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ON THE TRANSMISSION OF BERNOULLI
SOURCES OVER STATIONARY CHANNELS!

Jonn C. KIEFFER
University of Missouri-Rolla

For a discrete-time finite-alphabet stationary channel » satisfying a weak
continuity requirement, it is shown that there are capacities Cy(») and Cy(»)
which have the following operational significance. A Bernoulli source p is
transmissible over » via sliding-block coding if and only if the entropy H(n) of
1 is no greater than C(»); p is transmissible via block coding if and only if
H(p) is no greater than C,(»). The weak continuity requirement is satisfied for
the d-continuous channels of Gray-Ornstein as well as other channels. An
example of a channel is given to show that the case C(») # Cy(v) can occur.

1. Introduction. In this introductory section we present some notation, defini-
tions, and then the main result to be proved.

If a letter S denotes a finite set, the corresponding script letter S will denote the
set of all subsets of S. We let (S, 5®) denote the measurable space consisting of
S%, the set of all doubly-infinite sequences x = (x;)2 _,, from S, and &%, the
usual product o-field of subsets of $*. The shift transformation from $*°— S is
denoted by Tg; we have

(Tsx), = X415 x € S®,i€Z,

where Z denotes the set of integers. (7 will be denoted by T whenever S is
understood.) If x is a finite or infinite sequence of elements from S, x; will denote
the ith coordinate of x, and for m < n, x,, will denote (x,,, X,,,1," -, X,). If pisa
measure on S, and N is a positive integer, uV will denote the measure on S such
that

pM(x) = p{x € §*:x{=x}, x € SV,

A set E € S% is a finite-dimensional cylinder set if for some n = 1,2, - -,and
k € Z, there exists E’ C S” such that

E = {xe8:xi*"" '€ E'}.
If S is a finite set, | S| denotes the cardinality of S. All logarithms in the paper

are to base 2. If (2, %) is a measurable space and E an event in ¥, E€ denotes the
complementary event

E° = {wEQ w&E}.
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If ¥ is a function from @, — S;,i = 1,- - - ,n, ¥} X - - - XV, denotes the function
from @, X - -+ XQ,— 8, X - XS, such that

My X XV ) w100 50,) = (M), -, Vi(w,)),

(W ,0,) EQy X - XQ,. If V; is a function from @ —S,i=mm+
1,--+,n, ¥, denotes the function from @ — §,, X - - - XS, such that

Va(w) = (V,(0)," -, ¥, (w)), w € Q.

If V is a function from Q to S¥ or S, V; denotes the map from © to S such that

Vi(w) = V(w),, w € Q.

If ¥ is a measurable function from a probability space £ to a measurable space
(F, %), P will denote the probability measure on ¥ such that

PY(E) = Prob[V € E], E €Y.

A measurable map X from a measurable space 2, to a measurable space ©, is
called a process if Q, = A% for some finite set 4. We will call a process from
{? - A% an A-valued process defined on Q.

If 4 is a finite set, we place on 4 the discrete topology and on A® the resulting
product topology. Then if B, C are finite sets we endow B® X C* with the product
topology arising from the topologies on B*, C*. For each N = 1,2, - -, let P, (A)
denote the set of all probability measures on @ stationary with respect to 7, and
let Py (B, C) denote the set of all probability measures on B* X C* stationary
with respect ta T’ X TZ. We assign the weak topology to each of the spaces
Py (A), Py(B, C). (The weak topology on F,(A) is the weakest topology such that
for each continuous f:A4* — (— o0, 00), the map u—> [,»fdu is continuous on
Pn(A). In a similar way one defines the weak topology on %P (B, C).)

CopEs. A code ¢ is a measurable map from 4* — B>, for certain finite sets
A, B. The code ¢ is stationary if ¢-T, = Ty $. A stationary code ¢ : 4° — B® is a
sliding-block code if for some positive integer M there exists a map ¢,,: 42M*! > B
such that

o(x); = dp(xit2), X EA®,i € Z.

A code ¢:A®° — B™ is a block code of order N if there exists ¢, : A¥ — BY such
that
o(X)ner = on(xNEV), x € A®,i € Z.
SOURCES. A source is a pair [A, u] where A is a finite set, called the source
alphabet, and u is a probability measure on @*. If u € P,(A),[4, u] is a stationary
source. If p € Py (A),[A4, p]is an N-stationary source. If [ 4, p] is stationary and y is
ergodic with respect to T, we call [ A4, u] an ergodic source. We call [ A, u)] aperiodic
if u{x} =0, for all x € 4®. If [ A4, u] is a stationary source, H(r) will denote the
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entropy of the source. If [4,pn] is a source and ¢ : 4*° — B* is a code, [B, u?]
denotes the source where

p*(E) = u(¢ € E), E € 3.

We call a stationary source [4,, u,] a factor of the stationary source [ 4,, u,] if there
is a stationary code ¢ : 43 — AP such that u, = u%. We define a stationary source
[4,p] to be memoryless if p is a product measure. We define a stationary source
[A, n] to be a Bernoulli source (which we abbreviate as B-source) if it is a factor of
some memoryless source. The B-sources form a wide class of sources. For example,
any stationary source [ 4, u] where p is mixing and N-Markovian relative to 7, is a
B-source [11]. Thus the set of p on € for which [4,u] is a B-source is a dense
subset of P,(A) (with respect to weak topology). There are various characteriza-
tions of B-sources known; [A4,u] is a B-source if and only if 7, is a finitely
determined transformation on (A%, @, u) [11], or if and only if T, is very weakly
Bernoulli [11], or if and only if u is almost block independent [13].

CHANNELS. A channel is a triple [B, C,v] where B, C are finite sets and » =
{v,:x € B*} is a family of probability measures on C* such that for each
E € C*, the map x — v, (E) is a measurable map from B* — [0, 1]. B is called the
input alphabet of the channel, and C is called the output alphabet. The channel
[B, C,v] is said to be stationary if

v (TE) = v (E), x € B®,E € C*.

If [B, u] is a source, and [B, C, »] is a channel, p» denotes the probability measure
on B* X C* such that
pr(E X F) = (gr(F)du(x), E € B*,F € C~.

Note that if [ B, C, »] is stationary and [B, u] is N-stationary, then ur € Py (B, C).
We define a stationary channel [ B, C, »] to be weakly continuous if the map p — uv
from ?,(B) — ?,(B, C) is continuous. We define a stationary channel [B, C,»] to
be totally weakly continuous if for every N =1,2,---,the map p— ur from
Py(B) — Py(B,C) is continuous. Some examples of channels which are totally
weakly continuous are:

(a) Stationary channels [ B, C, »] for which the map x — »,(E) from B*— [0, 1]

is continuous, for each finite-dimensional cylinder set E € C*®.

(b) d-continuous stationary channels (as defined in [2]).

We omit the easy proof that the channels in (a) are totally weakly continuous.
We prove that the channels in (b) are totally weakly continuous in the Appendix.
The d-continuous channels are the most general class of stationary channels for
which coding theorems of information theory have been proved [2, 3].

THE SOURCE-CHANNEL HOOKUP.. We define a sequence U, X, Y, V of processes
defined on some probability space to be a hookup of the source [A4,pu] to the
channel [ B, C,v] if:

(a) U is A-valued, X is B-valued, Y is C-valued, V is A-valued;
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() U, X, 7,V form a Markov chain;

(© PV=p;

d) PXy = p*D,
Intuitively, the process U is a model for the source [4,pu]. If u € A is the value
observed for U, some random experiment &, is performed the outcome of which is
a value x of X. The sequence x € B* is then transmitted over the channel yielding
a random y € C* (the value of Y) according to the distribution »,. A random
experiment &, is then performed, the outcome of which is v, the value of V. The
hookups of most interest are those for which the value x is determined uniquely
once u is known, and v is determined uniquely once y is known. That is, there are
codes ¢, : A°— B* and ¢, : C®°— A% such that

' x = ¢(u), v = ‘Pz(.Y)'

These codes ¢,, ¢, are called the encoder and decoder, respectively.

SLIDING-BLOCK TRANSMISSIBILITY. We say a stationary source [A, p] is sliding-
block transmissible over a stationary channel [B, C,»] if for each ¢ > 0, a hookup
U,X,Y,V of [4,u] to [ B, C,v] may be found such that

(a) there is a sliding-block code ¢, : 4°— B* such that X = ¢,(U);

(b) there is a sliding-block code ¢, : C*°— A% such that V = ¢,(»);

(c) Prob[U,# V,] < e.

We define the sliding-block capacity C,(») of the stationary channel [B, C, »] as
follows:

C,(») = sup{H(p):[A4,p] ergodic and sliding-block transmissible}.
We state the first of the two main theorems of this paper.

THEOREM 1. Let [B,C,v] be a weakly continuous stationary channel. Then, a
B-source [ A, u] is sliding-block transmissible over [ B, C,v]if and only if H(p) < C(»).

For special types of d-continuous channels, sliding-block coding theorems had
been obtained for the class of all aperiodic ergodic sources [3], [6]. By restricting
ourselves to the subclass of B-sources, we are able to dispense with the d-continuity
requirement on the channel.

BLOCK TRANSMISSIBILITY. Let [A4,u] be a stationary source and [B,C,v] a
stationary channel.

We say [A4, p] is block transmissible over [ B, C,v] if for each ¢ > 0, there exists a
positive integer N and a hookup U, X, Y, V for which:
(i) X = ¢,(U) for some block code ¢, : 4°— B> of order N;
(ii) ¥ = ¢,(Y) for some block code ¢, : C®— A® of order N;
(iii) N ~'SX ProblU;# V] < &

We define the block capacity C,(v) of [B, C,»] as follows:
Cy(v) = sup{H(p):[A4,p] ergodic and block transmissible}.

The second of our two main theorems is now stated.
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THEOREM 2. Let [B, C,v] be a totally weakly continuous stationary channel. Then
a B-source [ A, p] is block transmissible over [ B, C,v] if and only if H(p) < Cy(»).

For a stationary d-continuous channel, a coding theorem had been obtained for
the class of all ergodic sources [2]. The preceding theorem implies that the
assumption of d-continuity is not necessary if one is only interested in transmitting
B-sources.

We now point out a stronger notion of block transmissibility used by many
information theorists. We say [ A4, u] is strongly block transmissible over [ B, C,v] if,
for each ¢ > 0, there exists N and a hookup U, X, Y, V for which (i), (ii) above hold
and in place (iii) we have

@iii’) Prob[U} # V'] < e

The corresponding capacity C,(») is given by:

C!(v) = sup{H(p):[A4,p] ergodic and strongly block transmissible}.

For d-continuous channels, Theorem 11 of Section 2 will show that one obtains
the same capacity and the same coding theorem no matter which of the two types
of transmissibility is used. (There can exist a source which is block transmissible
and not strongly block transmissible [8], but the only way this can happen is if the
entropy of the source equals the capacity of the channel.) For non-d-continuous
channels, it is an open problem whether the two types of block transmissibility are
equivalent in the sense just described. Of the two types, we emphasize block
transmissibility, for the simple reason that the techniques we use do not appear to
apply to strong block transmissibility.

In Section 2, we prove some sliding-block and block coding theorems, including
Theorems 1 and 2. In Section ‘3, we present an example of a channel for which
C,(v) = C,(») fails. In Section 4, we present some open problems.

2. Block and sliding-block coding theorems. If defined on some probability
space we have for each i = 1, - - ,n, an 4;-valued process V;, we say (V,,- -, V,)
is jointly stationary if P*v"""¥") is T, X - - - X T, stationary. We say (V},- -, V,)
is jointly N-stationary if P*v">¥») is TV X - - - X T stationary.

If [B,C,»] is a stationary channel, let 9 (») denote the set of all stationary
sources sliding-block transmissible over [B, C,7], and let 9N ,(») denote the set of
all stationary sources block-transmissible over [ B, C, »].

THEOREM 3. Let [ B, C,v] be a weakly continuous stationary channel. Let [ A, 1] be
a stationary aperiodic source. Then [A,p] € M (v) if for each € > 0, there is a
hookup U, X, Y,V such that: .

@) (U,X,Y,V) is jointly stationary;

(b) Prob[U,# V] < e

REMARK. What this theorem says is that in the definition of sliding-block
transmissibility, it makes no difference whether the codings U — X and Y — V are
deterministic or random.
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Proor. We prove a little more. Let U, X, Y, V be a jointly-stationary hookup
such that Ep(U,, Vo) < ¢ where p: 4 X A — [0, o) is a metric. We will show there
exists a hookup U, X, Y,V such that X is a sliding-block coding of U, V is a
sliding-block coding of Y, and Ep(Uo, Vo) < 4e.

First, by Lemma 3 of the Appendix there is a sliding-block code ¢, : C*— 4%
such that Ep(Up, $,(Y),) < & Let ¢ : 4 X B*— [0, o) be the map such that

2.1 Y(u,x) = St {y €C®:10y(Y)o =v}p(u,v), u € A,x € B®.
Then for any hookup U’, X", Y’, V' with V' = ¢,(Y”), we have
Ep(Us, V5) = waXBw‘p(uo,x)dP(U"X')(u,x).
We also observe the following property of :
22) Y(u,x) < Y(uy,x) + p(uy,uy), u,u, € A,x € B®.

Again, using Lemma 3 of the Appendix, choose a sliding-block code g: B®— A%
such that Ep(Up, 8(X),) < e. Since » is weakly continuous it follows that the map

A = [=d(8(x)o, x) dA(x)

is a continuous map from %,(B) — [0, 1]. Thus we may find § > 0 and a positive
integer N such that if A;,A, € ¥,(B) and

2 epN(x) = My(x)| < 8
then
IfBa\P(g(x)o,x)dA,(X) - fsw‘l’(g(x)o,x)d}‘z(x)l <e.

By Lemma 6 of the Appendix there exists a sliding-block code ¢, : 4°— B® such
that

Ep(%,g(¢,(U))o) <e

and
2, epr PP (x) — PXi(x)| < 6.

Consider a hookup U,X, Y,V where X = ¢,(l7 ), V= ¢2(17). We have
Ep(Up, Vo) = fae gttty x) PO (u, x)

= [¥(g, $1(u)) dp(u) < wa‘P(g(‘Pl(“))o’¢1(“))dﬂ'(u)

+ [4=p(8(91(4))go o) dp() < [g=t(g(x)g, x) dP* () + &

< fAmt[/(g(x)o,x)dPX(x) +2e = wawa\p(g(x)o,x)dP(U’X)(u,x) + 2e

< Sameaeb(ttg, %) APEX 1, x) + [msco (it 8(x)o) AP (1, x) + 2

< 4e.

THEOREM 4. Let [B, C,v] be a stationary weakly-continuous channel. Then O (v)
C M ,(»).
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PrOOF. Let p: 4 X A —[0, o0) be a metric. Let [4,u] be a stationary source.
Let ¢,: A®°— B> and ¢, : C*— A* be sliding-block codes and U, X, Y, V a hookup
of [4,p] to [B, C,»] such that

@ X = ¢,(U), V = ¢,(Y);

() Ep(Up, Vo) < e. ) A
We will construct for some N block codes ¢, : 4°— B® and ¢, : C*— A% of order
N and a hopkup (7;)? , ?, I7Asuch that

© X = $,(0), ¥V = P,

(@ E[N"'Zp(U, V)] < Se.

For each N = 1,2,- - -, let py: AV X A¥ [0, o) be the map such that

on(x,y) = N7'EL 0(x,,5), x,y € AV,

Let y:4 X B®— [0, o0) be the function defined in (2.1). Then for any hookup
U, X,Y,Vwith V = ¢5(Y),

EpK—L+I(ﬁL{<’ I7LK) = fA“’xB‘”[(K —L+1)" ]2{(-1)1/(“1, Tix)] dP(ﬁ’f)(“,x),

L < K.

Pick a positive integer M such that there exist maps ¢,:4%**!> B and
¢5: C2M*1_5 4 such that
$i(w); = $1(w237), &, (¥) = #5(¥237),
u € A*,y € C*i€Z.
For each N > 2M + 1, let ¢{*): 4°— B> and ¢%*: C®— 4™ be block codes of
order N such that:

oM (u); = ¢,(u),,
M+ 1<i< N-MucA4®
oV(») = 6:(¥)is

M+1<i<N-M,yecC~
It is easy to see that

N —125\’_1P¢S”’(U). T 5 p?

in the topology on %,(B).
Now by Lemma 3 of the Appendix pick a sliding-block coder g: B*— 4* such
that Ep(U,, 8(X),) < &. We observe, using (2.2), that

mexp(g(x)o,x)dPX(x) = fAW‘I’(g(‘P](“))oa‘Pl(“))dl"(u)

< fy¥(tig, d1(u)) du(u) + fA”P(uo,g(%(u)o))d#(“)
< 2e.

Since the map A — [Y(g(x),, X)dA(x) is a continuous map from P,(B) — [0, ),
we may choose N so large that

© [¥(g(x)osx)d (N TZ PHO.T ) (x) < 265
® SupuEA“’pN(g(¢(lN)(u)):v’g(¢l(u)):v) <&
® sup,ecepy (45701 6 (1)) < e
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Let U, X, ¥, V be a hookup such that X = ¢{"(0), ¥ = ¢,(¥). Then, from (¢), (£),
Epn(TF, V) = [orpeNT"ZX (u;, T'x) dPCO(u, x)

< Limxp=NT'Z (8(6(w)),, T'x) dPCD(u, x)

N
+ fA”pN(g(¢(lN)(u))l sg(¢1(“)):v) dp(u) + fA“pN(ulN,g(‘Pl(u))f,) dp(u)

< JpeNT'ZL (8(x); Tx) dP¥(x) + 2

= fBaxp(g(x)o,x)d(N_'EfL,P";-T")(x) + 2e < 4de.

Letting U,X, 7,V be the processes such that (0’, X, ?) = (17, X, )7) and V=
¥ (Y), we get from (g)

Eon(OF, V1) < Epy(0F, V) + Epy(P¥,PF) < 5.

THEOREM 5. Let [B, C,v] be a totally weakly continuous stationary channel. Let
[4, 1] be a stationary aperiodic source. Then [A, p] € DM, (v) if for each e > 0, there
exists a hookup U, X, Y,V and a positive integer N such that

(a) (U,X,Y,V) is jointly N-stationary;
(b) N7'Z ProblU, # V] < .

Proor. If S is a finite set and N a positive integer, let af denote the
isomorphism of the measurable space ((SV)®,(S¥)®) onto the measurable space
(8*,5%) such that if x € (S¥)® then

aM(x) =y € 8™,
where

IN+N _ .
Yin+1 = X , i€ Z.

The source [4,u] and channel [B, C,»] then induce a source [4Y, ] and
channel [ BY, C¥, »™] where

u(E) = p(af(E)), E € (&")".

W(E) = vyoo(e(E)),  x € (BY)™,E € (CM)™.

Note that [B,C,»] totally weakly continuous implies [BY,C¥,»™] weakly
continuous. Given a hookup of [4, ] to [ B, C,»] such that (a), (b) hold, we get a
jointly stationary hookup U™, X), Yy y @) of [4¥, yM)] to [BN, C¥,»™)
such that Ep(U™, ¥™) < ¢, where p: 4" X BY— [0, o) is the metric such that

p(x,y) = N7HY{1 <i< N:x;#y}|

By the proofs of Theorems 3 and 4 we can find block codes ¢, : (AV)®— (BV)®
and ¢, : (CV)®— (A")* of some order K and a hookup UM, XM (V) V) of
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(4", u™] to [BY, C¥,»™™)] such. that

(©) X = ¢ (T™), VW = gp(F™;

(@) E[K~'ZLp(UM, V)] < 20e.
This implies there are block codes ¢}:A4®°— B® and ¢5: C®— A® of order NK
and a hookup U, X, Y,V of [4, u] to [ B, C,»] such that

(NK) ~ 'SN¥KProb[ U;# V] < 20e.

i=1
In the following, if [4, ;] and [4, u,] are two stationary sources on the same
alphabet, let d(p,, jt,) denote the d-distance between g,, ., [10]. We need the fact
that c?(p,l, K,) < e if and only if there exist jointly stationary A-valued processes
X, Y on some probability space such that the distribution of X is u,, the distribu-
tion of Y is p,, and Prob[ X, # Y;)] < e.

THEOREM 6. Let [B,C,v] be a weakly continuous stationary channel. Let
{[4, E,,]}f;l be a sequence of sources in I (v). Let [ A, u] be an aperiodic source such
that d(p.,,, 1) — 0. Then [A, u] € I (»).

Proor. Fix & > 0. Pick # so large that d(p,,, &) < &/2. Pick a jointly-stationary
hookup U, X, Y,V of [4,u,] to [B,C,»] such that Prob[U, # V,] < ¢/2. Pick a
jointly-stationary sequence of processes W', U’, X', Y’, V’ such that

(@ W,U,X', Y,V forms a Markov chain;

() (U,X',Y,V’)and (U, X, Y, V) have same distribution;

(c) W’ has distribution p. and Prob[W] # U;] < €/2.

Then W, X", Y’, V' is a jointly-stationary hookup of [4, u] to [ B, C,»] and Prob[ W]
# V3] < e. By Theorem 3, [4, ] € N (»).

We omit the proof of the following theorem since it is similar to the proof of

Theorem 6.

THEOREM 7. Let [B, C,v] be a totally weakly continuous stationary channel. Let
{[4, En]};‘f‘l be a sequence of sources in M ,(v). Let [ A, 1] be an aperiodic source such
that d(p.,,, 1) = 0. Then [A, p] € I ().

THEOREM 8. Let [B, C,v] be a weakly continuous stationary channel. Let [A,, u,]
€ M (v). Let [A,, p,] be an aperiodic factor of [A,, n,]. Then [A,, pn,] € DM (»).

Note. The requirement that [4,, u,] be aperiodic cannot be removed. In [6]
examples of d-continuous channels are given which show this.

Proor oF THEOREM 8. Fix ¢ > 0. Since [4,, u,] is a factor of [A4,, u,] we may
pick jointly-stationary processes W, U and a sliding-block code ¢ : A7° — A3 such
that the distribution of W is u,, the distribution of Uis j1;, and Prob[W, # ¢(U),]
< ¢/2. Pick a positive integer M such that

o(x);# ¢(»);
implies

x;t%# y,-iff;, i€ Z,x7y € A;o'
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Pick a jointly-stationary Markov chain W’, U’, X', Y’, ¥’ such that
(@) (W, U’) and (W, U) have same distribution;
() U, X", Y, V" is a hookup of [A4,,u,] to [B, C,»] such that Prob[Uj # V] <
e4M +2)~ L.
Then W', X', Y',¢(V") is a jointly-stationary hookup of [4,,¢,] to [ B, C,»] and
Prob[ Wy # ¢(V")y] < Prob[ Wi+ ¢(U"),] + Prob[ ¢(U")e # ¢(V"),]
< e/2+ M _,Prob[U; # V/] < e.

Now apply Theorem 3.
The proof of the following theorem is similar to that of Theorem 8 so we omit it.

THEOREM 9. Let [B, C,v] be a totally weakly continuous stationary channel. Let
[A4, n] € DNy(¥). Then every aperiodic factor of [ A, p] is in I ,(»).

Our next theorem will enable us to obtain an upper bound to C(») and C,(»)
which is computable for many channels. First, some notation and definitions. If X
and Y are discrete random variables defined on a probability space (2,%, P),
ﬁ(X |Y) will denote the conditional entropy of X given Y [14]. If (X, Y') are jointly
N-stationary processes on (R, %, P), let h(X), h(X|Y), i(X,Y) denote the func-
tions in L!(P) such that

h(X)(w) = lim, ,,— n"'logP(X,= X(w)," * +,X, = X,(w)), almost surely;
R(X|Y)w) = lim, , — n~'log P(X;= X,(w)," - -, X,
X, ()Y, = Yy(w), -, Y, = Y,(w)), almost surely;

and |
i(X,Y) = h(X) — h(X]|Y).

(We write ip(X, Y) for i(X, Y) to emphasize the underlying probability measure P,
if necessary.) Then, H(X), the entropy of the process X, is E[A(X)), and H(X|Y),
the conditional entropy of the process X given the process Y, is E[A(X|Y)].

Following [2], define C*(»), the information quantile capacity of the stationary
channel [ B, C, »], as follows:

C*(v) = lim,_,+C*(»,\), whereforA > 0,

C*(v,A) = supﬂe@l(msup{r:yv[iw(X, Y) < r] < A,

X, Y in this case being the projections from B® X C*® to B®, C* respectively. (We
remark for later use that in calculating C*(»,)), the outer supremum over %;( B)
may be replaced by a supremum over ¥, (B), N = 1,2, - - . See [4], Lemma 3.)

THEOREM 10. Let [B, C,v] be a stationary channel. If [A, p] is an ergodic source
in C(v) or Cy(»), then H(p) < C*(v).

PrOOF. Assume [A4,p] € Cy(»). Fix & such that 0 < e < % For some N find
block codes ¢, : A*° — B* and ¢, : C*— A% of order N and a hookup U, X, Y, V of
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[A4, ] to [B, C,»] defined on (R, %, P) such that
(@ X =9,(U), V =90Y);
) NS PIU# V] <e

Let ¢:[0, 1) - [0, o) be the function

g(x) = —xlogx — (1 —x)log(l — x) + xlog|d]|, 0 < x <1
q(0) = 0.

By Fano’s inequality [14], Theorem 3.7.1, and the concavity of g,
NTH(UMVY) < NS HUY) < NT'ELg(PU# V)

i=1
< g(NT'ZLP(U# V) < q(e).

The preceding implies, as shown by Gray and Ornstein in the proof of Theorem 5.2
of [2],

(¢) H(X|Y) < q(¢), and

(d) HU) — H(X) < q(e).
Now Lemma 3.1 of [15] implies that the essential supremum of A(X) is the
maximum of the entropies of the T¥-ergodic components of P*. These compo-
nents are encodings of the at most N T,'-ergodic components of ., each of which
has entropy equal to that of u. Since encoding does not increase entropy, we see
that

(e) P[(X)< HU)] = 1.
From (d) and (e), we have

() P[A(X) < HU) — q(e)}] = PLH(U) — h(X) > q(e)*]
< q(e)(H(U) — H(X)) < q(e)*.

From (c) we have

(® PIA(X|Y) > q(e)7] < q(e).
From (f) and (g), we obtain

Pli(X,Y) < H(U) - 24(e)*] < 2q(e)".
Since PX¥ € ¥y (B), we have by the remark following the definition of C*(») that

C*(v,34(e)?) > H(p) — 24(e)".
Letting ¢ >0, we get C*(») > H(p). Similarly, one can show this inequality if
[4,p] € C(»).

Tueorem 11. Let [B, C,v] be a stationary d-continuous channel. Then Cy(v) =
Ci(v) = C*(»). If [A, p] is an ergodic source, the following hold:

(A) If H(u) < C*(v), [A,p] is strongly block transmissible. If H(u) > C*(»),
[A, p] is not strongly block transmissible.

(B) If H(p) < C*(»), [4, ] is block transmissible. If H(u) > C*(v), [ 4, p] is not
block transmissible.
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PrOOF. Part (A) was proved in [2]. Part (B) follows from Part (A) and Theorem
10. C,(») = C4(v) = C*(») follows from (A), (B).

Proor oF THEOREM 1. Let [B, C,»] be a weakly continuous stationary channel.
Let [4, ] be a B-source with H(u) < C(»). Pick an ergodic source [A4’, u'] such
that [4’, p'] € I (v) and H(p') > H(p). Then [4,p] is a factor of [A4, u'] ([11]),
and so [4, p] € M (»). (Treat the case where [ A4, u] is not aperiodic separately; in
that case, p assigns measure one to some constant sequence in 4 and thus it is
trivial to see that [A4,u] is transmissible.) To complete the proof, if [A4,u] is a
B-source with H(p) = C,(v) > 0, we need to show [A4, u] € DM (»).

It is clear from the results of [5] that there is a sequence of stationary sources
{[4,p,]} such that p,— p in the weak topology, H(u,) — H(u), and for each n, .,
is a finite-order Markovian measure mixing with respect to 7,. From [11], each
[4,p,] is a B-source and d(p,,, 1) — 0. We have [4, u,] € O (») for each n by the
first part of the proof since H(u,) < C/(»). Hence [4, u] € O (») by Theorem 6.
The proof of Theorem 2 is similar.

3. Anexample. We see from Theorem 4 that C(») < C,(»). For certain types
of d-continuous channels [3, 6], it is known that C(») = Cy(v). We present an
example of a d-continuous channel for which C,(») < Cy(»).

First, we need the following lemma.

LeMMA 1. Let [B,C,v] be a stationary channel. Suppose 9N (v) contains an
aperiodic source. Then for each & > 0, there exists W € C® and x € B® such that
v (W) <eand v (W) <e.

Proor. Fix e > 0. Let § > 0 be a small positive number to be chosen later. Let
[A4, r] be an aperiodic source in I (»). By Rohlin’s theorem [12] pick E € @
such that

@ ENnT E=g;

®) W(EUT 'E)>1-48.

We may suppose that for some N, E is of form

= {u€4a”:u) €E}

for some subset E’ of A". Pick sliding-block codes ¢, : A°— B® and ¢, : C®— A%
and a hookup U, X, Y, V of [A4, p] to [ B, C,v] such that X = ¢ (U), V = ¢,(Y), and
Prob[U, # V,] < 6/N. By Lemma 3 of the Appendlx pick a sliding-block code
f: B®— A% such that Prob[U, # f(X),] < 8/N. Let X = f(X) Then, letting F =
J7'E, G = ;'E,

p[(FX G) U (T™'Fx T'G)]

, > 2Prob[ U= XN, UN=V]M,UEE] > 1 - 58.
Let
E = (FXG)U (TT'FXT7'G),E”" = (FXT™'G) U (T~'F X T~%G).
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Then E' N E” = ¢, and
Jp=rr-1(El)dp (x) = [prr-1 (T 7'G)dp®(x)
+ fr-1p2r-1(T 72G) dp?(x) = [prG)du®(x) + [r-1p (T ~'G) dp®(x)
= p*w(E’) > 1 — 54,

where
E!= {y€C®:(x,y) EE"}.
We thus have
©) [gevr-1(E})dp*(x) > 1 — 58;
(d) fper(E)du*i(x) > 1 = 58.
Chebyshev’s inequality applied to (c) gives

vr-i(Er) > 1 — (58)F
for a set of x of u®' probability > 1 — (58)%. Similarly, from (d) we get that

v(E)) > 1 — (56) for a set of x of u** probability > 1 — (58). If 1 — (58)% >
1/2, there must exist x; € B® such that

vrn(EL) > 1 — (58)7and»,(EL) > 1 — (56):.

Setting W = (E; )", we get, since E;/ N E; = &,

1

v (W) < (58), 0, (W) < (58)°"

Hence, choosing 8 so that (58): < min(%,s), there exists x € B* such that » (W)

< eand v (W) <e.
Now we construct our example. Let [B, C,»] be the channel such that B = C =

{0,1} and
v(E) = 31g(x) + 315(Tx), X € B®,E € C~,

where I denotes the indicator function (characteristic function) of the set E. Thus
an input x when transmitted over the channel yields either itself or the shift of
itself, each with probability 3. This channel is stationary and has finite input
memory; that is, there exists a positive integer M such that for n = 1,2,---, and
k € Z, if EC C" and x, X are sequences in B with

xllcc:-ﬁl{+n—l = )ellcci-g+n—l
then

v{y € C®:yf T € EY = n{y €C™iyftnTlE E}.
Such channels are known to be d-continuous [2].
Now for every E € C*,
v(E) + vy (ES) > L(Tx) + M (Tx) = 1.
Hence, by Lemma 1, 91 (») contains no aperiodic sources. This implies
c(») = 0.



TRANSMISSION OF BERNOULLI SOURCES 955

However, it is an easy task, which we leave to the reader, to construct a block
encoder and decoder for transmitting an ergodic source of entropy < (log2)/2.
Thus C,(») > (log2)/2. Or, one can simply observe that » is obtained by averaging
two ergodic channels of capacity log 2; hence by a formula of Nedoma (see [9] or

(4D,
Cy(v) >[(og2) ™" + (log2)~'] "' = (log2)/2.

4. Open problems. Can one get coding theorems for the class of all ergodic
aperiodic sources, not just the B-sources? Can one obtain formulas for C,(») and
C,(»)? Specifically, does C,(») = C*(») hold in general? Can one find a necessary
and sufficient condition in order that C(») = C,(»)? Specifically, motivated by the
example given in previous section, is the only way that C(») can fail to equal C,(»)
is if C(») = 0? Can one find a necessary and sufficient condition for a channel to
be weakly continuous (totally weakly continuous)? Is every weakly continuous
channel totally weakly continuous? When does C,(v) = C;(»)? Is there a coding
theorem analogous to Theorem 2 for the strong type of block transmissibility?

APPENDIX

A stationary channel [B, C,»] is d-continuous if for any & > O there exists a
positive integer N, such that for any N > N, and x, £ € B® with x}¥ = £V, we may
find CV-valued random functions Y, ¥ defined on some probability space so that

(a) the distribution of Y is »Y;

(b) the distribution of ¥ is »¥;

©) E5(Y, 7)<
(If S is finite, p, is the map from SV X SV [0, 1] such that

on(».7) = NT'{1 <i< N:y,#y},y,yesY)

LemMMA 2. Let [B,C,v] be a stationary d-continuous channel. Then [B, C,v] is
totally weakly continuous.

Proor. It suffices to show that [ B, C, »] is weakly continuous. (For if [ B, C, 7]
is d-continuous it is easy to see that [BY, C¥,»™] is d-continuous, N = 1,2, - - - .
The channel [B, C,»] is totally weakly continuous if and only if each channel
[BY,C¥,»™)] is weakly continuous, N = 1,2, - - - .) Fix finite dimensional cylin-
der sets E € B>, F € C™. It suffices to show that the map p — uv(E X F) is
continuous from ?,(B) — [0, ). Let 4 = {0,1,2}. Let f: B® > A4* and g: C* —
A% be the sliding-block codes such that

f(x)g =0, x€EE
=1, otherwise.
8(y) =0, y€EF

=2, otherwise.
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Let X, Y be the maps from B* X C*® to B®, C* respectively, such that
X(x,y) = x,Y(x,y) =y, x € B®,y € C*~.
Let U = f(X), V = g(Y). Then if p € P,(B),
WUy # Vo] = 1 = p(E X F).
Thus all we have to do is show that the map p — pr[U, # V,] from ?,(B) — [0, o0)

is continuous.
Pick M such that x!*¥ = %i*M implies

f(x); = f(%);, x,X €EB*®,i € Z,

1+M

and y/*M = pi*M implies

8(»): = g, y,y €EC®i€Z.
Fix e > 0.
Pick N so large that:
(@) if x,% € B® and x{"f' = 2] then there are C"*>¥ -valued random

functions Y, ¥ such that
Prob[Y =y] = »{y € C*:y\5 =y}, ye&C"?¥,
Prob[¥ =y] = n{y e C® iyt M =y}, ye VM,
and EpS,,,(Y,¥) <e/QM + 1).

(b) 2M/N < 1.
Let py, uy € P(B) satisfy

2 eprean|p] M (x) — pyTM(x)) < e
We show |p,7[Uy 7 Vo] — po#[Upy # Vol < 5e. We have
luw[ Uy # Vo] — po2[ Uy # Vo]l = |[a=tbdy — [p=¥dpal,
where  : B*— [0, 1] is the map such that
¥(x) = Jep(f()1-8(0)Y) dv(y) x € B™.
Pick maps f*: BN*2M 5 4¥ and g* : CV*2M 5 4" such that
FO = (x5, s = g* (),
x € B®,y € C*.
Let x € BN*2M Let x, # € B™ satisfy xV*M = #V*M = x_ Let Y, ¥ be the CV+2M
-valued random functions corresponding to x, £ given by (a).
We have
[W(x) = (&) = |E[of(f*x),g*(¥))] — E[s(/*®).8* ()]l
| < Epp(g*(Y),g*(Y)).
A simple calculation shows p4(g*(Y), g*(f})) < N7'QM + 1)(N +

2M)0S , 14, (Y, ¥). Taking the expected value we see using (a), (b) that |y(x) —
Y(%)| < 2e. Thus, letting E, = {x € B®: x]"*¥ = x}, we have shown that the
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oscillation of y over E, is < 2e. Hence,

le}Pdﬂl - fE,‘l’dﬂzl < UE,(‘P - SuPE,“P)dIh - fE,(‘I’ - SuPE,‘P)dﬂzl

+ lsuppy Yl i (Ey) — pa(Ey)l < 2e(py(Ey) + ua(E)) + |ni(Ey) — b2 Ey)|.
Summing over x € BN**M we get | [Ydpu — [Ydu,| < Se.

LemMA 3. Let A be a finite set and (R, %,) a measurable space. Let (R, %, P) be a
probability space and let X,Y,Z be measurable functions defined on this space such

that
(@) X is A-valued, Y is Q,-valued, Z is A-valued;
(b) X,Y,Z form a Markov chain.
Then there exists a measurable map f: 2, — A such that E[p(X,f(Y))] < E[p(X,2Z)],

where p is a map from A X A — [0, ).

ProOF. Let (P, :w € 2,} be a family of probability measures on 4 which serve
as regular conditional probabilities of X given Y; that is,
(c) The map w — P, (F) from £,— [0, 1] is measurable, £ C 4;
(d) PIXEE, Y €E F]l= [ P(E)dP"(w), EC A,F € %,.
Lety: 2, X 4 — [0, cc) be the function such that
Y(w,x) = [p(x’,x)dP(x), x EAw€E Q.

Because of the Markov assumption (b),
E[p(X,Z)] = foua¥(p,2)dPT?)(y,2).
Define f: 2,— A4 so that Y(w, f(w)) = min, Y(w,a), ® € Q. Then
E[p(X.f(Y)] = [o(»:S (1) dPT(9) = fo,xab(:S(»)) dPT Dy, 2)

< Joxa¥(7,2)dPTPN(p,z) = E[p(X,Z)].

For the following, we introduce some notation. If 4, B are sets and 7 is a relation
on B X A then
[x] = {y €4:x1y}, x € B.
IfSc4d,
17'[S] = {x €B:x7yforsomey € S}.

LEMMA 4. Let A be a finite set. Let {ps:S C A} and {\;:i € A} be sets of
nonnegative numbers such that

(@ 2(sca:5n520)Ps 2 Ziesh S CA.
Then there exists a set {a} :i € A, S C A} of nonnegative .numbers such that

() Ziica ;ieS}"‘;fj <ps,SCA.

© E(SCA:iES)af= A,i EA.

ProOF. Choose finite nonatomic measure spaces (£,,%,,m,) and (2,,%,, m,)
so that (2,,%)), (2,,%,) are standard Borel spaces and there exists a partition
P={E;:S C A} of Q, and a partition Q = {F;:i € A} of Q, with m(Eg) = Py,
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S C 4, and m,(F;) = A;, i € A. Define a relation 7 on P X Q as follows: Eg7F; if
and only if i € S.

Then (a) reduces to:

(d) m, [ UEET_IIS]E] > my [ UFesF]’S co.

Thus by the measure marriage lemma of [7], page 23, there exists a one-to-one
measure-preserving map f: 2, — £, which preserves the relation. This means

(©) f(F) C U (sca:iesyEsri €A
Set

o= m(f(F)n Eyg), i€A4,S C A
iNow (e) implies that &’ = 0 if i & S. Thus
E{SCA:iGS)a;'g= 2Sc,40‘}9= m\(f(F)) = my(F) = A,

and so (c) holds. Inequality (b) holds automatically from the way the {a’} were
defined.

LEMMA 5. Let (B, B, m), (A, &,\) be finite measure spaces, where A, B are finite
sets. Let T be a relation on B X A. Suppose

(@) m[r7'[S]] > A(S), S C A.
Then there exist disjoint subsets {F,:i € A} of B such that

() m(Ue4F) > e AG) — |42 max, ¢ ym(b).

©) |m(F) — A(i)| < 2'max, ., m(b),i € A.

(d) 7" Yi}y D F,i € A.

PrOOF. Let Eg= {x € B:7[x] = S}, S C 4. Let p;= m(Es), S C A. Then (a)
gives

(©) Z(sca:sns<e)Ps > NS), S C 4.
~ Hence, by Lemma 4, there are nonnegative numbers {af:i €EA,S C A} such that

) Z(scazies® =Ni),i € 4.

(® z{ieA:ieS)a;'g < m(Es),SCA.
Because of (g) we may choose sets {Eg:i € A, S C A} such that

(h) EiNEi=gifi#*i'or S+ S

() E{C Es,i ES.

G) |m(Ei) — &f| < max,cpm(b),i € S,S #3&,S C A.

Define” ,, _
F,= U(sca:ies)Es; i €A.

The {F;} are disjoint by (h). From (i), we get (d). Also,
|m(F) — A(i)| = |2s:(i)m(E§) - zs:(i)afl < Z,Almaxbeﬂm(b)’
by (f) and (j). Thus (c) holds. (b) follows from (c). ‘
LEMMA 6. Let A, B be finite sets.-Let X, Y be a pair of jointly stationary processes
on some probability space (2,5, P), where X is A-valued and aperiodic, and Y is

B-valued. Then there is a sequence {¢, }n, of sliding-block codes from A* — B* such
that PX#X) 5 pXY) iy the weak topology on Py(A, B).
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PrOOF. We can assume @ = A® XB*®, F= @ X B, and that X, Y are the
projections from A* X B> to A*, B®, respectively. Let 6 > 0 and a positive integer
N be given. It suffices to construct a stationary code ¢ : A — B® such that

E(x,y)EANXBNIP(XlN,d’(X)IN)(x’y) “P(X'N’Y'N)(X,J’)I < 4.

(For, by [1] Theorem 3.1 the stationary code ¢ may be replaced by a sliding-block
code which does this also.)

We fix 0 < 1 < 1 to be specified later. There is a family of probability measures
{P,:w € A® X B®} on @ X B* such that

(a) The map w — P (E) from A X B*— [0, 1] is measurable, E € @® X $B*=.

(b) P(E) = [yjoxp=P (E)dP(w), E € @® X B>.

(©) lim,  n~'S! I,(T'w) = P(E) for P-almost all w € 4® X B*, for each
E € @°X B>
Pick a measurable partition 4,,- - - , 4 ; of A X B* such that
(@) |2, (XY, YNy =b] = P JXN, YY) = Bl <m, w0y €Api= 1, j;
b e AN x BV,
Letw,= P(4,),i=1,---,j
Let o, - - ,a; be the probability measures on 4" X B" such that

a(b) = w Y P (XN, Y)) = b] dP(w), b e A" x B".
(If w, = 0, just define a; to be any probability measure on 4" X B".) Note that
P(X{v> YIN) = 2{= wia
Also, from (d),
() | P, [(Xl ,YN) = b] — a;(b)| < n for P-almost every w € A, b € AY x BY,
i=1,---,j.
For M = 1,2, , let AP, 480, - - - A be a partition of AM X B™ such that
& PL{(Xx}]M, Y,M) € AMIAA4]>0as M > o0,i=1,---,j
If (x,y) € A¥ X BM, where M > N, and « is a probability measure on 4Y x BY,
we say (x,y) is n-typical of « if
(M -N+1)"~ lzﬁ_lN+ll(b)(x::+N_l,)"iHN_l) — a(b)] <,
b e AV x BV
Because of (c), (e) and (f), the following hold for M sufficiently large:
®) PIUL (X}, Y1) is wrtypical of o, and (] ,Y.M> € 4™ > 1 - n/j;
() | P[(XM, YM) € A(M)] -wl <n/ji=1,-
Fix such a large M. (Later on in the proof we will make further restrictions on M.)
Let
i= {(x,y) € AM x BM:(x,y) is n-typical of a,,(x,y) € AP},
I = 1’ cee
Define a relation 7 on 4™ X {1,---,j} as follows: if x € 4* and 1 < i < j, then
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x7i if and only if there exists y € B such that (x,y) € E,. If G C {1, - - ,j}, then
PX[r71[G]] > PX{x € AM: P[U,co{(XM, YM) € E}|X =x] >0}
> [P Uiea{ (X1, Y1) € B}IXY = x] dP¥{(x)
= SieoP[(XI, ¥]) € E].

By Lemma 5, there are disjoint subsets {F;:i = 1,-- - ,j} of A™ such that (letting
€y = max . nPX(x))

@) PY(UI\F) > S{_,PUXM, YM) € E)] - 2f'eM > 1= 1= j2ey;

G) | PXI(F) - PIX] M, YM) € E)| < 2eyi =1,

@77} D Fpi=1,-++,j.
From (k) we may choose a function f: A — B such that (x,f(x)) € E, if
x€F,i=1,---,j. Note that fori = 1,- - - ,j,

P{(x{%, 1) € B] = P{(xI%, 7)€ 400)]
< Lo P[(XM,YM) € AM] — P[(XM,YM) € E,] < n/j, by(g).

We thus have, from the preceding and (h), (j),
(1) If x € E, (x,f(x)) is n-typical of @, i = 1,- - - ,j.
) | PX(E) — w| < ey + 20/ji = 1,-- - .
Since X is aperiodic we may pick W € @ such that
(n) W, TW,- - -, TM~'W are disjoint;
) |P[IX e W, X' 'e S]— P[X € W]P[X{' '€ S] < n/Mj, S C AM;
@ PXWUTWU - - UT" " 'W]>1—n.
(W can be found using the argument on page 23 of [12].)
Define ¢ : A°— B> to be any stationary code such that

$(x)] T M7 = f(xi*M7Y),  Tx € W,x € 4%,i € Z.

If b € AV X BY, we have
@ PIX{,¢(X)]) =b] < n+ Zf_{(ax(b) + n)(M — N + 1) + N — 1}P[X
EW, XY 'eF]+MP{X}'eFuU--- UE} N {X € Wi}l
To see this, if x € A%, write
Y(x) = limn—m"_'ZLll(b)(xf+N_l,¢(x);+N_l)s
if limit exists. (It exists almost everywhere [ P*X].) Now

E[¢(x)] = P[(x{,6(X)) = b].

In the summation from i = 1 to i = n defining {(x), divide the summation into
three parts. First, sum over subintervals [s,s + M — 1]'of [1,n] where T°x € W,
x:*M-1 € F, for some 1 < k < j. Then let n— oo, and take the expected value.
We get a contribution to E[y(X )] no bigger than the middle term on the righthand
side of (q) Second, sum over subintervals [s,s + M — 1] with T"x € W, x:*¥~1 ¢
F, U - -+ UF,. This gives rise to a term in E[{(X)] no bigger than the third and
last term on the righthand side of (q). Finally, sum over all i € [1, 7] lying in no
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subinterval [s,s + M — 1] with 7°x € W. This gives a contribution to E[{(X)] at
most 1, the first term on the righthand vide of (q).

Using (0), (m) and (i), it is a simple matter to show that the righthand side of (q)
is no bigger than

8n + 2,27e,, + 2N/M + S/ _ wa,(b).

By similar reasoning to that used in (q), we get the lower bound

@ PIXY, o(X) = b] > S{_(a(b) — XM — N + DP[XM~' € F,, X €
w].

Using (0), (p), and (m) to lower bound the right-hand side of (r) and combining
this with our upper bound, we wind up with, as the reader may easily verify,

|P[(XY,6(XM)) =b] — P[(XN, YY) =b]| < 8 + 227, + 2N/M.

Since X is aperiodic, &,, — 0 as M — oco. Hence if M is chosen large enough and ¢
small enough, we will have

Spenon| PO #OD(B) — pOTIN(p)) < 5,
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