dimension. In particular, by considering the
cons{ g} = {ey, fi, & fp, - - - } where H, C Sp{e,} and H;* CSp{f), it is reason-
able to try to replace ||Zj|| in each condition by(Z, g,» for k=1,2,- .- . 1Itis
readily seen that the conditions with || Zj|| imply those involving {Z, g, > while the
converse holds if {g,} is a finite system. Alternatively, the norm ||Zj]| in the
conditions could be replaced by the special seminorm || Z||,, coming from the limit
operator T. Here, the conditions with || Z;|| imply those with || Z||, if {e} is a finite
system, while the reverse implications hold if {¢,} is a complete system.

The next theorem generalizes Teicher’s work in the other direction by providing
a necessary condition for the Hilbert space iterated logarithm law.

" THEOREM 4. If {Z,} are independent random vectors in H with E(Z,) = 0 and
Cov(Z,) = T, such that for some positive constants {s2}, s;to0 and (1/5,)Z7_,T; >
Tin| - |« and if {(2s2LLs2)'72" 1Z;} is as. relatively compact with a.s. lzmzt set
D equal to K, where p. is a mean zero probability measure with covariance operator T,
then 2,,_1P[||Z I > y(szLLsz) 2] < o0 for all large v; moreover, if {e,} is a finite
system, then Z3_,P[||Z,||, > n(szLLsz) 1< o for all n > 23,

ProoF. Notice that there exist constants K and L such that || - || < K| - ||, on
H,, and |||, <L| | if {e} is finite. Now it follows by hypothesis thalt
PlIZ5_.Z)l, > n(2s2LLsY)?i.0.] = 0 for all n > 1 and P[||S 71 Z|l > v(2s}LLs})?
i0] =0 for all y > K. Using Chebyshev’s inequality, independence, and the
convergence of (1/s,)2 i=1T; to T in || - ||, a straightforward calculation shows
(2s3LLs2)"2 1Z; —,0. The proof is completed by putting these ideas together
exactly as in the proof of Theorem 1 of [13].

The final result gives a set of conditions guaranteeing the trace class convergence
of the covariance operators which has figured so prominently in all previous

theorems.
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THEOREM 5. If {Z,} are independent random vectors in H with E(Z,) = 0 and
Covw(Z,) = T,, and if T is a symmetric, positive semidefinite, trace class operator and
{52} are positive constants with s} oo and n = 0(s2) such that

. 1 o,
(a) ;—2-2;‘_,E<Zj, x){Z,y) >{Tx,y) for all x,y € H ie, " i L —>T
weakly; ‘
(b) for every & > 0 there exists a cons{g,} and a projection P, onto
Sp{ gy, »8n) such that E\|Z, — P, (Z)|* < 8 for all n; and
() there exists M such that E|Z,||> < M for all n, then (1 /s,,2)27=,7}—> T in

PrOOF. As noted before, T, = Cov(Z,) implies P, T,P, = Cov(P,(Z,)). A
1 1
direct calculation shows that ||T; — P, T,P, [« < 2(E|Z; — P,(Z)|P(E| Z]|?:.

J
Also P, TP, — Tin || - ||« as m — oo. Then for ¢ > 0, there exist, by conditions (b)

and (C), {gk} and Pm so that ||(1/Sn2)27_|]} - (l/sn2)2;=1Pm 7:'/Pm”m <
(n/s)n~ 'S\ T, — P, T,P,|lx <e/3 for all n and ||P, TP, — T|. <e/3. For
this m, condition (a) implies that |(1/s,)=7_,P,, T,P,, — P, TP, |« <e/3 for all
large n. Finally, breaking up [(1/5,)Z7-,T;, — T||« as suggested by the above, it
follows that [|(1/s,)27_,T; — T||x < € for all large n. This completes the proof.
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