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AN EXTENSION TO A STRONG LAW RESULT OF MITTAL AND
YLVISAKER FOR THE MAXIMA OF STATIONARY GAUSSIAN
PROCESSES

By WiLLiaM P. McCoRrMICK
University of Georgia, Athens

Mittal and Ylvisaker have shown a law of iterated logarithms for the maxima
of certain stationary Gaussian processes. Their result is extended in this paper
in that it is shown to be valid under weaker mixing conditions.

1. Introduction. Let {X,, k > 0} be a stationary sequence of standard normal
random variables. Let 7, = EX X ,c, = (2 In n)% and set M, = max,c,,Xs X,
=1/(n + )% .o X, and Z, to be the Markov estimate of the mean, that is the
estimate of minimum variance among all estimates of the form X’ _c X, with
k=t = L.

Mittal and Ylvisaker [6] have shown for suitably smooth correlation functions 7,
with 7, = o(1), (, In n)~! monotone for large n and o(1), that, with probability
one,

2c’l(M’l - (]' - r’l)%cll - ZII) —_

lim inf 1 and
Inlnn
(1.1) .
li -2cn(Mn - (1 - rn)icn - Zn) 1
im sup =
Inlnn

provided (r, In n)/(In In n)> = o(1) and further, when (7, In n)/(In In n)> — oo as
n— o,

(1.2) lim, r‘%(M,, -(1- r,,)%c,l - )?,,) = o as.

The main result of this paper establishes the validity of (1.1) with )?,, in place of Z,
without the assumption (r, In n)/(In In n)? = o(1). (1.2) is then an immediate
consequence of this result. It is also noted in [6] that )7,, and Z, are interchangeable
in (1.1). A version of this result for continuous time Gaussian processes is also
indicated.

2. Preliminaries. Let f be a probability density function vanishing off [0, c0)
with the following properties. There exists 8 > 0 such that for 0 < x < B, f(x) >
A(B) and f is nonincreasing on [ 8, o). Set

@1 r(t) = [2 f(x) AN f(x + 1) dx.
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Functions of the form (2.1) are by a result of Berman [2] correlation functions.
Moreover, there exists a stochastic integral representation for a process having such
a correlation function. Let 4, = {(x,y):— 0 < x < 0,0 < y < o and f(x + ¢)
>y} and Z be Gaussian random measure on the plane with Lebesgue measure as
its covariance kernel. Then

22 X, = [/4Z(dx X dy)

is a stationary Gaussian process having correlation function r.
Following Mittal and Ylvisaker we use (2.2) to write for 0< ¢ < T and 7T > B8

(23) X, =[] a,nan apyZ(dx X &) + [[ 4 14, Z(dx X dy)
=1 - KT)YT + I,

From this representation it is apparent that I, is independent of {¥,7, 0 < ¢ < T}
and the following properties follow easily. For T > 8

r(s—1t) —r(T)

. TyT -
(i) EY)'Y, = 0<s:t<T
(24) ..
(i) EX,I; = r(T), 0<t<T
ELXy = ELI = r(T) B<t<T.

Let us now assume that we may take a version of the process at (2.2) having
continuous sample paths and define X, = X = 1/¢/4X, ds. The remainder of this
section will be devoted to showing that the processes {X,, ¢ > 0} and {[,, ¢ > 0}
are appropriately close. This is accomplished by constructing an intermediary
process through which we make our comparisons.

Define a probability density function

g(x)=¢, 0<x<pB
=f(x), B<x<oo

where if 8 > 0, we define ¢ = 1/8/£f(x) dx and where f is the probability density
function at (2.1). Our assumptions on f imply that g is nonincreasing and we may
define a convex correlation function 7(¢f) = [°g(x) dx. Note that r(¢) = #(¢) for
t > B. Next define

X, = [[pZ(dx X dy)

where B, = {(x, y):—00 <x < 00,0 < y < o0 and g(x + ?) >y}. We may take a
version of )f’, having continuous sample paths since, if 8 > 0, 1 — #(¢) = ct for ¢ in
a neighborhood of zero and we ‘may define X = 1 /tf f,)?s ds,t > 0. Now by their
representations as stochastic integrals, one may readily verify that the process
{¢, = X, — X, t > 0} is B-dependent, that is {, and ¢, are independent for |s — |

> B.
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Next we establish for 0 < S < T

(25) @) E{Ti§ - si85) < 13[;{(T;S)2+(T;S)}

(i) P =T% ;= sups<,<TE{t%f;}2 <4p
where {, = 1/ T, dt. To show (2.5i) let D = {(s, £):|s — t| <B}. Then
E{TH, - i) = (T - S3VEG + 2537 - SHEG(8 - &)
+SE(§r — &)’

J(T-sy
28T?

+2(T - S){ S I8 I5Ip(s, 1) ds dt + ( )f{fglp(s, t) ds dt}

S (T (s, t) ds dt

1
+2S{T EIL(s, t)ds dt + — (—-——f,)fsflp(s,t)dfdt

2
+ (%, - %) SISIL(s, £) ds'dt}

T-S T-S) 68(T —S)  2B(T — S)?
B( )+83( — ) +2s{ .B(T2 ) 4 B(ST2 )}

< lsﬂ{(T;S)u(T; )],

The proof of (2.5ii) is similar.
Now letz, =e”™, m=1,2,---.Then

t2 1-
P{max, <’<’m+'lnlnt§’ > e} < P{maxo<,<1¢2§, >eln m}

(2.6) < c1<1>( -Zm m)
C2

where 7 = 7(¢) = ¢, + (¢, — t,) and ¢,, ¢, are constants ot depending on m.
The last inequality follows by Fernique’s inequality [3] since by (2.5i)

E{(r()) ) — ()26} < 133{( (1) -~ )f<s)) (T(t)f(_s ),(s))]

< 138{(e = 1)%(t — 5" + (e — 1)(t — 5)}
= Y(t - s)
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and neither the function y nor the bound on the E {t%f, }? depends on m.Thus from
(2.6) we conclude by a Borel-Cantelli argument that

LemMMA 2.1. Let r be a correlation function of the form (2.1) and X, be the process
having the correlation function defined at (2.2). Then with X, defined as before we
have

NI—

lnlnT( ’?T)—’OasTeooa.s.

Now for t > B set 6? = E{X, — I,}*> and for 5, ¢ > f8 set

#{7,- 1)~ 1)
Ps,t = .

0,0,

Also note that (2.4ii) holds with X, in place of X,. This observation is crucial to the
proof of the following lemma.

LeEMMA 2.2. Suppose 7(t) = E)?of, satisfies
(@) #(2) = o(1)

@7) (i) (7(¢) In )" is monotone for large t and is o(1).
Then

(l) oT (lnTT)

. T o (4\(T—S\_ (T _
o9 (“)sg<1+22'(k)( . )-2(S) 1

JoralB<S<T
S
(iii) pg 7 > =2 forall B < S < T.
’ Tor

ProoF. (i) This is simply a continuous version of Lemma 5.1 of [6].
(ii) Let T > B be fixed and a > 1 be arbitrary. Then

(aT)*a? oT(eTi(y — v) du do — (aT)*F(aT
aT =
T%2 TT#(u — v) du do — T%#(T)

_ 1&7(aT — u)(#(u) — #(aT)) du _ 23T — u)(F(au) — F(aT)) du
o (T — u)(F(u) — H(T)) du o(T — u)(#(u) — #(T)) du
_ o [I(T — u)[ilg(2) dz du - o [3(T — u)[1g(az) dz du
T — w)(F(u) = H(T)) du  [G(T — u)(#(u) — #(T)) du
o [§(T — u)[Tg(z) dz du
o (T — u)(7(u) — H(T)) du

a®<2at - 1.
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(iii)) For 8 < § < T we have
STE(Xs — I)(Xy — 1) = Ef§(X, - 1) dsyi%, dr
= Ef§(X, - 1) ds[ [$X, dt + [LX, dt]
= 8% + [§[[5(F(s — 1) — #(1)) dt] ds
> S%2.

THEOREM 2.1. Suppose r(t) = EX X, is of the form (2.1) and satisfies the condi-
tions at (2.7 i and ii). Then

1
2 —
29) g:ll:l)t (X, - I,) —0ast— o as.
ProoOF. By Lemma 2.1 it suffices to show
1
2,7
(2.10) %%(X, ~1)—>0ast—> o as.

Further since r and 7 agree on [ 8, ), conditions (2.7i and ii) hold for 7 also. Let
¢ = X, — I,/o,. Then by (2.8 ii and iii) it follows that

@.11) EE - £) < 424_,(2) ( ‘- s)k, B<s<t

s

for

E{¢ - &Y =2[1-p,,]

s,
<2[1——}

ta,

< 2(1 —[1 + 224_1(2)( t = s)k]—%)

<ot ()5

Thus if £, = e™,m = 1,2, - - and € > 0 is arbitrary, we have
. .
(n9? ;3 Inln¢,,,

P{max' <t<tmn e T \Xe = L) > € <Pimax, ., & >e————7
Inln ( ) o,m(ln tnt1)?

Inln¢,,,

< Pimaxggicif, > e——— 1+

Kr,m2

(2.12) ' < c®(~1n m)

for m large enough where ¢ is a constant not depending on m. The next to last
inequality followed by (2.8i) where K is some constant and the change of time is
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given by 7 = 7(¢) = ¢,, + #(t,,., — t,)- The last inequality followed by Fernique’s
inequality by virtue of (2.11). (2.10) now follows from (2.12) by Borel-Cantelli.

Let us also note that Theorem 2.1 contains the corresponding result for discrete
time, that is

(In n)%

=4
lnlnn(X” I,,)—»Oasn—»ooa.s.

(2.13)
where X¢ = 1/(n + 1)=% _,X,. This follows upon checking that nE(X? — X°)* =
0(1).
3. Iterated logarithm law for M, — X,..
THEOREM 3.1. Suppose r is of the form (2.1) and satisfies
(@) r, = o(1)

(ii) (r, In n)~" is monotone for large n and is o(1).

3.1)

Then with probability one we have

26,(M, — %, - (1= r)k)

lim inf =—1 and
nmeo Inlnn
2,(M, - X, - (1 - r,)c,)
. Col\ My — 4, — —TW) 6
3.2) lim sup,, _, o =1

PrOOF. Recall the representation at (2.3). Forn > Band 0 < k& < n,
X, =(1-r)Yp+1,

Let M,* = max,,,Y{. Then by (2.13) to show (3.2) it suffices to show
ZCH(MH* - cn)

(33) lim inf - = —1 and
li ch(M: B cn) =1
Sk S g g o

Now the proof of lim inf 2c,(M} — ¢,))/(In In n) < — 1 given in [6] does not
depend on mixing conditions and applies here as well.

Also the proof of lim sup (2¢,(M} — ¢,))/(In In n) < 1 in [6] does not make
essential use of the condition (7, In n)/(In In n)> = o(1) and carries over to our case
without difficulty. However, the proofs of lim inf (2¢,(M} — ¢,))/(Inlnn) > — 1
and lim sup 2¢,(M} — ¢,))/(In In n) > 1 require substantial modification.

The proof of the lim inf proceeds by showing first that it is sufficient to consider
the lim inf along a particular subsequence and second that the lim inf along that
subsequence is at least — 1. In establishing the latter half, Mittal and Ylvisaker use
their mixing condition so that a bound on a certain probability derived in a
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previous paper might be employed to bound a probability that occurs in the proof.
By working directly with this probability. (3.4ii) below, one can avoid the condition
(r, In n)/(In In n)*> = o(1).

Obtaining that the lim sup is at least 1 in the present context, is the more difficult
extension. Essentially the difference in the two proofs is in the choice of blocking
the variables in preparation for Slepian’s lemma. Mittal and Ylvisaker use a fixed
length between blocks which allows a convenient bound on the maximum correla-
tion between blocks but in order that the bound be useful for an application of
Slepian’s lemma, their condition on r must be imposed. Removing that condition
necessitates a delicate blocking scheme of fewer blocks (the number of blocks is of
smaller order than the log of the number used in [6]) and such that the distance
between the initial and later blocks grows geometrically as does the size of the
blocks. With this scheme one can show that the maximum correlation between
blocks is appropriately small without using the condition (7, In n)/(In In n)* = o(1)
and that sufficiently many variables have been retained so that effective use of
Slepian’s lemma is possible.

Lemma 3.1, lim inf 2¢,(M* — ¢,))/(Inlnn) > — 1.
PrOOF. Let n, = [e™] and € > O be arbitrary. Define sets

2¢, (M, *—¢c,)
_ T\ P o _
G’"_{ Inlnn, > (l+€)]

= |26~ a) (1409t <
' = o ( ¢) for somen, <n <n,,,

Jm = Gm n Gm+l N Hm‘

The lemma follows by showing
(34) @) P{J,, 10} =0
(i) P{Gg,i0.} = 0.

The proof of (3.4 i) is accomplished by the same arguments as presented in [6]. To
show (3.4 ii) we will demonstrate that the sequence

_a +e)ln1nnm}

*
P{M,,m <¢,, 2c"m

is summable.

First observe that since the correlation function » agrees with a convex
correlation function from some point on, we may by Berman’s comparison
lemma [1] assume that r is convex without loss of generality. Thus if we set
t, = [exp{(1 — (10 In In n)/(ln n)ln n}] and 5,(j) = p,() V p,(4,), 0 < j < 1, then
p, defines a correlation function for 0 < j < n by convexity. Now let { W}, 0 <k
< n} be a sequence of standard normal variables having correlation function p,. By
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Slepian’s lemma [7] we have

Plar <c — (l1+elnlnn
n X6y 20"
" (1+e)lnlnn
< P{max0<k<an <¢ - 2.
<2{(1= n6) M0 + sV < - LELRI2 ]
(35) "
+p {0 = n ) @ + sy <o, - LEg R
" (1+€Inlnn
—P{max0<k<an <G

where M, (0) denotes the maximum of » + 1 independent standard normal vari-
ables and V is a standard normal variable independent of M, (0).
The first term appearing at (3.5) is at most

_( +e/2)1nlnn}

(36) ®(~2(Inlnn)?) + P{ M,(0) <e, =

< (lnlnn)"%e““’“’“' + exp{ —e¥/4lnlnn},

Evaluated at the point n,, = [e”], the sum at (3.6) is clearly summable, on m.
For the second term at (3.5), Berman’s lemma yields the upper bound

(1 + €)ln 1nn)2
C, — (T
2c,

(37) nEfu,(8) exp| — ks

Now define the following quantities

1 - rl 1 - P,,(l)
1+r " 1+p,(1)

t,=t(n)=n" ,0<a<

4, = t(n) = exp{(1 = r//})lnn}, . 1<i<g,

=1

n

tq,, +1

where g, is defined to be that integer for which

10Inlnn S HatD/2,
Inn "

%
rhrz >
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Note g, > 1 satisfying the above will exist for n sufficiently large since (7, In
n)~! = o(1). Also note that g, < In In »n and that

pa(t,) < 2( 1 ; . )’n

p.(8) < 2r,ri/?, 1<i<g,

Now observe that we may bound (3.7) above by

2
(c,, —(1+%¢ ln2lcnn)
1+a _ n
S T+ p,(1)
(3.8) )
(c,, —(1+%¢ ln;:”)
+n3% b, expl — T n

The first term at (3.8) can easily be shown to be o(n~*) for some A > o not
depending on n. Moreover, following the procedure given in [5] to bound the sum
appearing at (2.17) in that paper, one can easily verify that the second term at (3.8)
is at most e~ 222" Since e~2!2 12 % < 2 /m? is summable, the proof of Lemma 3.1

is complete.
LemMA 3.2. lim supc, (M} — ¢,))/(Inlnn) > 1.

ProOF. Let 8, =0,(e)=c, +((1 —¢) In In n)/2c, We will establish the
lemma by showing that for any fixed ¢ > 0 and X,

(3.9 limy_,P{Y'<0,0<j<nK<n<N}=0.

Define the following quantities

- - __lN
L = L(N) [NeXP{ ) ”

q = qy(8) =[exp{ry°}]
for some 0 < & < 1 to be specified later. m = my(8) to be that integer for which
Lg™ < N <Lg™*'.a,= Lq", 1 <y < m. Note
s (ln N)l—8

(1n1nN)2 <m+1

m < (ryInN)

so that
(3.10) m<InN
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and m = my — o as N — oo. Now (3.9) is bounded above by
P{Y"<0,0<j<nL<n<N)}
<P{N).[¥'<8,a_,<j<na_,<n<a])

y=1
(3.11) <P{ ;”_1[1;“'<®4,,ay_1 <j<a,_l(1—*2"1)]}.

Next for any y < ¥ and any j, k with

) 1+ ¢ 1+
a,_, <Jj <ay_,(T) <d)7_1 <k <ay-_,(Tq)

we have
EYSYE < 2[r(j — k) — r(a;)].
But k — j > a;((¢9 — 1)/2) so that

In a; r]},—"
r(k—j)—r(ay-)<2rN —_— 1] <3——.
qg-—1 InN
111(1;_2( 2 )

Thus if we define oy = 6 (r4~%/In N), then
EYSYS <y,

Now put
r(j — k) — r(a)
1—r(a,)

p(J — k) = EYAYS =

" and define random variables
1
Z,,=(-0y)?U,, + oV

where 0 <n <a,_,((4 — 1)/2) and 1 <y <m. The U, , and V are standard
normal random variables, ¥ is independent of the U, , and

EUy,n Ui,ﬁ=py(n_ﬁ) if Y=1%
=0 if y#7.
Then we clearly have
EYy ¥ 4i <EZ, ,Z;;

Thus by Slepian’s lemma [7] the probability at (3.11) is at most
[ - m © (g—1
P{ﬂy_l[z.,’,, < @a’,o<n <a.,_1(—2—)]}

= p{ngm [0 - a0t + gy <0, 0<n<a (451)])
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< ®(—Inln N)

+p{n1.[0,, <0, /2,0<n <a(L71)])

- -1
(G12) =o(l) + n,_.P{ U,,<8,,0<n< a,_l(-qz—)}
where 6, = 0, (¢) by redefining e.
Now by Berman’s lemma [1]

|P{ U,,<0,,0<n< ay_l(g-g—l)} - exp{ay_,(q—;l)ln <I>(®a')}

o7
(3.13) <a,2‘;g_1p,,(k)exp —m .
Y

Now if 0 <a < (1 = p(1))/(1 + po(1)) < (1 = p,(1))/(1 + p (1)), 1 <y <m, We
can bound (3.13) above by

1 + po(1)

B2 + (2 - e)nlna,
1+ p, (k)

1- 1
exp{ _ %(—Po() — a)lll ay} + ca,E{‘,',y)ﬁ lpy(k)exP{ -

(na)? 1+ p,(k)

where A > 0 is some constant not depending on y. The expression a‘IZZ’;;Y)..,Hpy

b,
(k)exp{— T+ o)
Y

[4] to show the sum appearing at (2.13) in that paper was o(1). Therefore (3.14) is at
3
most (In )~ 2 for all N sufficiently large. Hence

(3.14) <a*+

Y

} may be seen to be o(1) by following the procedure given in

-1
P{Uy,,,<®,,7,0<n<ay_l(q2 )}

< (In ay)_% + exp{ay_l(q—;—l)ln Q(@av)}

a,_ (1~ 1)
3 7=
< (lna) ?+exp —c—e—z-——e‘%eil
ﬂ'
_2 c
<(na) *+exp{ —————;
(Ina,) </
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for some constant ¢. Thus
lnH';‘_lP{Uy’,, <0,,0<n <a,_1("—;1)}
_3 c
<327 ln[(ln a,) ?+ exp{—W”

m - -3
< 2,-1{ W +2(Ina,) }

dx
(InL + xIng)' ™2

<o(l) — ¢!

dx
< 0(1) - crﬁf]]ﬂ&;—l.——e/-_z'

= o(1) - 35 r8[(In N)*? — (In gL)/?]

<o(l) — 2—:r,3(1n N)/

— — o0 as N — oo for § small enough. Thus (3.12) is o(1) and hence Lemma 3.2
holds proving Theorem 3.1

Let {X,, 1 > 0} be a separable stationary Gaussian process with EX, = 0, EXJ
= 1 and r(¢) = EXyX, of the form (2.1). Further suppose for some constant ¢ > 0
that 1 — r(¢) = c|?]* + o(|¢|*) for ¢ in a neighborhood of zero so that the sample
paths are continuous and we may define M, = max,,.r X,. By the representation
~ at (2.3) we may write My = (1 — rr)IM* + I where M;* = maxyg,r Y,7. Now

assume the hypothesis of Theorem 2.1 holds so that by Theorem 2.1 the process
(In T)%/ (In In T) (I—X,) is a.s. asymptotically negligible and therefore, in order to
prove a continuous version of Theorem 3.1, we need only modify the discrete time
arguments of Section 3 to a continuous time setting. These modifications are
essentially standard and will not be given. We state the result below.

THEOREM 3.2. Assume the hypothesis of Theorem 2.1 holds and 1 — r(f) = c|t|*
+ o(|t|*) as t - 0. Then

— 1
.. CT(MT - Xr—(1- ’(T))ECT) 1 1
lim inf Inin T a2
o 1 .
. cT(MT - Xr—(1- r(T))ch) 1 1
lim sup i T —Tx-+§.
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