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INFINITESIMAL GENERATORS OF TIME CHANGED PROCESSES

By HENRYK GZYL
Universidad Central de Venezuela, Caracas

We start with a standard Markov process X and a continuous additive
process A of X with fine support ®. We form the time changed process X,, and
we compute its weak infinitesimal generator in terms of the weak infinitesimal
generator of the process X and of the Lévy system of (X,,7). We give some
examples.

1. Introduction and preliminaries. Let X = (Q,F,F,, X,,0,P*), .z be a stan-
dard Markov process with state space (E,,E,) where E is a locally compact,
second countable metric space. As usual we denote by E* the universal completion
of E, A the cemetary point and E, = E U {A}. (The reader should look in [1], [4] or
[10] for any concept we use without explicit definition.) Let 4 = (4,),,, be a
continuous additive functional which we assume to be perfect; i.e., we assume that
Ay = 0,4, €F, that almost surely z— 4, is continuous and that almost surely
A, =A,+ A,0V1t,s > 0. We shall assume that E“4, < oo forx € Eand ¢ > 0.
We define 7, = inf{u : 4, > ¢}, the usual right continuous inverse of 4,.

Denote by ® the set{x : P*(7y = 0) = 1}. ® is called the (fine) support of 4. If
we consider ® with the induced topology, then its Borel sets @ can be obtained as
® = E|, and also ®* = E*|,, ®F = E*|4 . _

From X and 7 one constructs the process X, = (&, F, F,, X, 0,’, P*), which is
a strong Markov process on (®,, ®¥) with transition semigroup Q,f(x) =
I4(x)E*f(X, ), defined on b®* and extended to b®} in the usual way.

Below we recall the notion of weak infinitesimal generator of a Markov process
and in Section 2 we explore the relationship between the weak infinitesimal
generator G of X and the weak infinitesimal generator G of X,. We shall remark
that our results are actually valid for random time substitutions not necessarily
associated to additive functionals. That 4s, let (o,),,, be an increasing, right
continuous family of stopping times such that X is at least a Hunt process and a
Lévy system can be found for the joint process (X,, o); then if care is taken as to
what the state space of X, is, our proof still provides us with a method of
computing the weak infinitesimal generator of X, = (%, F, F, , X, , 00,, P*).

The result we present here extends a previous result by Dynkin which we treat in
Example 1. This same situation has also been treated in an abstract setting (see [8]
and references quoted therein). In some of the examples below we consider the
situation described in the previous paragraph. Also, in [6], Karoui and Reinhard
compute the generator of the process obtained from X by time changing it with
respect to o, = 7, . They use an approach entirely different from ours.
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GENERATORS OF TIME CHANGED PROCESSES 717

Let us now continue with an outline of the properties of the process (X,, 7) that
we are going to need below. In order to have a nice behavior for the left limits of
X,, ie., for X, to be quasileft-continuous we bring in the following result (privately
transmitted to me by Bernard Maisonneuve).

LeMMA 1.1.  The process (7,), ¢ is quasileft-continuous with respect to {F, },. 0.

CoMMENT. As a consequence of this lemma X, is quasileft-continuous on
[0, §), { = 4,.

PROOF. Let 7, be an increasing sequence of stopping times of {F, }, with limit
T. Put D, = 7(4,), then it is easy to see that 7, _ , 7, are stopping times of F, and
Tr, - increases to 7r-.

Observe that 7, = D, _ and apply the quasileft-continuity of the process D, (see
for example the remark on page 81 of [6] or in Maisonneuve’s “Ensembles
regenerativs”, Asterisque 15, page 27, 1974) with respect to F,, to obtain that 7, / Tr
a.s.

Now it is easy to verify that (X,, 7) is a Markov additive process according to
[2]. Let us proceed to make some regularity assumptions on the continuous part of

7 and on the Lévy system of (X, 7).

AssUMPTION A.1. The continuous part 7¢ of 7 satisfies
(1.2) 75 = [ba(X,) ds
where a is finely continuous for the process X,.

AssUMPTION A.2. The Lévy system of (X, 7) (see [2]) is such that for any
bounded previsible (relative to F, ) process Z, and for any bounded f € ® ® @, ®
B(R, ) the following holds

(13) E*S, 0Z f(X,_, X,, ATS)I{X:’_#X’: orn )
= E*[5Z, ds [ oxn,L(X,, &, du)f(X,, y, u).
Furthermore, for any g € b(®, ® B(R, )) and x € ®,
t > [o x5, L(X,, dv, du)g(y, u)is as. [ P*] right continuous.

In (1.3) X;7 = X,- . We should remark that the real assumptions in Al and A2
are not the forms given by (1.2) and (1.3), which can be obtained by appropriate
time changing with respect to a strictly increasing continuous additive functional.
The real assumptions lie in the regularity conditions which make the proof of 2.1
easy, and in order to study them, one would have to take a closer look at Lévy
systems of time changed processes [5], exit systems [9], and the conditional
structure of { given X; [11], as well as to the original process X itself.

Let us now introduce the definitions of weak infinitesimal generator of X and
X,, following [4], as we are going to use them in the next section.
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For the process X define
= {f€DbE,: P,f(x)>f(x)Vx € East|0}

and then define D = U°L, which turns out to be independent of «, for a > 0. One
can then prove that D = { f € bE, : (1/t)(P,f — f) converges boundedly in ¢, to
g €L}

For f € D, the limit of (1/¢)( P, f(x) — f(x)) as t [0 is denoted by Gf(x), and the
mapping G : D — L satisfies U*(a — G)g = gVg €D and (a — G)(U*f = fVfE
L.

Since in general Q,: b®* - b®*, we define

= {feb®}: Q,f(x)—>f(x)x € ®ast|0}.

If we write Wf(x) = E*[ Fe”“f(X,) dt for f € b®*, then W the resolvent
assoc1ated with Q,, and as before we put D= weL. Itis easy to verify now that

= {feb®F : (1/t)(Q,f(x) — f(x)) converges boundedly int,tog € L}

We are going to denote hm,w(l/t)(Q f f), for fe D, by Gf(x), and, as
before, one verifies that the mappmg G : D — L satisfies W*(a — G)g g and
(a — G)W<f=fforge D and f € L, respectively.

In the course of the proof of 2.1 we will have to make use of the followmg result
about exit systems Let M = {(t, w): 4,, (w) — A,_(w) > 0}, then M= {(r, —
(@), w): 7,_ (w) # 1(w), s € R, }, is the set of positive left end pomts of inter-
vals contlguous to M. It is proved in [9] that there exists a pair (P, K) with K a
continuous additive functional with support @, P a kernel from F* to E* such that
(among other things) for every bounded positive well-measurable (relative to F,)
process Z and every bounded F*-measurable function H, the following identity
holds.

(14) EXESEA;ZSI(P(XS)H ° os Ex2s>Oz s I‘I’(X‘r,— )H ° 01'_,— I(O, oo)(ATs)

EX%3Z EX(H) dK,.
It is also mentioned in [9] (with reference for the proof) that there exists a
sequence of stopping times 7, such that

(1.5) E*S,ciZJIg(X,)H o §, = ,E*{(Z  EXt[ H]}.

Actually, since the points of the set {s € M, X, & ®) are isolated from the right,
one can take Tl—mf{seM X,¢®) and T,=T, +T,_,° 0,=T,_, +

°fr .AlsoT,>T, ,if T, ; < oco.In the course of the proof of Theorem 2.1
we will have to compute a limit of the form lim, o(1/8)E*{(EX"(f(X, ) —
f(x¢)); Ay, <t} forx € @.

Let Z be a bounded previsible process and Bf = g(X7)I[ 4, «)(?) then
EX(Z, 8(Xr); Ar <t]=EYTZ, dB8. According to [11], there exists a right
continuous, adapted, increasing process C# such that for each p, C# is the dual
previsible projection of B relative to P*. We shall denote by C, the dual projection
of B!, and remark that there exists a bounded positive kernel B such that
CE = [, Bg(X,) dC, (see appendix to [9]). At this point we state our

\
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ASSUMPTION A.3. We shall assume that 1 — Bg(X,) is a.s. right continuous and
that C, = ¢t whenever U,[T,] # ¢.
With this assumption we can prove the following

PROPOSITION 1.6. For g € bE*, x € ®

S
hm,w?E [8(Xr,)§ A < t]

Bg(x)

ovn > 1.

1,
lim, o—E [&(X7); A, < t]

ProoF. The first assertion follows from (A.3) and the second from the strong
Markov property and dominated convergence theorem.

In the next section we are going to see how to compute lim, o(1/2)(Q, f(x) —
f(x)) for f€ D and x € ® in terms of Gf, and the kernels K(x, A) = L(x, 4 —
{x}, (0, oo]) and B. Then with one extra assumption on A we will be able to extend
fe D to f € D and then show how to compute éf in terms of Gf and the kernel K
applied to f.

The assumption we shall need is

AsSUMPTION A.4. Assume that lim, 4 (1 /tYE*A, = b(x) exists, is a bounded
function on ® and vanishes off ®.

We shall also mention that we shall be adhering to the “lifetime formalism,” i.e.,
functions defined on E(®) will be considered extended to E,(®,) and vanishing
on A.

2. The weak infinitesimal generator of X,. Let us begin this section with

THEOREM 2.1. Let f € D be such that as. t — Gf(X,) is right continuous ( for
example, f € U*D which is dense in D) and assume that (A.1), (A.2), and (A.3) hold.
Then for x € @

(22) lim, 7 (Q,/(x) = f(x)) = a(x)Gf(x)

+ [oK(x, )(f(y) = f(x)) + B(8f)(x)

where 8f(x) = Exf(X,o) — f(x) and K(x, A) = L(x, A — {x}, (0, o)) for A €
d*,

ProOOF. The basic idea comes from the fact that for f € D, M, = f(X,) — f(X,)
— [Gf(X;) ds is a locally square integrable martingale. Therefore M, is only a
locally square integrable martingale relative to ?f,l. According to Theorem 1 in
Kazamaki [7], there exists a continuous time change g, (relative to ‘?ﬂl), increasing
from 0 to o, such that M, , , is a square integrable martingale and it vanishes at 0
for every P* with x € ®. With this comment it is easy to see that nothing is lost if

we assume that M, is square integrable for the following argument.
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An application of the change of variables formula [10] and our assumption on 7
yields
(2.3)

[EGf(X,) ds = [4Gf(X, ) dr, +2,.{/% G(X,) du— Gf(X,_)Ar,}
= [%Gf(X,)a(X,) ds + Z,.,[7 Gf(X,) du.

Note now that the set {(7,_ (), @) : 7,_ (w) # 7(w), s € R, } is the set consist-
ing of the positive left end points to the intervals contiguous to the perfect,
homogeneous, random set M = {(¢, ) : 4,,, — 4,_, > 0 Ve > 0}. It is proved in
[3] that L¢ + ¢ and R? are stopping times relative to {F,} and it is easy to see that

2s<1M‘r, -M, = lime—)OEnMR:,/\‘r, = M1eieynn,
and since M, is a P* martingale for x € ®
E*S, M, — M, = lm, o3, E(Mgp, — Mzions) = O
because of the optional sampling theorem. Therefore, ‘
E*S, 7 Gf(X,) du=E*Z, {f(X,) = f(X; )Mo, w)(A7,)-

Also, taking Z, = | f(X,_) — f(X)|I(x,_.x,, and H =1 and substituting it in
(1.4) it is easy to verify that the processes

2 {(f(X,) = A(X ) Ho(X, ), )(AT;)

and
S {f(X,) = F(X, (X, Mo, )(AT)
are indistinguishable, and therefore from (1.3)
24 E*Z, A f(X,) — f(X, (X, o, (A7)

= E¥’ ds [oK(X,, &) f(y) — f(X,)
Consider now the term
E*S, {f(X,) = f(X, Yo(X, g, w)(AT,)-
From the comments preceding (A.3) we see that this term can be written as
=, EX{(EX™] f(X,,) — f(Xo)]; T, <7}
= 3, EX{EX™[ f(X,,) = f(Xo)]; A7, <t};
ie.,

Q.5 E*Z, {f(X,) = f(X, e (X, Mo, (A7)}

$—

= S, EX8f(X1); Ar, < 1)
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Now, from (2.3), (2.4), (2.5) and our assumptions (A.l), (A.2), and (A.3) it
follows that for x € @

limuo-:-(Qf(X) = f(x)) = a(x)Gf(x) + [oK(x, &)(f(») - f(x)) + B&f(x).

CoMMENT. When & is projective, in particular when F is finely perfect and
closed, then B = 0 and

limuo%(Q,f(x) —f(x)) = a(x)Gf(x) + [oK(x, dy)(f(y) = f(x)).

THEOREM 2.6. Let f € D be such that as. t — GAf(X,l) is right continuous and
assume that (A.4) holds. Then f(x) = E*f(X, ) is an extension of f to E such that

@7 lim, o (P, f(x) = f0) = b)) x€®
=0 xe&d

and also

(238) Gf(x) = a(x)GF(x) + [oK(x, #)(S(y) = f(x)).

ProoF. Certainly E*{ f(X, )} = f(x) i_s an ex_tension of fto E. Also from the
optional sampling theorem follows that P, f(x) — f(x) = E*f 6"GAf( X, ) from which
(2.7) follows if we investigate (A.4). Since

éf(x) = limth%(Qtj(x) —f(x) = Hmzw%(sz(x) _f(x))’
we obtain (2.8) from Theorem 2.1 and the fact that E*{f(X, ) — f(X,)} = 0.

COoMMENTs. We shall see in (2.6) that if x € &, then
) 1
lim, 0 (Q, f(x) = f(x)) = a(x)Gf(x).

A similar calculation will show that b(x) = 1/a(x) and therefore Gf(x) =
a(x)Gf(x).
Also from (2.8) it follows that if 1 > a(x)b(x) then

6(x) = T=armyarey [ oK (e #)JB) ~S(x)  for x €@ b,

To end this section we mention that in the case where 4 is adapted to
a(X, : s < t), ® happens to be a Borel set and X, is a standard process with state
space (®,, ®,), if @ is closed. Let us now recall Theorem 1.2.3 of [4] as

THEOREM 2.9. Every stochastically continuous transition semigroup on the topo-
logical state space (E, O, E) — O being the topology on E, is uniquely determined by
its infinitesimal generator.
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Therefore, since X is a right continuous normal process, its transition semigroup
is uniquely determined by G. Also, since ® is finely closed and @ is the o-algebra
on ® generated by the induced topology, it follows that the semigroup (Q,) is
stochastically continuous and uniquely determined by its weak infinitesimal gener-
ator G , according to Theorem 2.9.

FINAL COMMENTS.
(i) Notice that for f;, f, satisfying the conditions of Theorem 2.1,
lim, o+ (Q,/(x) = fi(x)) and [K(x, )(f(») = f(x)i = 1,2
depend only on the values of f; on ®; therefore,
a(x)Gfi(x) + B(8f)(x) = a(x)Gf(x) + B(8f)(x).

This implies that if we extend f € D to f €D in a way different to the one
mentioned in Theorem 2.6, we will obtain

Gf(x) = a(x)Gf (x) + [oK(x, d&¥)(f(») = f(x))

a(x)Gf'(x) + [oK(x, &)(f(¥) — f(x)) + B(8f')(x).
(ii) If we define D (and D) to be the class of HE (and b®*) measurable functions
for which there exists g € bE (or ®*) such that
(X)) = f(Xo) — [og(X,) ds
is a P*-local martingale for x € E(x € ®), then we can drop the regularity
assumptions in (A.1), (A.2), and (A.3).

3. Examples.

(3.1). Assume that h(x) is a strictly positive, finely continuous function and put

= [h(X,) ds. Since in this case ¢t =1, = A,, and, therefore, ¢ =

f 'h(X )d'rA = [bh(X,) d7, from which it follows that dr,=ds/h(X,)=

a(X,) ds Also since in this case 7 _ =1, for every s > 0, it follows from Theorem
2.1 that

Gf(x) = a(x)Gf(x)
which is X.10.24 in [4].

(3.2). Let us assume that 4 is such that 7 is a pure jump process, i.e., 7° = 0. In
this case (2.2) yields that for f€ D and x € @

Gf(x) = [oK(x, &){f(¥) = f(x)}

and in this case, when f = I, , for x, € ® happens to be in D, then if we put
T inf{u : X, # x,} it is easy to conclude that P*°(T, > ¢) has a density with
respect to Lebesgue measure given by —E*°K (X, , {x,}°). In this case the process
X, is a pure jump process.
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(3.3). Let us now consider a variation on the theme of Example 2 of [6]. We start
with a standard Markov process on (E, E) and a one-dimensional Lévy process
T = (W, G, Q) with positive increments. By forming the appropriate products we
can consider X and 7 independent relative to (2 X W, F ® G, P* ® Q). We shall
write 7, = ¢t + 7/, where 7, is the discontinuous part of 7,, and assume that for
every bounded F € B(R, ) X B(R, ) the following holds (E stands for expecta-
tion with respect to dQ)

EZ,  F(r,_ , At)I, ., = E[% ds[§F(7,, u)n(du)

where n(du) is the Lévy measure of .
If we denote by P* the measure P* ® @, it is easy to see that

E*3, [ Gf(X,) du = E*'yds [5(/ = Gf(X,) dv)n(du)

= E% ds [5) 5 Gf(X,) dvo)n(du)Q(r, € dr)

= [ ds [SITEX[GGI(X,) ° 6, dv} du Q(7, € dr)

S a5 [ 5 §{Pus, S(x) = P.f(x)}n(du)Q(r, € dr)
= [ ds [TE{P, .. f(x) = P, f(x)}n(du).

When we divide the first and last terms of this chain by ¢ and we let 7|0 we
obtain that this case

(34 Gf(x) = ¢Gf(x) + [§{P,f(x) = f(x)}n(du)

which extends the results in [6] for functions f not vanishing in the neighborhood
of x.

(3.5). With the same notations as in Sections 1 and 2, we shall verify that any
fe Disin D,(A), the extended domain of 4 for X, , . See Chapter IX in [7] for
all the facts that we do not comment on here. By definition, f € D,(A4) if there
exists a bounded, universally measurable g, denoted by Df in [7], such that

( (A)) f(X, j{,g( (A))dA

is a martingale with respect to (2, F,(4,), P*)forx €.

To prove that f € D implies that f € D,(A4) notice that f(X,) — f(X .
fon(X ) ds=N, is a martingale relative to (£, F,, P*) for x € ‘. From the
optional samplmg theorem it follows that f(X, 4 )) (x,)—/ “'Gf(X ) ds =
N 4, is a martingale relative to K, 4, Now, it is very easy to venfy that
I 'Gf(X ) ds = [4Gf(X, 4 ) dA4,, and the desired result follows from putting
g=Df= Gf This result and the result contained in Proposition 47, Chapter IX of
[7], provide us with another representation for Df.

(3.6). Let us now consider a refinement of the result of Theorem 2.1. For this, let
x be an interior point of ®, and let U be a neighborhood of x such that U c ® and
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let us put 7= inf{t > 0: X, € ® — U}. From the right continuity of the trajecto-
ries of X it follows that P*(T > 0) = 1, and since X, € ® it follows that P*(A4, >
0)=1.

It is proved in [11] that 7,° = [ §"I4(X,) ds, from which it follows that 7° = 7, on
7, < T a.s. P*. It is easy to see now that

2, (f(X,) = FXT_ N, 0)(BT5) = Z 5o (f(X,) = F(X_ N, ) (A7)

and therefore, taking expectations, dividing by ¢ and letting ¢ |0, we obtain
lim, o(1/)E*Z, ,(f(X,) = f(X;_ N, w)(AT,)

= {/ o,K(x, &) f(¥) = f(x))}P*(Ar = 0).

From this we can conclude that for x € ((f' denotes the interior of ®)

Gf(x) = a(x)Gf(x).

From this and (2.2) we can conclude that

°

(3.7 Gf(x) = a(x)Gf(x) xed

= a(x)Gf(x) + [ o, K(x, &N f(») = f(x) x€® -,

(3.8). Let us now start with two standard Markov processes X@ =
(O, FO FED 9O, x O Py, with locally compact second countable state spaces
(E,,E;)), i=1,2. Assume for simplicity that both processes have
infinite lifetime and form the product process X = (X, X@) =
(,F,F, 0, X,, P*»*)) where € = QM x @@, pxvX2) = PX1 @ P*2 for (x,x,) €
E, X E;, X, = (X, X2),6, = (6V,6@), F being the usual completion of o(XP : ¢
> 0) X a(X@:t > 0), etc. One can define three semigroups on HE, namely

POf(x, y) = E*’f(X5", X®) = E}f(x, X?),
PO(x, ¥) = EX(XP, XP) = Ef(XOXS)

and their product
Ptf(-x’ y) = Pt(l)Pt(Z)f(x’ ,V) = PI(Z)PI(I)f(x’ y) = E>™ Y)f(Xt(l)’ XI(Z))’

If we denote by G, the generator of the process X', it is easy to see that the
generators of P!, P? and P, are given by G, ® I, I® G, and G=G, @I+ I ®
G,,where certainly the last identity is valid at least on D(G, ® I) N D(I @ G,).
Instead of G, ® I and I ® G, we shall be writing G, and G,, respectively.

Suppose now that we are given a continuous additive functional 4 of X ) whose
support is a closed set ® C E,. Then the time changed process X, = (X, X@)
has the set (® X E,), for state space and { = 4, as lifetime.
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Again we shall denote the time changed semigroup by (Q,), its generator by G,
the Lévy kernel of (X", 7) by N(x, d¢, du) and assume that Al and A2 hold
true. As in the proof of 2.1 we have to compute the limit of

TECha(X, )GA(X,) ds and 1 EC VS, ((f(X,) = FX; W, wy(Ar,)

as t|0 for (x, y) € ® X E,.
It is easy to see that

TEC M 4a(X,)G(X,) d5 - a(x)(G,f(x, ¥) + Gy (x, ).

In order to compute the other limit notice that we have set up things so that
(X)) and (X?), and therefore (7,) and (X?), be independent processes; therefore,
if we put PO(X®, y) = EZf(XP, X?) for any (F")-stopping time T, it is easy
to see that

E®Z, (f(X,) = f(X; N, wyar,)
— Ex2s<;(Pf(,2)(X‘r(,l)’ y) — PT(’Z_)(XT(’I_)— s y))I(o, co](ATs)

= E¥'y ds [ o, N(X), df, d){PR (£, y) - PO(X,, »)},

T, Hu
and dividing by ¢ and letting ¢ |0 we obtain that

1
lim, o7 EC V2, (f(X,) = F(X7_ N, wy(B7,)

= [o,xv,N(x, d§, du){ PRf(&, y) — f(x, y)}.
From all this it follows that
(39 Gf(x, y) = a(x)(G,f(x, y) + G, f(x, »))

+ f@Axl_L,N(x’ d§, du){Pu(Z)f(g’ y) _f(x’ y)}

This result and (3.7) allows us to compare the behavior of X and X, in various
particular cases. For example, if a > 0 on danda=0on d®, then within <i>, X
and X, have the same behavior, and the second term describes the combined
behavior of (X", X®) on 9® X E,.

From 3.9 and Example 3.1 it follows that if a > 0 on ®, then one further time
change with respect to the continuous additive functional of X! given by B, =
/ ’oa(X,IJ ) ds provides us with another process Y, = X, , o, = inf{u : B, > t}, with
the same hitting distributions as X, and with generat(;r

(3100 Gf(x, y) = Gf(x, y) + [oxi,N(x, d¢, au){PPSf(£, y) — f(x, »)}
where N(x, d&, du) = N(x, d¢, du)/a(x).
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