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MARKOYV CHAINS IN RANDOM ENVIRONMENTS:
THE CASE OF MARKOVIAN ENVIRONMENTS

BY ROBERT COGBURN
The University of New Mexico

A formulation of a Markov chain in a random environment is given,
generalizing special cases such as branching processes, queues, birth and death
chains and random walks in random environments. It is assumed that the
environmental process is Markovian, each environment corresponding to a
particular law of evolution on a countable state space X. It is then shown that
there is a natural three way classification of states of °X. One of the three types
of states is irregular in nature, and conditions are found under which no such
states exist.

1. Introduction. Consider a family of transition probabilities { P(#),8 € ©} on
a state space (X, @) and a stochastic sequence X,, X}, X5, - - taking values in X
and satisfying

P(Xn+] EAIXO" o ,Xn) = P(on:Xn,A) a.s.

for each n and 4 € @. If the sequence 6,,0,,0,,- - - is fixed this is simply the
formulation of a nontime homogeneous Markov chain. Suppose, however, that the
0,’s are the realization of a stochastic sequence §,,£,,£,,- - - taking values in ®
and that, conditioning on the full £, sequence,

(1.1) P(X, € Al§o, 61,65, 5 Xos -+, X,) = P(§,:X,,4) as.

for each n and 4 € @. Then we say that X, X,,X,, -+ is a Markov chain in a
random environment. The §,’s are called the environmental process (or the control
process in some contexts).

In this study we assume {£,} is a time-homogeneous Markov chain on © and take X
to be countable with discrete o-field. The probability of going from x to y in one step
in the #th environment is denoted P(@: x,y), while the n-step transition probability
for {¢,} on (©,9) is K™(4,T). In this case {{,,X,} is a Markov chain with
one-step transition probability on ® X % determined by
(1.2) P(8,x;T X {y}) = K(6,T)P(6:x,y)

and we call {£,,, X,,} the bichain. It is important to note that (1.1) together with the
Markovian assumption on {£,} implies (1.2), and, conversely, a bichain satisfying
(1.2) must satisfy (1.1). Also note that (1.2) determines a proper subclass of two
dimensional Markov chains whose first component is Markovian. In particular, the
subsequence {(§,,,X,,), n=0,1,2,---} fails to satisfy (1.2) in general, hence
does not determine a Markov chain in a random environment.
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In Section 2 we take ® countable, so the bichain moves on countable state space
® X %. Even though % is countable, however, the environments on % may vary
continuously so in Section 3 we allow © to be a general state space.

The purpose of this study is to consider some aspects of the problem of
classification of states for a Markov chain in a random environment. Since

[X,=x] =[({,,X,) €0 X {x}],

states of X correspond to cylinder sets for the bichain. A natural classification of
state sets is given by Doeblin for a Markov chain {Y,} on a general state space
(%Y, B): BE R is inessential if P,[Y, € B i.0.] =0 for every y (where P, is the
distribution for the chain started at y and i.o. stands for “infinitely often”).
Otherwise B is essential. If an essential B is contained in a countable union of
inessential sets then B is improperly essential, and otherwise B is properly essential.
Based on this trichotomy we define x € % to be inessential, improperly essential or
properly essential according as ® X {x} has this property for the bichain.

It is clear that inessential states for a Markov chain in a random environment
correspond closely to the notion of transient states for a Markov chain. Also, if
® X % is indecomposable (that is, does not contain two disjoint stochastically
closed sets) and if x is properly essential, then it is known (cf. Section 1.8 of Orey
(1971)) that there is a stochastically closed set C C ® X % such that ® X X — C'is
not properly essential (possibly empty) and for any starting distribution ¢ on C,

P[X,=xio.] = PJ[(£,,X,) €O X {x}io.] =1,

so properly essential states for Markov chains in random environments are similar
to recurrent states for a Markov chain.

Improperly essential states, on the other hand, present various anomalies. It
would be nice if we knew %X had no such states. In this case we say that the bichain
is proper, otherwise improper. Most of what follows consists of an attempt to
provide usable conditions under which the bichain is proper. Of course, a sufficient
condition is that ® X X contain no improperly essential subset, in other words that
© X % is a “final set” in the sense of Doeblin. It is known that this is equivalent to
the assumption that the chain on ® X % is ¢-recurrent (that is, “recurrent in the
sense of Harris”). The requirement that the bichain be proper, however, is consider-
ably weaker and allows for “transient” behavior of the %X component.

To see how knowledge that the bichain is proper may be useful, consider the
case that %X = {0,1,2,- - - } and where P(6:0,0) = 1 for every #, while for the
bichain P, , [some X, = 0] > O for every (8, x). It follows easily that no positive
x can be properly essential. Provided the bichain is proper, it then follows that
positive x are inessential and consequently that

P[X,—0o0row] =1
whatever the starting distribution for the bichain. This kind of stability has been of
primary importance in several of the special theories for types of Markov chains in
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random environments, e.g., see Tanny (1977) for a strong form of this result for
branching processes in random environments.

2. Countable ©. In this section the environmental process is taken to be an
irreducible, recurrent Markov chain on a countable state space ©. Then the bichain
also moves on a countable state space ® X X. For a given x € %, if (0, x) is
recurrent for any § € ©, then x must be properly essential, while, if (8, x) is
transient for every § € ©, then x may be either inessential or improperly essential.
We will consider several conditions under which the evolution is proper, eliminat-
ing the possibility of improperly essential states.

Since the environmental chain is recurrent, every § € © will be visited infinitely
often with probability one. Suppose the chain is started at 8, let 7, denote the time
of the nth return to @ and 7, = 0. Then the sequence X o Xsp X, o+ 1S a time
homogeneous Markov chain on % and we denote its one step transition probability
by Ry(x,y). In effect we obtain this chain by looking at the bichain during its visits
to {#} x X. We will find these chains useful in several ways.

PROPOSITION 2.1. (a) A state x € X is recurrent for the R, chain if, and only if,
(0, x) is recurrent for the bichain.

(b) Let the environmental chain be positive recurrent. Then a state x € X is
Dositive recurrent for the R, chain if, and only if, (0, x) is positive recurrent for the
bichain.

Proor. The first assertion follows directly from definitions. For the second,
notice that, if (6, x) is positive recurrent, 7, denotes the time of nth return of the
environmental chain to @ and 7, is the first 7, such that X, ., =X (for n > 1), then
the mean return time to x for the R, chain equals

E@,xy(0) < Egp (1) < o

since 7, is precisely the return time of the bichain to (#,x). Thus positive
recurrence of (4, x) implies x is positive recurrent for R,. For the converse, note
that §, =1, —7,_,, n=1,2,3,- -+, are independent and identically distributed.
Since o is a stopping time, it follows by Wald’s equality that

E(o,x)(”'a) = E(o,x)(zf:-lan) = E,,('r,)~m,(x)
where m,y(x) denotes the mean return time to x for the R, chain. []

ProposITION 2.2.  If K is finite then the evolution is proper and °X, has at least one
properly essential state.

Proor. For each 8, the R, chain must have at least.one recurrent state x since
X is finite. Then (4, x) is recurrent and x is properly essential. Moreover, the set of
recurrent states for the R, chain is closed and there are only a finite number of
transient states, so this chain must eventually leave the transient states and not
return. At this point the bichain will be in its set of recurrent states, which is also
closed. Since the % component of every such state must be properly essential, it
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follows that any x € %X that is not properly essential is visited only finitely often
with probability one, hence is inessential. []

ProPOSITION 2.3. If O is finite then the evolution is proper.

This is immediate since every ® X {x} is a finite set in this case and so cannot
be improperly essential.

PrROPOSITION 2.4. If inf, K(8,0%) > 0 for some *, then the evolution is proper.

ProoF. Let K(6,6*) > ¢ > 0 for all §. Then, for each x,y € X, and § € O,
P(0,y)[(£n’Xn) = (0*,)6)] = E(o,y)(K(§n~l’0*)P(§n-—l:Xn-l’x))
> eP(,,,y)[ X, = x].

Now, if (6*,x) is transient, then
1
?I P(0,y)[Xn = x] < gznP(o,y)[(gn’Xn) = (0*,)(?)] < o

and it follows by Cantelli’s lemma that x is inessential. Of course, if (6%, x) is
recurrent then x is properly essential, so only these two possibilities exist. []

An important special case of Proposition 2.4 is when the £,’s are independent. In
this case the X, sequence is Markovian and the correspondence of “transient” to
“inessential” and “recurrent” to “properly essential” holds.

This last result naturally leads to the conjecture that it would be sufficient for
K™(6,6%) > ¢ > 0 for all  and some n and §*. This is not the case, as shown by
the following example:

Let® =% =1{0,1,2,---}. Forn=0,1,2,- - - let

K(O,2n) = q2n> 0
whore 27_0q,,= 1 and, for n > 1, let
KQ2n,2n—-1) = K2n—1,0) = 1.
Also let

P(2n: 0)
PQ2n:x,x)
P2n —1:0,2n)

1if0 < x < 2n
lifx > 2n
land P2n — 1:x,x) = lifx # 0.

In this case K@(8,0) > g2 > 0 for all 4.

If the bichain is started at state (2n — 1, 0), it moves to state (0, 2») at time 1 and
then can return to ® X {0} only at states (#,0) with  odd and @ > 2n. Thus the
states (2n — 1,0) are all transient. Starting at (2n,0), the bichain moves to (2n —
1,0) (if n > 1) and so it cannot return to (2n,0). Thus (2n,0) is transient for n > 1.
Finally, starting at (0,0), the bichain remains there only so long as the ® chain
remains at 0, and then the bichain leaves (0, 0) never to return. Thus all states of
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© X {0} are transient. On the other hand, P, , [some X, = 0] = P, [some £, > x] =
1 for every (6, x), hence P, ,[X, = 0i.0.] = 1 for every (0, x), and 0 is improperly
essential.

THEOREM 2.1.  Suppose that (a) for each x € X there exists a finite set N, such
that
inf,P(8:x,N,) > 0,
and (b) there exists a §* € O and integer m such that
infymax, _,,K(8,6*) > 0.
Then the evolution is proper.

Notes. The hypothesis (b) of the theorem is equivalent to assuming that the ®
chain is uniformly ¢-recurrent, and we will use this condition in the general state
space version of this theorem in Section 3. In the example preceding the theorem,
hypothesis (b) is satisfied with m = 2 and hypothesis (a) holds for every x € %
except x = 0. This one exception suffices to void the conclusion of the theorem.
This theorem generalizes a result of Torrez (1979) for birth and death chains in
random environments (where (a) is satisfied with N, = {x — 1,x,x + 1}). Even
with this strong form of (a), Torrez gives an example where the environmental
chain is positive recurrent but not uniformly ¢-recurrent ((b) fails) and the
evolution is not proper.

PROOF. Choose the N, so x € N,. Let NV = N, and, for n = 2,3, - -,

Nx(n) = UyENx _,Ny'

Then the N are finite and increase in n for fixed x. We will show by induction
that

infy ..o Py, o Xs € NPy, - ,8,_1) > 0.
For n = 1 this is condition (a) of the theorem. If true for n, then for n + 1

. 1
mfao,--~,0,P(00,x)(Xn+1 € N+ D6y, - -,8,)

> infy, ... o2, cnePog,rf Xa =100, * + ,6,_1)P(8,:,N,))

> min, e yen{infoP(:y,N,)}inf, .5 Po (X, € NGy, - -,86,_,)

> 0.
Moreover,

min, _,inf, .o P o X, E N0y, - ,6,_,)
> min,_inf, ..., Py, (X, € NP6y, ,6,_,) > 0.

Combining this inequality with hypothesis (b) and letting 7 be the first positive time
that £, = 6* we have, for each x € %,
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infy P, [ £, = 6* and X, € N{™ for some n < m]
2.1)
= infazix"-l{P(o,x)[” = ”] ‘E(o,x)(P(ao,x)(Xn € Nx(m)lgo" o ’gn—l))} > 0.

It would appear that we should have P, . (X, € N™|&y,- -+, £,) in the above
relation but the nth environment, indexed by £,, does not affect the distribution of
X,

Now let

A,= {y ENM™:L(6*y;0 X {x}) > 0}
(the L and Q functions are those of Doeblin—cf. Chung (1964) for definitions) and
let B, = N™ — A,. Assume that x is not properly essential. Then, for eachy € 4,
(0*,y) leads to (#,x) for some 6, and, since each (0,x) is transient, (8*,y) is
transient, too.

The relation (2.1), together with Proposition 7 of Chung (1964) implies that, for

every§ €@ and z € X,

(2.2) 0(0,2;8 x {x}, {8*} X N{™) = 0(8,2;0 x {x}).

But if the bichain is in {#*} X N{™ infinitely often it must enter {#*} X B_, since
{6*} X A, is a finite set of transient states. Once in {#*} X B,, the bichain cannot

return to ©® X {x}. Thus the left-hand side of (2.2), hence the right-hand side, must
equal 0. Consequently x is inessential. [J

3. General 8. We assume throughout this section that the environmental se-
quence is a @-recurrent (recurrent in the sense of Harris) Markov chain on a general
state space ©. We will establish two results corresponding to Proposition 2.2 and

- Theorem 2.1 of the preceding section.

ProPoOSITION 3.1. If X is finite then there is at least one properly essential state in
X, and the evolution is proper.

ProOF. 1. Let C be any closed set in ® X %X. Let
® = {#€0:(0,x) € Cforsome x € X}.

Then @ is a closed set in ©. We will show that, for some x € X, (® X {x}) n C
must be properly essential.

Suppose the converse. Then for each x € % there exists a countable partition
{®”} of @ such that (®{*) X {x}) N C is inessential for each n. Let {®,} be a
countable partition refining each of the {®{®}, x € X. Then (®, X {x}) N C is
inessential for each x, hence (®, X X) N C is inessential. Starting the bichain at
(8,x) € (®, X X) N C, it follows that

K™(8,®,) = P™(0,x;(®,XxX)NC) -0

as n — oo. But then each @, is not properly essential, consequently & — U®, is not
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properly essential. Since ® is closed and the control chain is g-recurrent this is not
possible, and our claim follows ab contrario.

2. Taking C =0 X %, it follows from part 1 of the proof that % has a
nonemtpy subset X * of properly essential states. Since X — % * is finite (possibly
empty), ©® X (X — %X *) is not properly essential. For each x € %X — ¥ * and
e >0, let

D, .= {(8,y):L(8,y;0 X (X — X)) >e}.
If, for some ¢ > 0, D, , were properly essential, then it would follow that ©® X (X
— % *) would be properly essential (cf. Proposition 9 of Chung (1964)). Thus D,,
is not properly essential for ¢ > 0 and D, o= U ,D, ,/, is not properly essential.

Now let

F = @ X %4- - Uxegc-er’o.

Then F is properly essential and
F=0®X(X-%*)"Nn©OX((X-%"))°

is closed (cf. Chung (1964)).
Also F°is either empty or closed. If it is closed, then for some x (@ X {x}))n F°
is properly essential by part 1. But then x € % *, and, since Fn F°= O,

(®x{x})n F°c D, ,

which is not prbperly essential. It follows that F°= &,

3. Let @ be a finite measure on © equivalent to the invariant measure 7.
Suppose %X contains N points, and for each x € X choose I, C O, so that, for the
bichain

infoer L(0,x; F) = ¢,> 0,

and so @(T,) > ¢(©)1 — 1/2N). (Recall that F° =, so this is possible.) Let
I' = NT,, the intersection over all x € X. Then ¢(I') > ¢(©)/2 >0 so T is
properly essential. Moreover,

infyer ceoL(0,x; F) > min,cqe, > 0.

Starting at any (#, x), the bichain enters I X %X infinitely often with probability
one. But then it must enter the closed set F eventually and stay there with
probability one. Since F C © X X*, it follows that ® X (X — %*) is inessential.
Thus every state of % is either properly essential or inessential. []

THEOREM 3.1. Suppose that (a) for each x € X there exists a finite set N, such
that :
infy Py(x,N,) > 0,

and (b) the environmental chain is uniformly @-recurrent. Then the evolution is proper.
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PROOF. Let 7 be invariant probability measure on 8. Choose m so inf, Py[ 1 <
m] > 0 whenever 7(I') > 3 where 7 is the first positive n such that §,€T. (This
can be done. For example, cf. Lemma 1.1 of Cogburn (1975).) Choose a state x that
is not properly essential (if any) and construct the set N{™ as in the proof of
Theorem 2.1. Suppose N{™ has » points. Now choose &, C ® so U®,= 0, ©,1
and @, X {x} is inessential for each n. For each y € %, let

¥, = {0:L(8,y;0 x {x}) =0}.
If 7(® — ¥,) > 5, then choose ¥* C ® — ¥, and n, so that
(3.1) infoew;L(O,%‘I’n,X {x}) >0
and so that 7(¥}) > m(© — ¥,) — 5. This is possible by Ergoroff’s lemma since
L(8,y;®, X {x})1L(6,y;0 X {x}) > 0
as nfoo forevery § €0 — ¥,. If 7(® — ¥,) < 3, let ¥* = &, In either case, let
A, =¥, U ¥} and let
A= N,enmA,.
Then #(A) > %, so, using the argument in the first part of Theorem 2.1,
(3.2) infy L(8,x; A X Nf™) > 0.
Now by (3.1) and since ®, X {x} is inessential,
00,y % X {y}) = Q(8,7; % X {y}; @, X {x}) = 0.
Since this holds for every 4, it follows that ¥* X {y} is inessential for each y. Thus
D = U,enm(¥ X {y})
" is inessential. Note that
AXNM™—D c U,enem(¥, % {¥}) C (8% {x})".

Now with probability one sample sequences entering A X N{™ infinitely often
enter A X N/™ — D and so do not enter ® X {x} infinitely often. But (3.2) implies
that, for every 6, y,

0(8,7;0 x {x}) = 0(8,y;0 x {x}; A X N™).

Since the right-hand side is zero, we have established that any x that is not properly
essential must be inessential. []
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