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A NEW LOOK AT CONVERGENCE
OF BRANCHING PROCESSES

By D. R. GrRey
University of Sheffield

The classical almost sure convergence of the normed supercritical Galton-
Watson branching process with finite mean is obtained by a new method which
does not involve probability generating functions.

1. Introduction. From the most elementary level upwards, the behaviour of
branching processes has customarily been studied using the analytic properties of
probability generating functions and their functional iterates; these transforms are
useful for their comparative ease of manipulation and their economy in summaris-
ing probability distributions in a closed mathematical form. However, results
obtained by more direct probabilistic considerations usually shed more light on the
intrinsic nature of the process; the martingale convergence theorem has been of
particular value here.

Consider what may now be called the “classical” theory of almost sure conver-
gence of the normed supercritical Galton-Watson process with finite mean, which
may be found in Section 1.10 of Athreya and Ney (1972). Convergence in
distribution was originally discovered, using analytic considerations, by Seneta
(1968), and subsequently strengthened to almost sure convergence by Heyde
(1970), who used a martingale argument. Heyde’s martingale, however, has little
intuitive significance, being expressed in terms of inverses of probability generating
functions, and the objective of this paper is to use a different martingale to obtain
the same result by a more revealing and probabilistic method.

2. Statement of results. The key theorem in the proof of almost sure conver-
gence is the following.

THEOREM 1. Let {Z,;n=0,1,2,---} and {Z};n=0,1,2,- - -} be inde-
pendent Galton-Watson branching processes with the same offspring distribution and
arbitrary possibly distinct initial distributions. Let %, be the o-field generated by
Zy 2,28, -, 2 and let Y, = Z}/(Z, + Z}), where in the event of
extinction of both processes, we adopt the convention that the process {Y,} takes on
the last “meaningful” value it had and retains that value for all subsequent n.

Then {Y,, %,} is a martingale and so, being bounded in [0, 1), Y, converges almost
surely to a limit random variable with values in [0, 1]. Hence Z}/Z, = Y,/(1 — Y,)
converges almost surely to a limit random variable taking values in the extended
half-line [0, o).
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We now state our version of the “classical” theorem.

THEOREM 2. Let {Z,} be a supercritical Galton-Watson process with finite mean
family size m. Then there exists a sequence {c,} of constants with ¢, 'c,,, — m as
n— oo such that ¢]'Z, —,, W where W is finite and nonzero on the event of

nonextinction.

3. Proofs. We start the proof of Theorem 1 by showing that {Y,, ¥,} is a
martingale.

E[Y,.1|%,] = E[Y,.1Z,, Z}] (by the Markov property)
=Y, if Z,= Z} =0 (byconvention)
2,Z£ . Xi*(n)
= Z,, Z} | (otherwise
[ ST + A | v o | omenvise)
where X{, - - -, X, X3®, . - -, X, ¥® are the sizes of the families of the indi-

vidual members of the nth generations of the two processes respectively, and if all
these happen to be zero, the quotient is to be interpreted as Y, by convention.
But otherwise, on the event F that one or other of Z, | and Z}, | is nonzero, the

random variables X, - - - , X, é:), X ... X }nﬁ") are exchangeable, as they are
ii.d. conditional on at least one being nonzero. Hence by symmetry,
X
. Z,ZF
T X+ 2T X
I X .
SA XM+ SE x| Z,+27;
and so
X*(m
E[Y,,\Z, Z} F] =% E L ,Z* F
j= od n n
%X + BE X
4 _y
Z,+ Zr n
Therefore,

E[ Yn+I|Zn’ Z:] = P[FIZ”, Z:]E[ Yn+lIZn’ Z:’ F]
+P[F°|Z,, Z}|E[ Y,,\|Z,, 2}, F] = ¥,

This concludes the proof that {Y,, %,} is a martingale; the rest of Theorem 1
follows from the martingale convergence theorem.

- To prove Theorem 2, it is easy to see that if {Z,} and {Z}} are independent
copies of the process, then for any integer k > 0, Z*¥/Z, ., converges almost surely
as n— oo on the event {Z, # 0}, and therefore certainly on the event {Z, — 0},
to a [0, wo]-valued random variable, since {Z, ,;n=0,1,2,--- } is simply a
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Galton-Watson process with the same offspring distribution as {Z¥}, and so
Theorem 1 applies.

Now

Zysr = zx’zélxi("’k)

where X9, . . ., X{® are iid. random variables with mean m*, representing
the numbers of members of the (n + k)th generation which are descended from the
different members of the nth generation. Moreover, their distribution does not
depend on n, and so using the weak law of large numbers, this decomposition tells
us that Z,,, /Z, — m* in probability on the event {Z, — o0} as n — oo while k is
kept fixed.

Hence

z* zx
P(—i—>oo)A( u —)00),2,,—)00 =0
Zn Zn+k
where A denotes the symmetric differences between two events.

But
*

P Zy V4 =FE{P Z 1
Zn+k_)°o, " Z+k+Z:_)

n

Zk}; Zn—>00}

Z*
< E{E[lim ‘

o= |2 | Z,—>
AV } " }

(since the limit random variable lies in [0, 1])
Y L
"z rz T

using the martingale property and bounded convergence >0 as k — oo, by
bounded convergence events. Hence

n

* T
P[ Z"—)OO,Z,,—)OO = 0.

Similarly, by symmetry,

zZ* ]
P[ Z" -0,Z> 00| =0.

n

Hence in the event of nonextinction of both processes, Z}/Z, converges almost
surely to a proper, positive random variable and therefore, by Fubini’s theorem on
this event, almost any sample path {Z,} will suffice as a sequence of norming
constants {¢,} for {Z}} on this event; but {Z,} and {Z}} are independent and so
{c,} suffices for {Z*} on the whole sample space. The fact that c,,,/c, > m
follows from the result, already obtained, that Z*, ,/Z* — m in probability, and
the obvious fact that Z*, ,/Z¥ ~ ¢,/ c, almost surely, on the event {Z} — x}.
This concludes the proof of Theorem 2.
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4. Concluding remarks. Theorem 1 works equally well for subcritical processes
and supercritical ones with infinite mean. In the latter case, the consequences on
almost sure convergence results will be studied elsewhere.

The author would like to thank the referee for a slight simplification of the proof
of Theorem 2.
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