The Annals of Probability
1980, Vol. 8, No. 5, 861-889

LONG RANGE EXCLUSION PROCESSES!

By THoMAS M. LIGGETT
University of California, Los Angeles

Let S be a countable set and p(x,y) be the transition probabilities for a
discrete time Markov chain on S. Consider the motion of particles on S which
obey the following rules: (a) there is always at most one particle at each site in
S, (b) particles wait independent exponential times with mean one before
moving, and (c) when a particle at x is to move, it moves to X, where {X,,} is
the Markov chain starting at x with transition probabilities p(x,y) and 7 is the
first time that X, = x or X,, is an unoccupied site. This process was introduced
by Spitzer, and will be called a long range exclusion process because particles
may travel long distances in short times. The process is well defined for finite
configurations, and we will show how to use monotonicity arguments to define
it for arbitrary configurations. It is shown that the configuration in which all
sites are occupied may or may not be absorbing for the process. It always is if
p(x,y) is translation invariant on S = Z%, but if p(x,y).s a birth and death
chain on § = {0,1,2,-- -}, it is absorbing if and only if p(x,y) is recurrent.
For each positive function #(x) on S such that #P = =, there is a product
measure , on {0, 1} which is a natural candidate for an invariant measure for
the process. When p(x,y) is translation invariant on Z%, it is probably the case
that »,_is in fact invariant if and only if 7 is constant. This will be verified under
a mild regularity assumption, which is automatically satisfied if d = 1 or 2 or if
the Laplace transform of p (o, x) is finite in a neighborhood of the origin.

1. Imtroduction. In a paper [13] which has stimulated a large amount of
research activity during the past decade, Spitzer proposed several models of infinite
particle systems. We will begin by giving brief descriptions of three of these: the
simple exclusion process, the zero range process, and the long range exclusion
process. The first has been studied extensively (see the references in [11]), although
important open problems remain. The second, on the other hand, has received only
a moderate amount of attention ([5], [10], [15]) since Spitzer’s paper appeared.
These two will serve as motivation for the third model, which has not been studied
so far, and which is the subject of the present work. There are inherent technical
difficulties in the third process which lead to problems and behavior not encoun-
tered in the study of the first two processes. We will solve some of these problems,

and will then discuss related open problems in the final section of this paper.
We will need some notation to describe the three processes. Let S be a finite or

countable set, and let p(-,-) be the transition probabilities for an irreducible
discrete time Markov chain on S. For the description of the zero range process, we
will need also a positive function c(k) defined on the positive integers. Let
U = {0, 1)° be the set of configurations of particles on S with at most one particle
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per site, and let ¥V = {0,1,2,- - - }5 be the set of configurations on S with finitely
many particles per site. If 7(-) is a positive function on S, », will be the product
probability measure on U with marginals given by »,{n:n(x) = 1} = #(x)/(1 +
@7(x)). By convention, »,, will be the pointmass on the configuration n =1, in
which all the sites are occupied. Let #, be the product probability measure on V
with marginals given by

P{min(x) =k} Y(x)n,’f..l[fc(f)] ’

where y(x) is a normalizing constant which is chosen so that
Zp-of{nin(x) =k} = L

There is an implicit assumption, of course, that #(-) and c(-) are such that this
normalizing constant exists for all x. Note that if ¢(k) = 1, the marginals of 7_ are
Poisson distributions, while if kc(k) = 1, these marginals are geometric distribu-
tions.

The simple exclusion process is a continuous time Markov process on U in which
particles move on S according to the following rules: a particle at x waits an
exponential time with parameter one, and then chooses a site y according to the
probabilities p(x,y). If y is vacant at that time, the particle at x moves to y;
otherwise, it stays at x. All exponential times and all choices according to p(-, -)
are mutually independent. This process gives a simple way in which an interaction
can be superimposed on otherwise independent Markov chains in such a way that
multiple occupancy of sites is forbidden. Under the mild assumption

- (L.1) sup, 2, p(x,y) < oo,

a process corresponding to this description can be constructed. (This assumption
will be made throughout much of this paper as well—see Section 3.) The simple
exclusion process often has invariant measures which are product measures. In fact
if #P = « and either (a) = is constant or (b) w(x)p(x,y) = w(y)p(y,x) for all
x,y € S, then », is invariant for the process. One unfortunate property of the
simple exclusion process is that #P = o alone is not enough to guarantee that v, is
invariant. For a survey of results on this process, see [11].

The zero range process is a continuous time Markov process on V in which
particles move on S according to the following rules: A particle at x at time ¢
chooses to move during the time interval (¢, ¢ + At) with probability c[7,(x)]A? +
o(At). When it does choose to move, it moves to y with probability p(x,y). Again,
product measures are often invariant for the process, as was observed by Spitzer in
[13]. In this case, however, 7P = « does suffice (under mild technical assumptions)
to guarantee that #, is invariant. No extraneous symmetry or constancy conditions
are required. When S is finite, this can be verified by a simple computation. In the
infinite case, the verification was carried out in [10] when = is constant, and the
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argument there can be generalized under appropriate assumptions. Of course when
¢(k) = 1, the invariance of 5, when 7P = 7 is simply Doob’s observation in [3] that
certain Poisson processes are invariant for independent particle systems. For more
on the independent case, see [12].

The long range exclusion process is a continuous time Markov process on U in
which particles move on S according to the following rules: a particle at x waits an
exponential time with parameter one. It then moves to X,, where {X,} is a Markov
chain on S with transition probabilities p(- , *), Xo=x, r=min{n > 1: X, = x or
1n(X,) = 0}, and 75 is the configuration of the process just before the particle at x
tries to move. Thus a particle continues to search for a vacant site until it finds one,
spending no time at the intervening occupied sites. This process is well defined for
finite configurations, and at this point we will consider it to be defined only in the
finite case. When we give a precise definition of the infinite particle system, it will
be consistent with the interpretation that the particle disappears if * = c0. For a
justification of this interpretation, see Section 3.

The connection with the simple exclusion process is, of course, that the long
range exclusion process provides a second natural way of superimposing an
interaction upon independent particle motions in such a way that multiple oc-
cupancy of sites is excluded. One aspect of the long range exclusion process which
makes it quite natural is that the sequence of sites visited by an individual particle
is a random subsequence of {X,}. This is not the case for the simple exclusion
process. The relation between the long range exclusion process and the zero range
process is that the former is obtained formally from the latter by taking the limit as
¢(k) — oo for each k > 2, with ¢(1) = 1.

The construction of infinite particle systems has been carried out in several
different ways using different techniques. The construction usually begins by
writing down a formal generator, and then either using the Hille-Yosida theorem to
construct the corresponding Feller semigroup [9], or solving an appropriate
martingale problem [6]. In either case, the aim is to associate a uniquely defined
Markov process to the given parameters—in this case the transition probabilities
2(-, ). In the case of the long range exclusion process, particles can move very
long distances in short times when there are many particles present, and this leads
to difficulties if one wishes to construct the process using the earlier techniques. In
fact, the formal generator is very badly behaved (the generator applied to a
function which depends on finitely many coordinates is in general unbounded),
and even in nice cases, the process cannot be constructed in such a way that it will
have the Feller property. For example, it will be shown in Section 4 that the
process is never Feller when p(- , -) corresponds to a random walk on Z9, Thus we
will use monotonicity arguments, rather than estimates, to construct the process.

_This construction of the long range exclusion process, which will be denoted by
7,, will be carried out in Section 2. There it will be seen that 7, behaves rather well
on a certain set D C U of configurations, and that it immediately jumps into D
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from any point not in D. This set D has the following properties:

(@) lim, o P"[n,(x) # n(x)] = O for each x € § if and only if n € D;

(b) 1 € D, where 1 is the configuration with all sites occupied;

(c)if n <{ € Dand{+#* 1, thenn € D;

(d) P'[n, € D] = 1for all ¢;

(e) if n € D, then P"[n, € D] = 1, except possibly for countably many values of
t; and

(f) if n & D, then P"[n, € A] = P'[n, € A] for all ¢ > 0 and all measurable 4.

The points in D€ are reminiscent of the branch points which occur in the theory of
Ray processes [4]. Unfortunately, the long range exclusion process usually fails to
have the Ray property for the same reason it fails to have the Feller property. Thus
the Ray theory is not available to us.

If S is finite, a simple computation given in Section 3 shows that »_ is invariant
for n, whenever #P = 7. This was observed by Waymire (private communication),
and should not be surprising in view of the corresponding fact for the zero range
process. In this respect, the long range exclusion process is better behaved than the
simple exclusion process. An obvious fact when S is finite is that »_, is invariant as
well. The main problems we will study in this paper are to determine the extent to
which these facts from the finite case carry over to the infinite case. We wish to
determine when 7P = « implies », € 9, and when »,, € 9. One of the interesting
features of this study is that they are often, but not always, the case. This situation
is quite different from that encountered in other infinite particle systems which
have been studied so far. For these other systems, it has essentially always been the
case that once one found a class of measures which were invariant when S was
finite, they also turned out to be invariant when S was infinite, at least under mild
technical assumptions. The Feller property was important in making the transition
from finite S to infinite S, and as has been observed, the Feller property usually
fails for the long range exclusion process. Thus it should perhaps not be too
surprising that the behavior of the long range exclusion process is different in this
respect from the behavior of other infinite particle systems. In view of our interest
in the question of invariant measures, it is fortunately true in general, as will be
seen in Section 3, that D is large enough so that u(D) = 1 whenever p is invariant,
and also whenever yu = v, for some 7 for which #P = « (even if », is not invariant).

We have not been able to answer our two basic questions in complete generality.
We have, therefore, concentrated on two classes of nice cases in which fairly
complete answers can be obtained, and in which the answers are not always
affirmative. In order to state some of the results, recall that if u; and p, are two
probability measures on U, we say that u, < p, if [fdp, < [fdp, for all monotone
continuous functions f on U.

THEOREM 1.2. If wP = =, then v,S(t) is a nonincreasing function of t, where
v, S(t) is the distribution at time t of the process with initial distribution v,,.
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The following theorem is probably true without further assumptions, and, in fact,
no further assumptions are needed for any of the conclusions, except for the
statement that »_ is not invariant when « is not constant. For the proof of that
statement, we will need to impose a mild regularity assumption, which is automati-
cally satisfied if d =1 or 2 or if the Laplace transform of p(0, x) is finite in a
neighborhood of the origin.

THEOREM 1.3. Suppose S = Z% and p(x,y) = p(0,y — x). If 7P = =, then v, is
invariant if and only if w is constant. Furthermore, v, is always invariant.

THEOREM 1.4. Suppose S = {0,1,---} and p(x,y) =0 for |y — x| > 2. Then
v, is invariant if and only if p(-,-) is recurrent. In the transient case, v, is not
invariant for any w satisfying wP = .

Theorem 1.2 is proved in Section 3, Theorem 1.3 in Section 4, and Theorem 1.4
in Section 5. In cases when », is not invariant for some = satisfying 7P = a, it is of
interest to determine the limit as ¢ tends to oo of »,S(#). This is done in one class of
cases by the following theorem, which is proved in Section 4. Of course the
existence of the limit follows from Theorem 1.2.

THEOREM 1.5. Suppose S = Z', p(x,y) = p(0,y — x), and = | x| p(0,x) < oo.
Then
lim,  »,S(t) = »;

t—00

whenever wP = w, where T is the constant 7 = inf m(x).

2. Construction of the process. For finite configurations, the process 1, was
defined in the introduction. Let S(¢)f(n) = E"f(n,) be the corresponding semi-
group, defined for finite n only. The extension of this definition to infinite
configurations will be based on the intrinsic monotonicity of the process, which will
now be described. Suppose n and ¢ are finite configurations for which n < {. A
bivariate Markov chain (n,, {,) can then be constructed which satisfies (a) S(¢)f(7)
= Ef(n,); (b) S(1)f(§) = Ef($,); (©) m, =n; (d) §, =¢; and (e) m, < §, for all ¢.
This is an example of the coupling technique which has been used so fruitfully in
the field of infinite particle systems. Property (e) of this coupling implies that
S(2)f(n) is monotone in n whenever f(7) is.

Let 91 be the set of all bounded functions f on U which satisfy

(a) n < {implies f(n) < f({); and

(b) f(§) = limn1§,|n|<mf(7l), )
where |n| = 2, m(x). For f € 9, S(¢)f() is then defined for infinite { by
(2.1) S()f(§) = lim g 1< S(2)f(n).

S(¢) maps O into I by definition, and S(z) satisfies the semigroup property on
9. To verify the semigroup property, note that S(¢, + £,)f(n) = S(¢,)S(¢,)f(n)
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for finite 1, and this equality is preserved under the limit n1¢{. 91U is a probability
determining class, so the transition probabilities P"[7, € d{] for the infinite system
are uniquely determined by

ff(f)P"[m ed{] = E"f(m) = S(’)f('?)

for f € 9. The above expression can then be used to extend the definition of
S(2)f to any function f which is bounded and Borel measurable. In general, the
semigroup S(#) is not strongly continuous. However, it does have the following
desirable properties:

Lemma 2.2. (a) Tf(n) = lim, (S(?)f(n) exists for f€ C(U) and n € U. (b)
Tf(m) > f(m) for f € M N C(U); and () Tf(1) = f(1) for f € C(U).

ProoF. Let fr(n) = II,cxn(u), where R is a finite subset of S. Since each
particle waits an exponential time with parameter one before it attempts to move,
E"[fR("?rﬂ)l"?t] > e IRls

on { fx(n,) = 1} for |n| < oco. Therefore,
(2.3) S(t + s)fa(n) > e RIS(1) fo(m)

for |n| < oo, and hence for all 5 by (2.1). By multiplying both sides of this relation
by exp[| R|( + s)), it follows that S(¢) fz(n) exp[| R|¢] is nondecreasing in ¢ for each
7, so that

limuoS(t)fR("?)e'R" = limzws(t)fk("i)

exists. Part (a) then follows from this, together with the facts that S(¢) is a
contraction for each ¢, and that each function in C(U) is the uniform limit of finite

linear combinations of functions of the form f. For (b), note that Tf(n) = f(n) for
" |m| < o0, and Tf is monotone for f € M N C(U). Thus

Tf({) > limﬂT§’|n|<con(n) = limn1§,|n|<oof(n) = f(()

for f € 9M N C(U). For the final part, take f € 9N N C(U) and note that
S(2)f(1) < max, f(n) = f(1),

so that Tf(1) < f(1). By part (b), it then follows that Tf(1) = f(1). Since T is a
linear contraction, this gives Tf(1) = f(1) for f € C(U).

The remainder of this section is devoted to the study of the set of initial
configurations for which the process is normal (i.e., the set of n for which
Tf(n) = f(n) for all f € C(U)) and to the behavior of the process when it starts off
of that set. For n € U and x,y € S, let

(24) q(x,y,m) = E"[sz;lln(Xn), 0,<o0,,0, < oo],

where 0, = min{n > 1:X, = y} is the hitting time of y for the chain {X,}. This is
the rate at which a particle at x will go to y if the configuration at the time is 7.
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Note that for fixed x and y, ¢(x,y,n) is a monotone continuous function of 7. Let
D = {n € U:Tf(n) =f(n) forallf € C(V)}
{n€e U:Tf(n) =f.(n)forallx € S}

where f.(1) = n(x). The fact that these two sets are equal follows from part (b) of
Lemma 2.2, while 1 € D comes from part (c). The next lemma is needed to show
that D\ {1} is a monotone set.

LeMMA 2.5. Supposen < ¢, m(x) =0, {(x) =1, and {(y) = 0. Then
g(x,y,$)lim, o P 7,(x) =1] < lim,loP"[{,(y) =1].

ProoF. Note that these limits exist by Lemma 2.2. Assume for now that n and ¢
are finite configurations, and let (7,,§,) be the coupled process starting at (7, {)
which is described at the beginning of this section. Let 7 = inf{t > 0:7,(x) = 1},
and let y be any configuration such that y(x) = 1 and y < {. Then for ¢ > 0,

P[§(») =1] > q(x.y,v)e”"
and xzu:y(u)=0P[T <t,$_>v,m(u) =0,7,_(u) =1]
plr<t] < 2, 0=0P[7< 8,8 > v, (u) =0,0,_(u) = 1]

+ P[{,(u) = 0for some s < ¢ and some u so that y(u) = 1]

+ P[n,(u) = 0,7,_(u) = 1 for some s < ¢ and some u so that y(u) = 1].

Each of the last two terms in the last expression is bounded above by |y|(1 — e ™),
so that

PG(») =1] > q(x,y,v)e {P"[n,(x) =1] = 2|y|(1 — e™")}.

For fixed v, this relation extends to infinite 7 and { by (2.1). The desired result
follows by taking limits first as #}0 and then as y1¢.

THEOREM 2.6. Ifn < {,${ €EDand { # 1, then n € D.

ProoOF. It suffices to show that lim, o P"[n,(x) # n(x)] =0 for all x € S. If
1n(x) = 1, this is an immediate consequence of (b) of Lemma 2.2. If n(x) = 0, we
need to show that lim, oP"[n,(x) = 1] = 0. Suppose {(x) = 0. Then
lim,wPf[g‘,(x) = 1] = 0 since ¢ € D. Since 7 < §, P"[n,(x) = 1] < P¥[§,(x) = 1],
so the result follows. On the other hand, if {(x) = 1, then there is a y such that
$(y) = 0 and q(x,y,¢) > Osince p(-, -) is irreducible and { # 1. Using Lemma 2.5
and the fact that { € D then gives lim, o P"[n,(x) = 1] = 0.

For fixed n € U, the map f— Tf(n) defines a bounded linear functional on
C(U), so there is a probability measure (7, d{) on U for which

Tf(n) = [A($)u(n,dS)

for all f € C(U). This formula defines 7f for bounded Borel measurable functions f
as well.
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LemMMaA 2.7. u(n,D) =1 for alln € U.

Proor. Take f € M N C(U). Then S(¢)f is lower semicontinuous by (2.1). Let
Jf, € C(U) increase to S(¢)f. Then
(2.8) TS(t)f = lim,Tf, = lim, lim, ,S(s)f, < liminf, (S(s + 1) f,

where the first equality comes from the monotone convergence theorem. Therefore
by the bounded convergence theorem,

T = lim,  TS(¢)f < lim, , ,S(s +1)f = Tf.
But then
SLTA) = f(§) 1w(n, d¢) = T?f(n) — Tf(n) < 0.
Since Tf > f by (b) of Lemma 2.2, it follows that p(n,{{: Tf($) # f(£)}) = 0
Applying this to f = f, for each x € S gives u(n, D) =
COROLLARY 2.9. For any bounded Borel measurable f,
Tf(n) = f(n) if n€D
=f1) if ne&D.

PROOF. pu(7m,-) concentrates on D by Lemma 2.7, and it concentrates on
{§ € U:§ > n} by (b) of Lemma 2.2. Therefore, if n & D, u(n, -) concentrates on

Dn{eU:¢>n),
which is {1} by Theorem 2.6. Thus Tf(n) = f(1) if 5 € D. On the other hand,
Tf(n) = f(n) for n € D by the definition of D.
LemMaA 2.10. S(2)f(1) is continuous in t for f € C(U).

Proor. It suffices to prove this for f of the form f for a finite subset R of S. By
(2.3), S(2)fr()exp(|R|?) is nondecreasing in ¢. On the other hand, S(¢)f; € "JIL
implies S(z)fr(n) < S(¢)fr(1), so that
(2.11) St +5)fr(1) = S(s)S(2)f(1) < S(2)f(1).

Therefore, S(¢)fg(1) is continuous in ¢.

THEOREM 2.12. P'[n,€ D] =1fort > 0.

Proor. Take x € S. By (b) of Lemma 2.2,

(2.13) S(t)f.(1) < S()T£.(1).
Setting R = {x} in (2.11) gives
(2.14) S(2)S(s)f.(1) < S(2)f(1).

The. left side of (2.14) converges to the right side of (2.13) as 5|0 by the bounded
convergence theorem, so it follows that S(¢)f.(1) = S(¢)Tf.(1). Using (b) of Lemma
2.2 again, one sees that P'[n, € d{] concentrates on {{: f.({) = Tf(¢))}. Since this
is true for each x € S, it follows that P'[n, € D] =
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THEOREM 2.15. P"[n, €d{] = P'[n, € d{] forn & D and t > 0.

Proor. It suffices to prove that S(¢)fr(n) = S(¢)fz(1) for n & D, t > 0, and
all finite R C S. Now,

S(t)fr(1) = TS(#)fr(n) < liminf, (S(¢ + 5)fr(n)
< limsup, (S + 5)fr(n) < limsup, (S(¢ + 5)fr(1) = S(2)fr(1).

The first equality comes from Corollary 2.9, the first inequality from (2.8), the last
inequality from the fact that S(¢ + s)fz € 9N, and the last equality from Lemma
2.10. Thus

(2.16) lim, o S(¢ + 5)fr(n) = S(2)fr(1).
By (2.3), S(¢)fr(n)exp(| R|¢) is nondecreasing in . It follows from this, from (2.16),
and from Lemma 2.10 that S(¢)fr(n) = S(¢)fz(1) for t > 0 and n & D.

THEOREM 2.17. For each n € U, P"[n, € D] = 1 except possibly for countably
many values of t.

Proor. For 0 < s < ¢, the Markov property gives
P"[n,€ D°andn, € D°] = [p.P"[n, € d{]P[n,_,€ D].
The right side of this is zero by Theorems 2.12 and 2.15. Therefore, X, P"[7, € D]
< 1, from which the result follows.

3. General results. In this section, we gather together those results which we
can prove in essentially complete generality. Many of these will be applied to the
random walk and birth and death cases of Sections 4 and 5. Let § be the set of
invariant probability measures for the process:

9 = {p:puS(t) = pforallt > 0}
= {p:/S(t)fdu = [fdpforallt >0andf € C(U)}.

THEOREM 3.1. Suppose nP = w and v,, € § for all ¢ > 0. Then v, € 9.

PROOF. v, > v,,, SO v, S(t) > ».,S(¢) since S(¢) maps I into IN. Since
v, €9, it follows that »,S(7) > »,,. Letting ¢ tend to co gives »,,S(?) = 7.

THEOREM 3.2. Suppose p(- , -) is transient, and 1 is a configuration for which
(3.3) Sm(x)P*(0, < ) <
for some, and hence every y € S. Then

lim, P [n,(y)=1] =0

for every y € S.

Proor. First note that condition (3.3) is independent of y, since P*(a, < 00) >
0 and

P*(0, < 0)P*(0, < 0) < P*(0, < 00).
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For finite configurations, a particle initially at x visits a subsequence of {X,},
where {X,} is a realization of the discrete time Markov chain which starts at x and
has transition probabilities p(-, -). Furthermore, the time spent at each site is
exponential with parameter one. Thus, for finite 7,
JeP [ (y) =1]dt = E"[ [°n,(y)dt]
S.m(x)P*(s, < )
P’(o,=0) '’

X

since the expected number of visits to y for the chain starting aty is [ P*(0, = o0)]~ 1
By the monotone convergence theorem and (2.1), this is true for infinite n as well.
By (3.3),

J&P [, (y) = 1]dt < oo.
By (2.3) with R = {y}, e'P"[n,(») = 1] is nondecreasing in ¢. Thus
P, (y) = 1] e C70ds < [PP"[n,(y) =1]ds,
so that lim, , P"[n,(y) =1]=0.

COROLLARY 3.4. Suppose that p(- , ) is transient.

@) IfZ,P*(0, < o) < oo for some y, then v,,S(t) —> vy as t — oo.
® If 2,7(x)/(1 + m(x))P*(0, < 00) < o for some y, then v,S(t)—>v, as
t— o0.

Here v, is the pointmass on the configuration in which all sites are vacant.

Proor. The first statement is just Theorem 3.2 when m = 1. The second
statement follows from Theorem 3.2 and the dominated convergence theorem,
since », concentrates on the set of configurations which satisfy (3.3) and

v, S(t){n:n(y) =1} = [P"[9,(y) = 1]v,(dn).

The following examples illustrate the use of Corollary 3.4, and show that », and
v,, are not necessarily invariant.

ExampLE 35. (a) S=1{0,1,2,--- },p(x,x + 1)=pforx >0, p(x,x — 1) =¢q
for x > 1, and p(0,0) = g, where p + ¢ = 1 and §<p < 1. Then P*(o, < o0) =
(q/p)* for x > 0, s0 v,,S(t) - v, as t — o by the first part of Corollary 3.4.

) S=2Z' p(x,x + 1) =p, and p(x,x — 1) = g where p + g = 1 and %<p <
1. Then P*(g,< o) =1 for x <0 and P*(¢, < ) = (q/p)* for x > 0. Let
a(x) = (p/q)*. Then 7P =, and Z 7(x)/(1 + w(x))P*(6, < 00) < oo. There-
fore v, S(t) — v, as t — oo by the second part of Corollary 3.4. As will be seen in
the next section, »,, € ¢ in this case.

Corollary 3.4 is not sufficiently strong to determine exactly when »,, € J in the
birth and death case which is treated in Section 5. We will need the following
stronger result.
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THEOREM 3.6. Suppose p(- , -) is transient and
3.7 2P (0,<0) <

Sor some, and hence every y € S. Then v, & 9.

Proor. First note that condition (3.7) is independent of y since
P*(e,< 0,)P’(0,< 0,) < P*(0,<0,),

and for each y and z, there is a finite set R C S so that P”(o, < g,) is bounded
away from zero on the complement of R. To prove the theorem, fix ay € S and let
r=inf{t > 0|n,(y) =1} and ¢ = 2,.P*(0,< 0,). If n is any finite configuration
for which n(y) = 0, then

) P17 <s]

hmsJ,OT = Ex"T(x)‘I(x,y,"?) < c.
On the set {7 > ¢}, n,(¥) = 0. Hence
Plr<t+s|r>1]

s

limg, <c

by the Markov property and the bounded convergence theorem. The required
boundedness comes from the inequality P7'[r < s] < s3 n(x) for n(y)=0.
Therefore P"[r > ¢t] > e~ ' for any finite configuration n for which n(y) = 0.
Now let 11 be a finite configuration for which n(y) = 1. Then

(3.8) P'[n,(»)=0] > (1—e )P[0, =c0]e™,

since one way for y to be vacant at time 7 is for the particle at y to move by time ¢
to some point other than y itself, and for no other particle to move to y in the
remaining time before time 7. Since the right-hand side of (3.8) is positive and
independent of 7, it follows from (2.1) that

7o S(){n:n(y) =0} = P'[q,(y)=0] >0,

so that »,, & 9.

In several places, it will be useful to approximate the semigroup S(¢) from below
by the semigroups 7, (¢) which correspond to processes in which particles move like
they do in the long range exclusion process, except that only k attempts to find a
vacant site are permitted. If no vacant site is found after k attempts, the particle
simply disappears. The fact that 7,(¢) converges to S(¢) as k — oo, which will be
proved in the next theorem, justifies the assertion in the introduction that particles
in the long range exclusion process which search infinitely many times for a vacant
site just disappear. For the remainder of the paper, it will be assumed that p(:, -)
satisfies (1.1). This condition is, of course, automatically satisfied in the cases
considered in Sections 4 and 5. By Theorem 2.8 of [9], this assumption guarantees
that 7,(¢) can be defined as the strongly continuous semigroup on C(U) whose
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generator {,, when restricted to functions f which depend on finitely many
coordinates, is given by

Q f(m) = zn(x)-l,n(y)—oqk(x’y’n)[f(nxy) —f()")]
+ zn(x)-lsk(x’n)[f(nx) —f(ﬂ)]
In this expression, 7,(x) =1 — n(x), n,(«) = 9(u) for u # x, Mey(X) = 0(p),
Ney(¥) = 0(x), M, (#) = n(u) for u # x,y,
a(x,y,m) = E*[135'0(X,), 0,< o,,0, < k],
and
S(x,m) =1 — 21,(y)-oqk(xa)’a'7) = qi(x,x,m)
= EX[Iltm(X,), 0, > k].
The interpretation is that g,(x,y,n) is the rate at which the particle at x will go to

», and §;(x,m) is the rate at which it will disappear, if 7 is the configuration of the
system at that time.

THEOREM 3.9. Foralln € U,

@) T (D)f(1) < Tirr()f(m) < S()f(m) for f € M N C(U); and
(®) lim, Ty (£)f(n) = S(2)f(n) for f € CU).

PrROOF. A simple coupling argument gives (a) for finite . To extend this to
infinite 1, use (2.1) and the fact that T, (¢)f € C(U) for f € C(U). Part (b) is
immediate for finite 7 since lim ,_,  q,(x,y,1) = g¢(x,y,n) and lim,__§,(x,7n) = 0.
To extend part (b) to infinite », let g(n) = lim,_, T, (¢)f(n) for f € <M N CU),
which exists by part (a). For any finite { € U, choose finite {, so that {,1¢. Then

S(0)f(§,) = 8(§,) < g(§) < S()f($)

by part (a) and the finite version of (b). Since S(¢)f({) = lim,_ . S(¢)f(¢,) by
(2.1), it follows that g($) = S(¢2)f($).

If 7P =a, E} and P; will denote expectations and probabilities computed
relative to the reversed chain which has transition probabilities PX[X, =y] =

(7(»)p(y,x))/7(x).

LeMMA 3.10. Suppose mP = w and R is a finite subset of S. Then

JUSrAv, = =2 crfr(M)EX [k n(X,), 0, > k]d»,.

Proor. First note that
Z,[1=n(»)]a(xp,m) = 2,55 EXIZIn(X,)[1 —n(X;)].j < 0., X, = y]
o EX[m(X,),) + 1 < o] = 25, E[ I n(X,).) < o]

=1- E"[Hﬁ*_/}"n(X,,)] and

Z,[1=a()]7(»)qly,x,m) = Z,7(»)E’[M75'n(X,), 1 <o, < k]

+ Z,7(y)p(y,x)
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= Z()7(y)E’[I35'(X,), o, < k]

=32, o) (. 2)n(2) B[ I35 (X,,), 0, < k — 1] + 7(x)
= Za(»)r(»)E’[I3'n(X,), o, < k]

= 7(x) — n(x)E*[Ml7=n(X,), o, < k]
- 2,.a()7(»)E’ I35 'n(X,), 0, = k].

Therefore,

1) 5,1 -1 HE aurxm) = 2,1 = n()]axrn)

= E*[II5_n(X,), 0, > k] — EX[II%_m(X,), 0, > k],

and if n(x) =1,

(3.12) 8.(x,m) = EX[I*_yn(X,), 0, > k].
Now
(313) fz'q(x)=l,n(y)=0qk(x’y’17)[ fR(nxy) _fR(n)] dV"
- zxo,y@ffk(n){%n(y)[l —n(x)] = n(x)[1 - n(y)]}qk(x,y,n)dv,

= Sroyer l(mm()[1 = n(y)]{%qk(y,x,n) - qk(x,y,n)} dv,,

where the first equality is obtained by making the change of variables 1 —1,, in
the integral of the first term, and the second equality comes from interchanging x
and y in the first term. Since fz(7)[1 — n(y)] = O for y € R, the above summation
can be carried out for x € R, y € S only. Using (3.11) and the fact that fo(7) =
1n(x)fr(n) for x € R, it follows that the expression in (3.13) is equal to

(B.14) Z,cr[fr(mM{E*[Mioin(X,), 0, > k] — EX[TI5.n(X,), 0, > k]} dv,.

Similarly,
(3.15) [ Zy=18(xsm)[ fr(ny) — fo(n)]dv,

= —Z,erSfr(n)8(x,n)dr,

= - 2xER ffR(n)Ex[H:-ln(Xn)’ O, > k] dpvr‘
The required result is obtained by adding together (3.14) and (3.15).

If S is finite, n, is a finite state Markov chain with generator lim,_, £, f. The
following is, therefore, an immediate consequence of Lemma 3.10.

COROLLARY 3.16. If S is finite and wP = m, then v, € 9.

If Sis infinite and 7P = 7, let R, be an increasing sequence of finite subsets of S
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such that § = U,R,. Define p,(-, ) by p,(x,x)=11if x €R,, p,(x,y) =0 if
x & R, and y # x, and

Pn(x’y) = p(x’})) + Q_l[zzeR,,p(x’z)][EzeRnw(z)p(z’y)]
if x,y € R,,, where
Q = Z.¢r,yerm(2)P(2,y) = Z,cr,;yerm(2)P(2,7)-

These approximations were used in [10] when #(-) is constant, and in [15] in the
general case. It is easy to check that 2, p,(x,y) = 1 for all x, and that 7P, = 7. Let
S,(t) be the semigroup for the long range exclusion process corresponding to
p,(-, -). This is clearly a Feller semigroup, since no transitions occur off R,. Using
this sequence of semigroups, the following monotonicity result can be obtained.

THEOREM 3.17. Suppose P = 7. Then
(@) v,S(¢t)| int, and
(®) v,S(t) is weakly continuous in t for t > 0.

Proor. Since lim,  p,(x,y) =p(x,y) for each x,y €S, it follows that
lim,_, S, (2)f(n) = S(¢)f(n) for finite n. Therefore, for f € M N CU),

S()f(m) < liminf, . S,0(¢)f(n)

for allm € U by (2.1) and the fact that S,(¢)f € 9N for all n. By Corollary 3.16 and
the fact that #P, = =,

IS(t)fdv, = [fdy,
for all n and all f € C(U). Therefore, for f € M N C(U),
IS(t)fdv, < lim,_ . [S,(t)fdv,= [fdv,.

Hence »,8(¢) < »,, and then part (a) follows from the semigroup property and the
fact that S(z) maps 9N into itself. Part (b) is proved in the same way as Lemma
2.10, using part (a) to get the monotonicity of [S(¢)fdw, in ¢ for f € C(U).

Treorem 3.18. (a) If wS(1)} in 1, then w(D) = 1.
(b) If 7P = 7, then v, (D) = 1.
©) Ifu €Y, then u(D) = 1.

PrOOF. Parts (b) and (c) follow immediately from part (a) and Theorem 3.17.
For the proof of part (a), suppose pS(¢)| in ¢. then [(S(¢)fdpu < [fdu for f € M N
C(U). By parts (a) and (b) of Lemma 2.2, (Tfdu = [fdu for such f. Therefore
u(D) = 1 by the definition of D.

The following will play an important role in the rest of the paper. It is useful, for
example, in determining whether or not », € 9.
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THEOREM 3.19. Suppose wP = @, and let p = lim,_ v, S(t), which exists by
Theorem 3.17. Then
(a) Q f.(n) is nondecreasing in k for each n € U, so

Qf(n) = lim,_ @ f.(n) exists;
) —1<Qf(n) < o0 and —1 < Qf.(n) < o0;

(c) (d/dt)[S(t)f.dv, = [Qf. d[v,S(1)]; and
(d) /Qf.dp = 0.

PrOOF. By the definition of ,,
(3:20) @ f(n) =[1—n(x)]Zy,)= 19y, x:1) = n(X)[1 = g (x,x,m)].
Since g,(y,x,n) is nondecreasing in k,
(3:21) Qf(n) = lim,_, @ f(n)
=[1=n(x)]=,,)=19(»>%,m) — n(x)[1 — q(x,x,7m)],
which proves (a) and (b). For part (c), note that

T () f.— 1. y <0
t

kg

I fodv, = lim, o f S(t)f;—];d

by parts (a) of Theorems 3.9 and 3.17. Therefore [Qf, dv, < 0 by parts (a) and (b)
and the monotone convergence theorem. By (3.21), it follows that

f[l - ﬂ(x)]z,,(y)_lq(y,x,n)dv,, < 1.

Since q(y,x,n) does not depend on the coordinate n(x) and », is a product
measure,

dv, < liminf,,,

(3.22) [[Zniy=19(ysx,m) ] dr, < 1 + 7(x) < oo.
The integrand in (3.22) is a monotone function of n for each x, so
(3'23) I[En(y)—lq(y’x’n)] d[ V,”S(t)] < o

for each ¢ by part (a) of Theorem 3.17. Suppose now that 7, is a sequence in U such
that 1, 1. Then for & large enough that n,(x) = n(x), &, f(n,) is increasing in k as
well as in j. Thus

im, @ f(ne) = Lf(n).
By Theorem 3.9, v, T, (¢) < v, T}, (t) < »,S(¢) and », T (¢t) > »,S(t) as k — 0, sO
one can define random elements 7, and 7 of U on the same probability space so
that n, has distribution »,7,(¢), n has distribution »,S(¢) and 0,17 a.s. Then

I fod[v, T ()] = EQ f(ne) = EQf(n) = [Qf.d[»,5(¢)]

by the dominated convergence theorem, where the domination comes from (3.23).
Since T (¢) is a Feller process with generator {,, it follows that

(3.24) limy 5 ST fydry = lim (2 fd 7, T(1)]
= [Qf.dv,S(1).
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Note that n,Tn, or 9, |1 and £f,(n,) < oo imply that
(3.25) Qf(ne) = Qf(n).

Therefore, (S2f dv,S(¢) is a continuous function of ¢ by Theorem 3.17 and (3.23).
Since [T, (¢)f. dv,— [S(t)f.dv, by Theorem 3.9, it follows from (3.24) that
[S(t)f,dv, is a continuously differentiable function of ¢ with derivative
[Qf.dv,S(t). This proves part (c). Now [S(¢)f.dv, is a bounded monotone
function of ¢, so that

lim,_,wg;fS(t)fde,, = 0.

Part (d) follows from this and (3.25).
Put 1-, = 0, and for k > 2, define 7, = min{n > 1: number of distinct points in
{Xoor -+, Xy} is k).

COROLLARY 3.26. Suppose P = 7 and

(3.27) P¥ o, = 0,32 >0

”"( S

for some x € S. Then v, & 9.

PrOOF. By part (d) of Theorem 3.19, it suffices to show that [Qf d», # 0. By
Lemma 3.10, parts (a) and (b) of Theorem 3.19, and the monotone convergence
theorem,

[Qf.dv, = —[EX[Iqn(X,), 0, = ] dy,.
Since {X,",n > 1} is the set of distinct points visited by the chain {X,,n > 0},

x © W(X"")
[Qf. dv, EX\1I2, T (X )
which is strictly negative by (3.27).

Finally, we will show that, in many cases, D is a proper subset of U and », does
not have the Feller property, which means that S(¢) does not map C(U) into
C(U). The assumptions of the following theorem will be verified in Section 4 when
p(-,+) is an arbitrary random walk on Z¢ and in Section 5 when p(-,*)
corresponds to a recurrent birth and death chain on {0,1,2---} for which
inf  p(x,x + 1) > 0. Note that assumption (3.29) below implies (3.30) when p(-, *)
is transient by Theorem 3.6. .

THEOREM 3.28. Suppose
(3.29) "oy

oo

€9,

and
(3.30) 2,P’(0,<0,) =
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for some, and hence every x € S. Then
(3.31) 0 < Z,[1—=mn(x)] < ocimpliesn & D, and
(3.32) 1, does not have the Feller property . -~

Proor. Conclusion (3.31) implies (3.32) very simply. To see this, let 5, be a
sequence in U satisfying 0 < X,[1 — 9,(x)] < o and 7,(x) — 0 for each x. Then
P™[q,(x)=1]= P'[5,(x) = 1] =1 for ¢ > 0 by Theorem 2.15 and assumption
(3.29). On the other hand, P°[7,(x) = 1] = 0 by definition, where 0 is the empty
configuration. In order to prove (3.31), it suffices to prove it for 5 such that
3.[1 —n(x)] = 1. To see this, we argue by induction. Suppose we know that
n & D whenever 0 < X, [1 — n(x)] < n, and let 7 satisfy 3 [l — n(x)] = n. Let u
be a site for which n(#) = 0, and note that, by a coupling argument,

(3.33) [P [n(x)=0] - P"[n,(x)=0]] <1

for ¢ > 0. Since 3 [1 — n,(x)] = n — 1, the induction assumption gives 7, & D.
But then Theorem 2.15 and (3.29) imply that P"«[7,(x) = 0] = 0. Thus P"[y, € d{]
concentrates on {{ € U:Z,[1 — {(x)] < 1}, so that P"[n,= 1] = 1 follows again
from the induction assumption, Theorem 2.15, (3.29), and the Markov property.
This implies that 7 & D, so that the induction step is complete. It remains to prove
that n &€ D when 3 _[1 — n(x)] = 1. To do this, fix x € S and assume 1, € D, from
which we will deduce a contradiction. Let R be a finite subset of S such that
x €ER, and let n be a finite configuration which satisfies n = 1 on R. Define
7 = inf{t > 0:7m,(x) = 1} and let og. be the hitting time of R for the chain {X,}.
Then

(3.34) e'P[n,(x) =1] > P™[r <1],
which is bounded below by
(335 3,cxP’[0,<orAo,]fde P n(u) = 1 foru € R\ {x}]ds

— [RPP(1 = e

By (2.1), the expression in (3.35) with n, replaced by 1, is a lower bound for
e'P'<[n,(x) = 1]. By (3.29) and (3.33), Px[n,(u) =1 for u € R\ {x}, n,(x) = 0]
= P'+[5,(x) = 0], while the assumption that 1, € D gives lim, o P'[7,(x) = 0] =
1. Putting these facts together, it follows that

Pl =1
liminftloﬂ;f)—l > zyERPy[o,_t < GRc/\Oy].

Letting R1S and using (3.30), this gives
‘~ Ph[n,(x) =1
(3.36) lim, w——[—"‘—(t—)——] -

P"[7 > t] is monotone decreasing in 7 for |n| < oo, so we may define the function
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h(t) =1lim, 4 |n<wP[7 > t]. Using assumption (3.29) again, an argument simi-
lar to that above implies that A(z + s) = h(¢)h(s) for s > 0 and ¢ > 0. By (3.36),
lim, o(1 — h(¢))/t = co. Therefore h(¢z) = 0 for all > 0, and hence by (3.34),
lim,loPlx['q,(x) = 1] = 1. This implies that 1, € D¢, which gives the desired
contradiction.

4. The random walk case. Throughout this section, we will assume that § = Z¢,
the d-dimensional integers, and that p(x,y) = p(0,y — x). In this context, we will
be able to determine under a mild assumption exactly when », € 9 for 7P = &, and
will be able to prove that », is always in §. Furthermore, we will evaluate
lim, . »,S(¢) for a class of cases for which », & 9. Let S be the set of probability
measures on U which are translation invariant. Of course, p € S implies pS(¢) € &
for all ¢.

LeMMA 4.1. Suppose p € S and p{1} = 0. Then
(@) E*u{n:n(X,) =1 for all n} = 0, and
(b) [Qf.dp =0 forall x €S.

ProoF. By the Hewitt-Savage zero-one law,
P"[ U {n(X,) = 1forallk > n}] = 0orl

for all m € U and x € S. Since the random walk is irreducible, this value does not
depend on x. Let

A= {neU:PTus,{n(X,) = lforallk > n}] = 1}.

Then A is a translation invariant set, so u(A) = 0 or 1 if p is ergodic. Suppose
p(A) = 1. Then

. 1
hmn-—»oo;22=l'q(xk) =1

a.s. with respect to the product measure p X P*. Therefore
lim, . 1/nS} [E*n(X,)dp = 1. But [E*n(X,)dp = E*u{n:n(X,) =1} =
p{n:m(x) = 1}, so that p = »_. It follows that u(A) = O for every ergodic p € &
other than »,. Part (a) then follows from the fact that every element of S is a
mixture of ergodic elements of &. Turning to the proof of part (b), note that (3.12)
and the bounded convergence theorem give

lim, . [9(x)8(x,n)dp = [n(x)E*[II;31(X,), 0, = o] du,

and this last term is zero by part (a). Since p € S, [n(x)[1 — 9(¥)]qx(x,y,m)dp is
a function of y — x, so that

2,001 = n(x) ]y, x,m)dp = Z,[n(x)[1 —n(y)]qx(x,y,n)dp,
which equals [n(x)[1 — 8,(x,n) — ¢;(x,x,m)]dp by the definition of §;(x,n).
Therefore,

[ dp = lim,_, [ fodp = 0
by (3.20).
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THEOREM 4.2. If 7(-) is constant, then v, € 9.

PrOOF. Since 7(-) is constant, »,.S(¢) € S for all # > 0. Also »,5(¢) < »,, so
that », S(¢){1} = 0. Therefore [S(¢)f dv, = [f.dv, for all ¢+ by Lemma 4.1 and
part (c) of Theorem 3.19. Since », S(¢) < », and », S(¢){n(x) = 1} = v, {n(x) = 1},
it follows that », S(¢) = »,,.

The structure of the set of invariant measures for a random walk is well known
[2]. In order to describe it, let (a) = 2, cgexp[—<x,a)]1p(0,x) fora € R4, where
{x,a) is the usual inner product in R% and let T = {a € R?: p(a) = 1}. Then
7P = 7 if and only if 7 is of the form

(43) m(x) = cfre**’y(da)

for some constant ¢ and some probability measure y on 7. Of course 7(-) =
constant is obtained by letting y be the pointmass at 0 € 7. For many random
walks, T # {0}, so that there are nonconstant «’s which satisfy 7P = .

COROLLARY 4.4. 7, € 9.
Proor. This is an immediate consequence of Theorem 3.1 and 4.2.

COROLLARY 4.5. (a) D¢ #* ¢, and (b) the process n, does not have the Feller
property.

Proor. This follows from Theorem 3.28 and Corollary 4.4, once we have
verified (3.30). Since P”(0, < 0,) is a function of y — x only, in order to verify
(3.30) it suffices to check that =, P°(o, < 0p) = oo. Let R, be the number of
distinct points in { X, - - ,X,}. Then 3, P°(0, < 05) = E°[R, ] if R, is interpre-
ted to be +oo. If p(-, -) is transient, R, = co with positive probability, so that
E°[R, ] = . In the recurrent case, E°[R, ] = o0 is problem 11 on page 394 of
[14]. It is easy to show, by comparing the chain with its marginals that it is enough
to prove this in one dimension, and, of course, it suffices to consider the aperiodic
case. The proof of this problem in one dimension in the aperiodic case is an
application of two potential theoretic facts. The first is that P°(o, < 0p) = [a(x)
+ a(—x)]"", which follows from Theorem 2 of Section 30 of [14]. The second is
Proposition 4 of Section 28 of [14], which asserts that

a(x) +a(—x) _

Fl 2[=,x%p(0,x)] ",

lim, |,
even if 3 x?p(0,x) = oo. Here a(x) is the recurrent potential kernel. These two
facts imply that |x| P°(o, < o) is bounded below, so that 2, P°(g, < 05) = o0.

It is probably true in the general random walk case that », & § whenever 7P = 7
and 7 is not constant. This would follow from Corollary 3.26 if we could verify
condition (3.27) in this context. While (3.27) probably holds without further
assumption, we have been unable to verify it without imposing a mild regularity
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condition on the random walk. In order to describe this condition, let T and ¢ be
as in the paragraph following the proof of Theorem 4.2. For each a € T\ {0},
consider all hyperplanes L through the origin in R? such that a/2 is in the (relative)
interior of L N {¢ < o0}. The line through 0 and a has this property, since ¢ is
strictly convex and ¢(0) = ¢(a) = 1. Furthermore, if L, and L, are two hyper-
planes with this property, then the hyperplane spanned by L, and L, also has the
property. Thus there is a unique maximal hyperplane which has this property. It
will be denoted by L,. Let £ be the set of all distinct hyperplanes of the form L, for
some a € T\ {0}.

LeEMMA 4.6. Assume that T # {0}.

(@) If p < o in a neighborhood of the origin, then £ = {R%};

(b) if {@ < o0} is strictly convex, then £ = {R?};

(c) ifd=1, then £ = {R'Y};

(d) if d = 2, then £ contains at most three elements;

(€) if the d coordinates of the random walk are independent, then £ contains at most
24 — 1 elements.

PrROOF. Statements (a) and (b) are immediate, and (c) follows from (b). For (d),
assume that £ contains more than three elements. Then it must contain at least
three lines, say La,’Laz’ La,~ Since ¢ is strictly convex, the convex hull of
{0,a,,a,,a;} is a quadrilateral. But then if a; is the vertex opposite 0 in this
quadrilateral, L, = R?, which gives a contradiction. For (e), it suffices to note that
for each a € T\ {0}, L, must be a coordinate hyperplane.

THEOREM 4.7. Suppose w is given by (4.3), and assume that for some L € £,
y{ae T\{0}:L,=L} >0. Thenv, & 9.

ProOF. For a € T, abbreviate E; and P; by E} and PJ, where 7,(x) =
exp{x,a). Then

7(x)P;(+) = cfrm(x)P;(-)y(da),
so that to verify condition (3.27) for =, it suffices to show that y puts positive
measure on the set of a’s for which

Pl oy= 0,32 |, ——— > 0.

( A
Since =3 ,1/7(X,) < 27.,1/7(X,), since the events {g,= o0} and
(B 1/7(X,) < oo} are independent by the strong Markov property, and since
{X,} relative to P? is transient, it suffices to show that y puts positive measure on
the set of a’s for which

> 0.

0 1
Pa[ n=1 (X) < o0

In order to show this, note that relative to Pao, {X,,a — b) is a random walk with
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Laplace transform

Y(t) = E(?e_“"{"“'l’> = ¢p[(1—1t)a+ th].
Since ¥(0) = @(a) = 1, if Y(1) = ¢(b) < 1, it then follows by the strong law of
large numbers that

Pao[liminf,,%%an,a —b>> o] -1

Let L be as in the statement of the theorem, and let a € T'\ {0} be such that
L, = L. By definition, and by the fact that a convex function is continuous on any
open set on which it is finite, there is a neighborhood N of a/2 such that @(b) < 1
for all b € N N L. Therefore, there is a neighborhood N’ of a such that

Pao[lim inf,,_m%<X,,,b> > 0} -1

forallb € N’ n L. If y(N' n L) > 0, it follows from Jensen’s inequality that

y(db)
Y(NnL)

Putting these facts together, we see by Fatou’s lemma that for every a such that
L, = L which is in the support of the restriction of y to L,

PY[limin, [ 7(X,)]"/" > 1] = 1.

[7(x)]" >[cy(N' A L)]Y [y e/

This gives
Pao[z;:.o=ll/77(Xn) < OO] = l

for such a, thus concluding the proof of the theorem.

COROLLARY 4.8. If £ consists of at most countably many hyperplanes, then v, & 9
“ whenever wP = w and  is not constant. In particular, this is the case whenever any of
the assumptions of Lemma 4.6 are satisfied.

When 7 is not constant, it is of interest to determine the limit of »,S(¢) as  — oo.
The existence of this limit is, of course, guaranteed by Theorem 3.17. We will
determine this limit in one dimension under the assumption that the random walk
has a finite mean. Our result is probably true for an arbitrary random walk in any
number of dimensions, but the proof in general would probably be substantially
more complicated. For the remainder of this section, we will assume then that
S=2Z' 3 |x|p0,x) < oo, and that there exists a nonconstant 7 such that
7P = «. It follows from the existence of this # that 3, xp(0,x) # 0, so we may
assume without loss of generality that m = 3 _xp(0,x) > 0. It then follows that
S, <0lx|*P(0,x) < oo for all k > 1, and that 7(x) = ¢, + ¢,X* for some A > 1.

LEMMA 4.9. Let I be any real number other than an integer. Then
@ =, ., m(OI1 = n(»))q(x,y,m) and
(b) n(x)2y<1[l - TI(J’)]‘I(X,)’, 7’)

are continuous functions of ).
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Proor. Since g(x,y,n) is continuous in 7 for each x,y € S, it suffices to show
that the above series converge uniformly in n. This follows from the inequality

7(x)[1—=n(y)]q(x,y,m) < P*(s, < o),
and from
2, 1exP (0, < ) < Zf_,kP"[nﬁn,,>oX,, < —k]

< E"[min,,>0X,,]2 < o0

since 2, _o|x|°p(0,x) > oo (see [8]).
For any real number / other than an integer, let

H(n) = Z,,,m(x)[1—0(y)]a(x,y,m) — 2, ,.n(x)[1 = n(»)]q(x,y,m)
+ 2 om()[1=3Z,[1=n(»)]q(x,y,1) — g(x,x,m)].

The interpretation is that H,(n) is the net rate at which particles move across /
from left to right when the configuration is . Note that the third term corresponds
to particles which start at a point to the left of / and “disappear” at +oo. Of
course, H,(n) may be + oo for some 7, but it is lower semicontinuous by Lemma
4.9, and hence is bounded below. Therefore [H;dp is well defined for each
probability measure p.

Let {7,} be defined as in Section 3, and let {%,} be the natural ¢-algebras
associated with the random walk {X,}. Of course, 7, is a stopping time for each k.
The o-algebras (%, ., } are defined as usual.

LemMa 4.10. (a) E°(7,) < ck for some constant c. (b) E[X
X‘rj/\oolg-:r,/\oo] = mE[Tk/\OO - Tj/\ oOlg':rj/\oo] > Oforj < k.

Proor. Part (a) follows easily from the fact that starting from zero, the
expected hitting time of the positive axis is finite, since 7, is less than or equal to
the time of the kth new maximum for {X,}. Part (b) comes from part (a) and the
fact that {X, — nm} is a martingale.

Tk/\Go

THEOREM 4.11. Suppose u € S, and define
p(T) = p{n:n(x)=1forallx €T}
for finite subsets T of S. Then
(4.12) [Hydp = mZZL,E"[p({Xo,...,X,“})['rk,rl NGy — Ty /\oo]],
where both sides may be + c0.

REMARK. An important feature of the expression on the right side is that it is an
increasing function of p. This monotonicity will be ‘used in a crucial way in the
proof of the convergence theorem. It is interesting to note that the analogous
.expression for the simple exclusion process is

=,xp(0,x)[ p({0}) — p({0,x})],

which is not monotone in u. This is one of the few ways in which the long range
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exclusion process is easier to deal with than the simple exclusion process.

Proor. If p{1} > 0, both sides of (4.12) are + o0, so we may assume without
loss of generality that u{1} = 0. By part (a) of Lemma 4.1, u concentrates on the
set of i for which

1(){Z,[1 = 2(»)]q(x,7,m) + q(x,x,m)} = n(x),

so that the integral of the third sum in the definition of H,(#n) is zero. Since y € S,

Sl = n(y)lg(x,y,m)dp is a function of y — x only. Thus [H,(n)du equals
the integral with respect to p of

2, vE°[M2'n(X,)[1 = n(»)]. 0, < 6],

which is

A T (C AR ) B (ENE )] [

The order of integration and expectation can be interchanged at will because
2, c0lY|P°(0, < 00) < 0. Hence
(4.13) JHydp = EOE TH,/\oo[ W, — Wk+l]’

where W, = p({X,,- -+, X, .})- Equation (4.13) comes from the fact that with
probability one, {'rk,k > 2} is the same as the set of finite times in {o,,y # 0}.

Note that if 7., = g, it is not the case in general that 7, = o, — 1, but it is true
that {X,,- - -, X,,-1} = {Xo," -+, X, }. Summing by parts gives
(414) fHIdH’ = limN—mo{z;cv:llEo[(X‘rkH/\ao - ‘rk/\"o)Wk]

- Eo[ ‘I’N/\GOWN]}
Since W, = p({X,, - -, X, Ao,}) on the set {r., Ao, # 7, Aoy} and
P({Xos* ** X; noo}) € F, no, it follows from Lemma 4.10 that

(4.15) E"[(XH.A%‘ ,k/\do)Wk] = ME°[ (1441 A Oy — T A 0)W, ],

which is nonnegative. Now, E°[X, .,Wy] is bounded below since W, < 1 and
E°[min, o X,] > — oco. Therefore if [H,dp = oo, it follows that the right side of
(4.12) is oo as well, and therefore the result holds. Assume then that [H,dp < oo.
By part (a) of Lemma 4.1, W,, — 0 a.s., so that

@.16)  E°[X, o Jn] = E°[ X, no (W — W) ]
< E"[Z,_N nenod ) WJH)]

+ Eo[WNsuppN(X wAoe = X,IA%)],

Since [H,dp < oo, it follows from (4.13) that the first term on the right side of the
inequality in (4.16) tends to zero as N — oo. On the other hand, the strong Markov

Tn/\O
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property for {X,} gives
E"[ WNsupj>N(X

T™N/\Oo

-X

7;/\Gq

)| < ECOWW)E|min, o X, .

To get this, one must observe that even though Wy & ¥, .., it is true that

Wil(r,<op) 18 &, no, measurable, and sup,, y (X, Ao, — X, noo) = 00n {0g < 7y}

Therefore, since W, — 0 a.s., the second term on the right side of (4.16) tends to
zero as well. The desired result then follows from (4.14) and (4.15).

Lemma 4.17. Let p = lim, , »,S(¢t), where nP = w. Then (H,dp is independent
of l.

Proor. It suffices to show that (H,dp = (H,, ,du. We may assume without
loss of generality that either (H,dp or [H,,,dp is finite, since otherwise they are
both + oo. Since at least one is finite, we may write

JHyydp — [Hdp = [9(u)Z,[1 —n(y)]q(u,y,n)du
— [[1 = n(u)]Zm(x)q(x,u,n)dp
+ [n(u)[1 = Z,[1 = 1(»)]q(u,y,n) — q(u,u,n)] dp,

where u is the integer between / and /+ 1. Therefore [H,,,dp — [(H,dp =
—lim,_,  [Q,f,dp= —[Qf,dp = 0 by Theorem 3.19, which completes the proof.

LemMMA 4.18. If P = m, then
2, B2 gn(X,) ] dv, < oo
where 6 = min{n > 1: X, > I}.

ProoOF. Lety = sup, ,7(x)[1 + 7(x)]~ ", which is less than 1, and let N be the
number of distinct points in {X,,---,X,_,}.

2. /B IZon(X,) ] dv, < 2, E*y"
P17 2 PN = k]
< IR S P X, > 1]
< ZPvE°|X,
<

-

[Z:1x12(0,x) |22 1 Y*E(7441) < o0
by Lemma 4.10.

THEOREM 4.19. Under the assumptions stated just before Lemma 4.9,
lim,,2,S(t) = »;
whenever mP = w, where 7 is the constant inf .w(x).

Proor. We may assume that # is not constant, since otherwise the result is an
immediate consequence of Theorem 4.2. Let p = lim,_ »,.S(¢), which exists by
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Theorem 3.17. Let pu, be the translate of p defined by
po{n:n(x)=1forx €T} = p{n:n(x +n) =1forx € T}.

Since 7(x) is increasing in x, », is monotone under translations. Since S(¢) maps
O into itself, »,S5(¢) is monotone under translations for each ¢. Therefore p, <
Bn+1> and hence lim, ,_ u, and lim,  , p, both exist. Since »; < p < 7, and
lim, |, m(x) =7, it follows that lim, _ _u, = »-. It suffices then to show that
v =lim,_, u, is v; as well, since then by monotonicity, u, = »- for each n. Since »
is a limit of translates of a fixed measure, » € 5. Since p, is a translate of u,
JH,,1dp, is a function of n + k only. Therefore by Lemma 4.17, [H,du,, does not
depend on 7 or /. The dominated convergence theorem qnd Lemma 4.18 give

[H,dv; = lim, ,__[H,dp,,
since p, < », for n < 0, while
[Hdv < lim,_ ,  (Hdu,
is a consequence of the lower semicontinuity of H,(7). Therefore (H,dv < [H,dv-.

Hence v{n:7(0) = 1} = vz{n:1(0) = 1} follows from »,»; €S, » > v, (H,dv. <
oo and Theorem 4.11. Using » > »; again gives » = v, thus completing the proof.

5. The birth and death case. Throughout this section, we will assume that
§={0,1,2,---} and p(x,y) =0if |y — x| > 2. As is well known in this case,
@P = « if and only if « is a constant multiple of

i Ly +1)
#(x) = MI*Z3 ,
() = oo ¥ 1)
and p(-, -) is recurrent if and only if Z7_,y(x) = oo, where

1 Py +Ly) p(0,1)
6D Vi) = p(y+ Ly+2)  #@(x)p(x,x+ 1)

THEOREM 5.2. Suppose p(- , +) is transient. Then
@ v, &9, and
(b) v, & § for any = satisfying wP = .

PROOF.
P*(0y<0,) = p(x,x —1)P* " Y(g,< 0,)

p(x,x —Dy(x—1) _v(x—1)
Z32ov(») v(0)

Part (a) follows from Theorem 3.6, since p(-, -) is transient. For part (b), note that
X, = n — 1 for the chain starting at 0. Therefore by Corollary 3.26, it suffices to
show that 32 ,[7(x)] "' < co. But this follows from the transience again, since
[7(x)] ! is bounded above by a constant multiple of y(x).

In order to prove that », € 9 in the recurrent case, we need to use special
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properties of the birth and death chain. The following is the key preliminary result.

LEMMA 5.3. Consider the continuous time Markov chain on {1,2,---} whose
Q-matrix is given by
vy -1
q(x,y) = E—n ) for x >y
275v(2)
=0 for x < y,

where y(+) is an arbitrary positive sequence. Let q,(x,y) be the corresponding
transition probabilities at time t. If 3 y(x) = oo, then lim,_, q,(x,y) = 0 for all
t>0andy > 1.

Proor. Let £f(x) = Z,q(x,y) f(y) — f(x)] be the generator of the Markov
chain. Define T(0) = 0, I'(x) = =*Zy(y) for x > 1, and f(x) = A[T(x)] for

y=0
x > 1, where A(s) = s . It suffices to prove that
(54) 0 < Bf,< 2f,
since then

0 < 25,0, 40) < 25,4520,

which implies that
=,4,(x,0)f(y) < e¥f(x).

The conclusion of the lemma then follows from lim,_, f,(x) = 0, which in turn is
a consequence of 3 y(x) = co. The first inequality in (5.4) is immediate from the
monotonicity of f, and the fact that g(x,y) > 0 only for y < x. For the second
inequality, use the convexity of 4 to show that

h(s) —h[T(x)]
T(x)—s

is decreasing in s for 0 < s < I'(x). Therefore,
R[T(y)] - h[T(x)] < h(s) —h[T(x)]
I'(x) - T'(y) I'(x)—s

for 0 < s < T(y)andy < x. Hence
3, ST ()] - HT(0)])

£r(x) _ I'(x) — T(7)
£,(x) A[T(x)]

o or(x)h(s) — A[T(x)]
A[T(x)] T(x) — s
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But
1 f,h(s) —h(t) _ % ds
h()® = * 536 + 5)
< t"%fo’é, =2,
si

which completes the proof of (5.4).
THEOREM 5.5.  Suppose p(- , -) is recurrent. Then v, € 9.

PrOOF. Since

P’[o,<q,] < 1()_’1;1)
2:5v(2)
for y < x, one can construct a bivariate process (n,,Z,) on {(n,z):n € U,
Z.m(x) < o0,z > 1,n(x)=1for x <z} in such a way that 7, is the long range
exclusion process and Z, is the Markov chain defined in Lemma 5.3 using the y(-)
from (5.1). Therefore, for fixed z, if n(x) = 1 for all x < z, it follows that

P'[n,(x) =0] < 3,,4,(z,)
for all x < z and all #. Hence
P'[n,(x) = 0] < lim, , . 3 _.q,(z,y) =0
by (2.1) and Lemma 5.3, and this implies that »,, € 9.

COROLLARY 5.6. If p(-, ) is recurrent and inf p(x,x + 1) > 0, then D¢ + &
and v, does not have ti.. Feller property.

Proor. By Theorems 3.28 and 5.5, it suffices to show that 3, P”[a, < 0,] = 0.
But

P[0, <a,] = 222+ DY(y)

25v(z)
and
v _ Y(») o Lo o
TiEiz) T Ox

since 2 ,y(y) = o, so the result follows.

6. Open problems. In this section we list some of the questions which have
arisen naturally in this paper, but which have not been resolved:
(a) In the transient case, is (3.7) a necessary as well as a sufficient condition for
Vo & 97 ]
(b) Is it always true that »,, € ¢ in the recurrent case?
(c) Is (3.27) a necessary as well as a sufficient condition for », & $ when
P = «? In particular, is », € § whenever p(-, *) is recurrent and 7P = 7? Is
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v, € § whenever p(-, +) is doubly stochastic and « is constant?

(d) If 7P = m, does v, € 9 imply »,,, € 9 for all constants c?

(e) Does v, & 9 imply that », S(#) — », and hence that § = {,}?

(f) Is P"[n,(x) = 1] continuous in ¢ for ¢+ > 0? This would be nice to know if
one is interested in path properties of the process, since it would imply that
the right continuous modification of n, (which does exist) is a version of 7,.

(g) If one replaces 7, by its right continuous modification, is P"[7n, € D for all
t]=1forn € D?

(h) Is 9 weakly closed? Is lim, puS(¢) € 9 when the limit exists? These are
trivial facts for Feller processes, but as has been shown, 7, is usually not
Feller.

One collection of questions deals not with 7, directly, but rather with the
sequence of random variables {7,} which were introduced in Section 3. The fact
that these come up naturally in the study of n, suggests that it would be of interest
to know more about them. One question which is motivated by Lemma 4.10 and
the expression for (H,d, in Theorem 4.11 is the following: for a general random
walk p(-, -) how big can E°(7,) be? It is easy to show using the fact that

sup, P°[ X, = x] < -%
n2

for some constant ¢ (see Theorem 1 of [7]), that

Eo
sup, ng) < o

The problem is to obtain better estimates for the rate of growth of E°(7;). In
particular, is it true that sup, E°(7,)/k? < oo for a general random walk, and that
sup, E°(7,)/k < o for a transient random walk? The conjecture in the general
case is motivated by the fact that E°(r,) is of the order k? for the simple
symmetric random walk on Z', and that should, in some sense, be the worst case.
Some information about E°(7,) can be obtained by noting the close connection
between {7, } and {R,}, where R, is the number of distinct points in {X,,- - -, X,}.
For example, an elegant theorem of Kesten, Spitzer and Whitman (Theorem 6.35
of [1]) states that

. R

lim —n—" = P°[X,# Oforalln] as.

n—oo

Since Rn = k, one obtains from this and Fatou’s lemma that

E(r
liminf,_, (k") >0
in the transient case, and
E(T
lim k_m—(—kl = 00

k
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in the recurrent case. It seems more difficult to obtain upper bounds on E(7,),
since large values of 7, correspond to small values of R,.

Finally, is it the case for an arbitrary random walk on Z¢ that #P = 7 and =
nonconstant implies that

1
P"{ ———< o0 | > 0?

T n-l'ﬂ'(Xn)

If so, then no regularity assumptions would be needed in Theorem 1.3 and
Corollary 4.8.
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