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A DUALITY THEOREM FOR PHASE TYPE QUEUES!

By V. RamAswaMi AND MARCEL F. NEuTs
Purdue University and University of Delaware

A duality theorem of Heathcote exhibiting a relationship between first
passage times of the queue length in the GI/M/1 queue and the busy period of
its dual M/G/1 queue is generalized to the phase type queues GI/PH/1 and
PH/G/1. The phase type distributions include a number of well-known models
such as generalized Erlang and hyperexponential as special cases and form a
versatile class with a number of interesting closure properties.

1. Introduction. The problem, discussed in this paper, arose in the context of a
larger investigation into the nature of the busy period of subclasses of the GI/G/1
queues, which are denoted by the symbols PH/G/1 and GI/PH/1 and which are
defined below. We attempted i.a. to generalize the well-known duality result of
Heathcote [2), which relates the limit distribution of the times between points of
increase for the maximum queue length process in the GI/M/1 queue to the
distribution of the busy period of the dual M/G/1 queue. This result implies in
particular that in an unstable GI/M /1 queue the maximum queue length process
grows approximately like the counting process of a renewal process.

The duality theorem of Heathcote carries over to the GI/PH/land PH/G/1
queues, but the technical difficulties of the proofs are substantially greater than in
[2]. Several deeper properties of the matrix transforms used in the study of these
queues are needed, and the methods of the present paper may be of independent
interest. Our main theorem implies in particular that the maximum queue length
process in an unstable GI/PH/1 queue grows approximately like the counting
srocess of an appropriately defined Markov renewal process.

2. Phase type distributions and phase type renewal processes.

(a). Phase type distributions. A (continuous) probability distribution of phase
type, introdu~ed by M. F. Neuts [4], is any continuous probability distribution on
[0, 00) which is obtainable as the distribution of the time till absorption in a
continuous-time finite state space Markov chain with a single absorbing state into
which absorption is certain. The class of such distributions includes a number of
well-known particular cases such as generalized Erlang and hyperexponential (i.e.,
a mixture of a finite number of exponentials) distributions and due to its interesting
closure properties [4] constitutes a versatile class with properties especially useful in
the algorithmic solution of several queueing models (cf. references in [6] and [8]).
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To be specific, consider a Markov chain with state space {1,---,m,m + 1},

initial probability vector (a, a,,, ) and infinitesimal generator
| T T°
o-[g 5]

where a = (a;, - ,a,,), T is a nonsingular m X m matrix with 7}, <0 and
T,; > 0 for i#j, and T° > 0 is an m-vector satisfying Te +T° = 0 with ¢’ =
(1,- - -, 1). For such a Markov chain the probability distribution of X, the time till
absorption in m + 1, is given by the cdf,
2.1 H(x) = 1 — aexp(Tx)e, x > 0.

DEFINITION 2.2. Any probability distribution H(-) obtained as above is called a
phase type distribution (PH-distribution), and the pair (a, T') is a representation of
H().

ReMARK. To avoid uninteresting complications, in the sequel we shall assume
a,, ;= 0 so that H(-) does not have an atom at 0.

ExampLE 2.3. The generalized Erlang distribution which is the convolution of m
independent exponential distributions with parameters, say, u,," - - , i, respectively
has representation

o = (1,0’;..’0)

- by o - 0
T = — k2 :“*2 0
— M
ExaMPLE 2.4. The hyperexponential distribution which is the mixture of m
exponentials with parameters, say, u,,---,p, has a representation T =
diag(—py,* -+, —n,,) With the components of a giving the respective mixture

ratios.

(b). Renewal processes of phase type. Each time the Markov chain Q becomes
absorbed in the state (m + 1), restart it by performing a multinomial trial with
possible outcomes 1,- - -,m and probabilities &, - - ,a,, to pick a new “initial
state”. Considering each absorption into the state m + 1 as a renewal, we obtain a
renewal process for which the time between any two successive renewals has cdf
H(+), the PH-distribution given by (2.1). Such a renewal process is called a renewal
process of phase type (PH-renewal process) (Neuts [6]).

The above procedure also constructively defines a new Markov chain with
state-space {l,---,m}, initial -probability vector « and infinitesimal generator
Q* =T + T°A°, where A° = diag(a,,"-*,a,,) and T° =(T°---,T°). This
Markov chain describes the “phase” of the system and is of considerable impor-
tance. In [4] it is shown that one may, without loss of generality, assume that the
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representation (a, 7') of H(-) is so chosen as to make Q* irreducible, and we shall
henceforth assume that this is indeed the case.

We let 8 denote the stationary probability vector of the Markov chain Q¥ i.e.,
the unique (strictly positive) vector satisfying §0* = 0, fe = 1. It may be easily
verified that § = —Aa7T ~!, where A\™! = —aT e is the mean of H(-).

The m X m mat. ces P(»,t),» > 0,¢t > 0, defined in [6] are such that the entry
P, (v, 1) is the conditional probability, given that the initial phase is j, that at time
t + , the Q*-chain is in state j/ and that » renewals have occurred in (0, ¢]. It is
known [6] that these have generating function

P(z,1) = 32.,2"P(v,1) = exp[(T + zT°A4°)t],|z| < 1,¢ > 0.

We also recall [7] that, under the assumption Q* is irreducible, the matrices
P(v,t),» > 1,¢t > 0, are all strictly positive. Further, it may be easily seen that
P,0,¢t) >0forallt>0,1<i<m.

3. The phase type queues.

(a). The GI/PH/1 queue. Consider a GI/G/1 queue in which the service
time cdf H(-) is of phase type with representation (a, 7') and where the interarrival
times are i.i.d., with a nondegenerate probability distribution F(-). Such a model,
denoted by GI/PH/1, has been discussed in detail by Neuts [7], and for later use
we quote the following results.

Let 7, denote the epoch of the nth arrival, £, the size of the system at 7, + and J,
the phase of the service at 7, + . Then {(§,,J,,7, — 7,_,): n > 0}, where ,=7_, =
0, defines a semi-Markov sequence with state space {1,2,---} X {l,---,m} X
[0, 00) and transition matrix O(x) given by

By(x)  Ag(x)
~ _ El(x) I;l(x) jo(x)

Q(x) = g v -~ ~ ’ x 2 0,
By(x) Ay(x) Al(x) Ay(x)
where,
A (x) = [§P(n,t)dF(1), n>0,x >0,
B(x) = 32,,1J3P(v,t)dF(1)A°°, n>0,x >0,

where A°° is the m X m matrix each of whose rows is a.

Since F(-) is nondegenerate, we have (from the strict positivity of the matrices
P(»,t) for v > 1,¢ > 0 and the positivity of the entries.P;;(0, ¢) for ¢ > 0 mentioned
at the end of Section 2) that the matrices 4,= /f,,(oo), n > 1, are all strictly
positive; further, the matrix 4, = Ay(o0) is such that each of its diagonal entries is
positive. This entails that the embedded Markov chain with transition probability
matrix Q~(oo)—with possibly some of the states (1,j) removed—is irreducible and
aperiodic. We shall conclude our introduction to the GI/PH/1 queue by recalling



A DUALITY THEOREM FOR PHASE TYPE QUEUES 977

[7] that this queue is stable iff p = B > 1, where 4 is (also) the invariant probabil-
ity vector of 4 = 37%.04,, and B = I nd,e.

(b). The PH/G/1 queue. By PH/G/1 we denote a GI/G/1 queue in which
the arrival process is a PH-renewal process. Note that this queue is the dual of the
GI/PH/1 queue defined above in that it may be obtained by reversing the roles of
interarrival times and service times in the latter. The PH/G /1 queue is a subclass
of the more general N/G/1 queues studied by V. Ramaswami [8], and we shall
state below some basic properties concerning the PH/G/1 queue by particulariz-
ing results obtained in [8].

Let us assume that the arrival process is the PH-renewal process with representa-
tion (a, T') and that the service time cdf is given by F(-). Defining 7, to be the
epoch of the nth departure (7, = 0), and én and J:, to be respectively the queue
length (i.e., the number of customers in the system) and the phase of the arrival
process at 7, + , it is easily seen that {(2,,,.1:,,7“'”1 — 7,): n > 0} is a semi-Markov
sequence with state space {0,1,--- } X {1,---,m} X [0, c0) and transition matrix

C~0(x) C~|(x) C~2(x)
R jo(x) ‘Zl(x) /fz(x)
o(x) =| Ay(x) A(x) - e | x >0,
0 0  Ay(x)

where ,Z,,(~), n > 0, are as defined earlier in (a), and

C(x) = JFexp(Ty)-T°A°-A,(x —y) &y, n > 0.
It is easily seen that the Markov chain defined by Q(oo) is irreducible and
aperiodic. We recall from [8] that the PH/G/1 queue is stable iff p = 8 < 1.
Further, p = Ay, where u is the mean of F(-), is the traffic intensity of the
PH/G/1 queue.

Basic to the discussion of the PH/G/1 queue are the first passage times from the
set of states 1 = {(1,j): 1 <j < m} to the set of states 0 = {(0,/): 1 <j < m}
which are governed by the matrix G(x), x > 0, whose (j,;")th entry is the probabil-
ity that starting at (1,/), the process enters the set 0 for the first time at or before
time x by visiting the state (0,/”). Defining the Laplace-Stieltjes transform

(3.1) G(s) = [Pe™**dG(x), s >0,

we have

THEOREM 3.2. (i) The matrix G(-) satisfies the matrix functional equation
(3.3) G(s) = 23 04,(5)G"(s), s >0,
where
A (s) = [Pe*dA,(x) s > 0.
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(i) For s > O, there exists a unique nonnegative matrix G(s) which satisfies (3.3).
For s > 0,G(s) is analytic and can be written in the form (3.1) where the entries of
G~(-) are (defective) probability mass-functions.

(i) The matrix G = G(0+), defined by continuity, is substochastic, and is the
minimal solution in the class of substochastic matrices of the matrix functional equation

(3.4) G = 3% 4,G".

@iv) If p < 1, then G is stochastic. If p > 1, then at least one component of Ge is
less than one.

(v) For any s > 0,G(s) is strictly positive and is the monotone limit of the
nondecreasing sequence {G,(s)}y defined by

(3.5 Go(s) = 0
G,i1(s) = Z704,(5)G,(s), n > 0.

ProOF.  All the results above follow from Theorem 2.2.11 in [8] which in turn is
proved by Neuts [5] in a more general context in the analysis of Markov renewal
processes with Q(-) of the form given above.

REMARKS.

1. In view of the structure of Q(-), we have that G(-) also describes first
passages from theseti + 1= {(i + 1,j): 1 <j < m} totheseti= {(i,j): 1 <j <
m) foranyi>0.

2. Note that the ith entry of G(s)e is the Laplace-Stieltjes transform of the busy
period starting with one customer and in phase i.

3. Equation (3.3) generalizes Takacs’ equation for the M/G/1 queue.

4. First passage times in a GI/PH/1 queue. Consider the GI/PH/1 queue
defined in Section 3a. By level n we denote the set of states {(n, 1), - - ,(n, m)}.
The principal objects of study of this paper are the first passage times from n to
n + k in the GI/PH/1 queue; these will be the subject matter of this section. In
the sequel, we let for x > 0, n,k > 1, 15,,,,,,, «(x) denote the m X m matrix whose
(i,j)th entry Dk,,’,,+ «(i,J; x) is the conditional probability that the process enters
n + k for the first time at or before x by visiting (n + k,j) given that it starts at
level n and in phase i. We also define the Laplace-Stieltjes transform

Dn,n+k(s) = fOooe —Sden,n+k(x)’ s > O'
PrOPOSITION 4.1. Forn > 1,k > 2, we have
(4'2) Dn,n+k = Dn,n+1*Dn+1,n+2*' v *Dn+k—l,n+k’
and .
(4-3) Dn,n+k = Dn,n+1Dn+1,n+2' * Dn+k—l,n+k’

where * in (4.2) denotes matrix éonvolution.

ProOF. The transition from n to n + k can occur only along a path of first
passages fromn ton + 1,---, from n + k — 1 to n + k. Given any sequence
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Jis* " sJe—1€{1, - - ,m} denoting the phases at the epochs of such first entrances to
n+1,---,n+ k — 1, the duration between these first entrance times are condi-
tionally independent. This is an immediate consequence of the Markov property at
transition epochs for the Markov renewal process defined by O(-). Hence (4.2).
(4.3) follows immediately.

THEOREM 44. Forn > 1,5 > 0,
(45) Dn,n+l(s) = AO(S) + 2:;:Ar(s)Dn—v+l,n+l(s)
+ 252.,4,(5)A°°Dy ,44(5)

v=n 14

(where the second term in the right side is taken to be 0 when n = 1).

ProOOF. Let N denote the number of departures in the first interarrival interval.
Also let us denote by S the event that the process enters n + 1 at or before time x
and that the phase at which it énters n + 1 is j. Then by a simple probabilistic
argument, we have

P(S,N =v|ty=n,Jy=1i)

JoP,;(0,u)dF(u), if »=0
JEE Pa(v,u)D,_y oy yi(Kojs x — u) dF(u), if 1<»
<n-1

f()xz:o=n2;n=1})il(p’u)z;cn==lakD~1,n+l(k’j;x —u)dF(u), if »=n,
whence
B, pui(isj;x) = [§P,;(0,u) dF(u)
+ S Er 1 Pa(v, ) Dyt a(Kos X — u) dF(u)
+ 2::o=nf0xzfn=1Pi1(”’“)2;:;1‘1‘ch~1,n+1(k’j§x - “)dF(“)-

Computing the Laplace-Stieltjes transforms of these and putting the result in
matrix notation, we get (4.5).

From the irreducibility of J(-) it is clear that the matrix D, ,.,(0) should be
stochastic. That this is indeed the case is verified below by directly using (4.5).

LeMMA 4.6. D, ,(0) is stochastic.
Proor. By (4.9),
(4-7) Dl,z(O) = A, + (A - AO)A°°DL2(O)
or,
A°°D1,2(0)€ = 400A0€ +4°°(4 —AO)A°°DL2(O)g.
Letting 4°°D, ,(0)e = ue, this yields

u = (adoe) + u — (adoe)u,



980 V. RAMASWAMI AND MARCEL F. NEUTS

and since adge > 0, u = 1. Thus

(4.8) A4°°D, 5(0)e = e.

Now, multiplying (4.7) by e and using (4.8), we get
D;2(0)e = Age + (4 — Ap)e = e.

THEOREM 4.9. For all n,k > 1, D, ,,,(0) is stochastic. Also for n > 2, note
k > 1, D, ,,(0) is strictly positive.

ProoF. In view of (4.3) it suffices to prove the results for k = 1. Let n > 1 and
assume as inductive hypothesis that D, ,(0),- - -, D, ,,,(0) are all stochastic. We
now show that D, , ,.,(0) is stochastic.

Using (4.5) and (4.3) it is easily seen that

(4.10) [1 - M] Dn+l,n+2(0) = Ao,
where

M = Al + 2:-2‘41'Dn-f—2—1',n+1(0) + (A - 2:==0‘4v)‘400Dl,n+l(o)

(with the second term on the right being 0 when n = 1). Now M > A, >0, and
Me = ¢ —Aye < e. Thus the strictly positive matrix M has spectral radius 7 less
than 1. That D, ,,,(0) > 0, follows now from (4.10) by writing it as

Dn+1,n+2(0) = 2L M’4,.
Let y > 0 be such that YM = ny, ye= 1. Then from (4.10), we have
(1 =1)yD,11,42(0)e = yAge
=y(e—Me) = (1 —n)

and since 1 <1, yD,,,,.,0)e=1. Thus D,,, ,.,(0)e = e, and the proof is
complete by mathematical induction.
Before concluding this section we list some simple but useful results as

PropPoOsITION 4.11. Let

\%
o

o(s) = [g*e™™dF(x), s

Foralls > 0,n,k > 1,

(a) Dn,n+k(s)e_ < e

®) D, . i(s)e < 9(s)e

© D, nri(9)e < {$(s))ee. ‘

PROOF. (a) is immediate from the definition of D, ,, .(+). (b) is got by applying
(a) in (4.5). Finally (c) is got by applying (b) in (4.3).

5. The duality theorem. In this section we prove the following duality theorem
which generalizes the result of Heathcote [2] to the phase type queues, discussed in
Section 3.
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THEOREM 5.1. (Duality theorem): Let s > 0 be fixed. As n— oo, the matrices
D, ,+1(s) describing the first passage times from n to n + 1 in the GI/PH/1 queue
converge to the matrix G(s), where G(s) is the unique nonnegative solution of the
nonlinear matrix functional equation

(5.2) G(s) = Z204,(s)G”(s)
and which describes the first passage times from 1 to 0 in the dual PH/G/1 queue.

Further the limit G(0+) is stochastic iff p < 1, ie., iff the GI/PH/1 queue is
unstable.

The lengthy proof of Theorem 5.1 is accomplished in several stages. In the
ensuing discussion s > 0 is assumed to be fixed. Also we let limsup,_, D, ,.(s)
and liminf, , D, ,.,(s) denote the matrices whose respective (i,j)th entries are
limsup, ,, D, ,+,(i,j;s) and liminf, , D, ,,,(i,j;s). From Proposition 4.11(b) it
is clear that these matrices are strictly substochastic; further,

(5.3) 0 < liminf, , D, ,,,(s) < limsup,_ D, ,.(s).

LeMMA 5.4. Define

M\(s) = Ay(s)

M, \(s) = Ay(s) + A, (I, 2 Mi(s), n>1
where the matrix product is formed by taking the terms in increasing order of the index
k. Then

(i) M,(s) is strictly substochastic for every n > 1,

(ii) M,(s) is entrywise nondecreasing in n,

(iii) lim,_ . M,(s) = G(s), where G(s) is the unique solution of (5.2); the limit is
taken entrywise.

PrOOF. Itis obvious that M,(s) is strictly substochastic. Now, since 232, 4,(s)e
< e, there exist constants w(s) > 0 and 8(s) > 0 such that w(s) + 8(s) <1,
3% A4,(s)e < w(s)e and Ay(s)e < 8(s)e. Now,

My(s) = [1— A4y(s)] _le(s) = 232 0A41(s)Ao(s),
whence

8(s)
T < ¢

In other words, M,(s) is also strictly substochastic, and clearly M,(s) > M,(s).
Now, assume as inductive hypotheses that M,(s) < M, (s) and M, (s)e<e,
for 1 < k < n. We have,

M, (s)
= [1 - {Al(s) + Ay)(s)M, () + -+ - A, (s)My(s) - - - Mn+1(s)}] - le(S)
>[1- {Ai(s) + A (s)M,(s) + - - - +A4,(s)My(s)- - M,(s)}] ™ 'Aq(s)
= ]'[':-i-l(s)'

My(s)e <
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The inequality above is obtained by writing the inverse as a power series, dropping
the term A4, (s)My(s)- - - M, (s), and using the induction hypothesis M,(s) <
M, (s),1 < k < n. Furthermore,

M, ,(s)e
= 2f'o--o{Al(S) + Ay ()M, i(5) + - A, (s)My(s)- - Mn+1(5)}on(5)€
)
1—w(s)~ =

by using the substochasticity of M,(s), - -, M, ,(s) assumed as inductive hypothe-
sis.

Having proved statements (i) and (ii), at this point these also imply the existence
of lim, , M, (s) = M(s). So all that we need to prove is that M(s) = G(s). We
have,

M,\(s) = Ao(s) + Ai(s)M,,\(s) + -+ +A,(s)My(5) - - M, (s)

< 20.04,(s)M,,(s)

< Z304,(s)M’(s).
Letting n — oo this yields
(5.5) M(s) < 22 ,4,(s)M”(s).
Also

M, m(s) > Ag(s) + Ai(s)M,,(s) + - +A, ()M, 1(5) - M, ,(5)
yields upon letting m — oo, that
M(s) > Z0_oA,(s)M”(s) forall n > 0.
Since the above inequality holds for every n,
(5.6) M(s) > Z2,4,(s)M’(s).
Now, by (5.5) and (5.6), i
M(s) = Z5L04,(s)M’(s),

and it follows that M(s) = G(s) by appealing to the uniqueness of the solution to
(5.2) stated in Theorem 3.2(ii).

LemmA 5.7.
(5.8) liminf,,_mD,,,,,H(s) > G(s).

Proor. It suffices to show that D, ,, (s) > M,(s) for all n > 1 where {M,(s)}
are as in Lemma 5.4. Clearly, D, ,(s) > M (s). Assume as inductive hypothesis
that D, ,,,(s) > M,(s) forn=1,---,k — 1. Then

Dk,k+1(5) =[I - {Al(s) + AZ(S)Dk—l,k(s) +--- +Ak—1(S)D2,k(S)}]—lA0(S)
>[1—{4,(s) + A ()M \(5) + - -+ + A4, (s)My(s)- - - M_(5)}] " Ao(s)
= Mk(s)’
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where the inequality is obtained by using the induction hypothesis and (4.3) in the
series expansion of the inverse. The proof is now complete by mathematical
induction.

LEMMA 59. Let
R(s) = limsup, .., Dy u1(5)-
Then
R(s) < Z204,(s)R*(s).

Proor. For sufficiently large n and fixed N < n — 1, we have,
D, ,1(s) = Ao(s) + Z}214,(5)Dy_ys1,ner(s)
+ 232,4,(s)4°°D, ,,4(s) by (4. 5)

Ay(s) + =0 A()D, st 1 (8) + Z)ZN 1A (8) Dy nar(s)
+ 252, A4,(5)A°°Dy y11(5),
and letting n — oo,

R(s) < Ag(s) + S, 4,(s)R*(s) + limsup, o 2811 4,(5) Dy ys1,nr1(5),

for,

lim sup,, o, 252, 4,(5)4°°Dy 54(s) = 0
Now letting N — oo, we get
R(s) < ZLo4,(s)R*(s),
since,
lim supy_, ,, imsup, ., Z5-A414,(5)Dyyiiner(s) = 0
as is seen from the fact that
114, (8)D, i aii(s)e < Zjlyi4,(s)e > 0as N — oo.

COROLLARY 5.10. Denoting the maximal eigenvalue of a nonnegative matrix C by
sp(C), we have that

(5.11) sp[limsup D, ,.,(s)] < sp[G(s)].

PrOOF. By (5.3), (5.8) and the strict positivity of G(s), note that R(s) > 0. Let
n(s) be the spectral radius of R(s) = limsup,_,,, D, ,,,(s), and let x(s) >0 be a
right-eigenvector of R(s) associated with n(s). Then

n(s)x(s) = R(s)x(s)
5% A4,(s)R(s)x(s) by Lemma 5.9

25204, () (s)x(s)

N

implying that
(5.12) A*(n(s),s)x(s) > n(s)x(s)
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where

A*(z,5) = T 04,(s)z2", 0<:z<l
Let £(z,s) be the Perron-Frobenius eigenvalue of 4*(z,s). Now (5.12) implies that
(5.13) £(n(s),s) > n(s).

Now, for fixed s > 0, a theorem due to J. F. C. Kingman [3] implies that the
function logé(e™", s) is convex and decreasing for ¢ > 0. Also G(s) is the unique
solution of equation (5.2) whence it follows that sp[G(s)] is the unique solution z,

of the equation
g(Z,S) = 2z, 0 < z < 1,

so that z, = e~ ‘0, where

log[&(e‘“,s)] = —t,, to > 0.

Setting s = e ~*" in equation (5.13), we obtain logé(e ™*",s) > —t* which upon
consideration of the graph in Figure 1, implies that ¢* > f7,. This clearly is
equivalent to the inequality sp[ R(s)] < sp[G(s)], which we set out to prove.

PrOOF OF THEOREM 5.1. By Formulas (5.8) and (5.11), we have
sp[liminfn—mo Dn,n+l(s)] > Sp[G(S)] > sp[limsupn—wo Dn,n+l(s)]‘

t*

y= logt(e *,s)

RN

Fic. 1
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But by (5.3),
sp[liminf, , D, ,.(s)] < sp[limsup, D, ,.(s)].
Thus we have
sp[liminf, ., D, ,+1(s)] = sp[G(s)] = sp[limsup, ,,, D, ,,i(s)].

Since liminf, ., D, ,.,(s) < limsup,_,, D, ,.(s), and both are irreducible non-
negative matrices, their spectral radii can be equal only if the inequality is actually
an (entrywise) equality [1]. This proves the existence of lim,_, D, ,,,(s). Also
(5.8) and the fact that sp[G(s)] = sp[lim inf, ,, D, ,,,(s)] implies that
limn—>coDn,n+l(s) = G(S)
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