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SPECIAL INVITED PAPER
GENERAL ONE-SIDED LAWS OF THE ITERATED LOGARITHM"

By WiLLiam E. PruITT

University of Minnesota

Let {X.} be a sequence of independent, identically distributed nonde-
generate random variables and S, = Y -1 X,. We consider the question for
various centering sequences {a,}: when is it possible to find a positive,
monotone sequence {8} such that lim sup 85" (S, — a») = c as., ¢ a finite
nonzero constant? If a. = med S,, we obtain a necessary and sufficient
condition for this. An important corollary is a one-sided version of the
Hartman-Wintner law of the iterated logarithm: if E(X*)? < o, then it is
always possible to find such a norming sequence. Explicit norming sequences
are given which are easy to obtain. Necessary and sufficient conditions are
also given for being able to find a norming sequence {f.} for the two-sided
problem (lim sup 8-'[S. — a.| = ¢ a.s.) when a, = ES, and a, = 0. The two-
sided problem with «,, = med S, was solved by Kesten. The one-sided problem
remains open for a, = ES, and a, = 0. Examples are given which illustrate the
advantage of considering different centering sequences. A one-sided version of
Strassen’s converse to the law of the iterated logarithm is also given: if
lim sup S,/ v2n log log n = 1 as., then EX = 0, EX* = 1.

1. Introduction. Let {X,} be a sequence of independent, identically distributed
nondegenerate random variables and S, =YL, X,. We will let F' denote the distribution
function of X; and X will be a random variable with this distribution. The object of this
paper is to study

S, — ay
B

for various centering sequences {a,} and norming sequences {8,.}. The only assumption
that will be made about {f,} is that it is positive and monotone. The general approach
will be to consider certain specific centering sequences such as a, = 0, a, = ES,, or
a, = median S, and then ask, for a given distribution F, whether it is possible to find a
norming sequence {8,} such that the lim sup in (1.1) is a finite, nonzero constant. When
such a norming sequence exists we will construct one that works and investigate some of
its properties. When no such norming sequence exists we will generally be able to give a
simple criterion which will decide the question of whether the lim sup in (1.1) is zero or
infinity for a given sequence {f,}.
The classical results in this area are concerned with the specific norming sequence

(1.2) Br = (2n log log n)~
The early work was done by Khintchine [12] in the Bernoulli case and Kolmogorov [17].

(1.1) lim sup,
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2 WILLIAM E. PRUITT

This culminated in the Hartman-Wintner law of the iterated logarithm [7]: if EX = 0,
EX? = 1, then with B asin (1.2)

(1.3) lim sup,«B:'S, =1,  liminf,_.B87'S, = —1 as.

There is also a converse which is due to Strassen [22]: if (1.3) holds with 8, as in (1.2) then
EX =0, EX® = 1. For a history of the development of the classical results, see [2].
The present study was motivated by a result of Kesten [11]: if a, satisfies

(1.4) P{S,.=a,} =¢ P{S,=a,} =€
for some € > 0, then it is possible to find a norming sequence {8,} such that
(1.5) 0 < lim sup,= S "'B % | < as.

if and only if F'is in the domain of partial attraction of the normal distribution. To describe
this condition in terms of F, let

(1.6) G(x)=P{|X|> x}, K(x) =x‘2f y:dF (y).
lyl=x
Then F is in the domain of partial attraction of the normal distribution if and only if
G(x)
1.7 lim inf, .o —=0.
1.7 im @)

One of the main results of this study is a one-sided analogue of Kesten’s result: if {a,}
satisfies (1.4) then it is possible to find a norming sequence {8,} such that (1.1) is positive
and finite if and only if

P{X>x}
K(x) + G(x)

An important special case of this is the following one-sided version of the Hartman-
Wintner result:

(1.8) lim inf,_,., =0.

THEOREM. If E(X")? < oo, then there is a norming sequence {B,} suck *hat

(1.9) lim sup,,_,msn—_—-% =1as.
B

In the Hartman-Wintner theorem, the centering could be at either the expectation or
the median of S, but in the present case the mean may not exist. The norming sequence
{8} in (1.9) must depend on the negative tail of F; as this tail of F increases, so will 8.

The one-sided problem is quite different from the two-sided one since the latter reduces
to considering symmetric distributions. Also the conditions (1.7) and (1.8) appear to be
somewhat similar but are fundamentally different. Thus (1.7) does not occur too easily
because of the relation between G and K. But (1.8) will be satisfied whenever the negative
tail dominates the positive tail infinitely often. As an example, consider a distribution
where (1.7) fails so that it is impossible to get a norming sequence for (1.5). Without
changing the distribution of | X| (and thus not changing the failure of (1.7)), one can
construct a distribution F so that (1.8) is true and also its analogue for —X by putting the
mass on the positive reals for a while, then on the negative reals, etc. This means that it
is possible to find a norming sequence for (1.1) with a, = med S, and another (necessarily
distinct) norming sequence for the lim inf even though there is no norming sequence for
the two-sided problem.

Another general result relating to the classical theory is a one-sided version of Strassen’s
converse: if the lim sup in (1.3) is one a.s. with {8,} as in (1.2), then EX = 0, EX? = 1. This
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means that for the classical norming sequence, the first statement in (1.3) implies the
second. This is in contrast to the situation with most norming sequences where it is
common to have the lim sup one and the lim inf minus infinity.

The norming sequences that must be used in general in Kesten’s theorem are not very
nice. Feller [5] (also see Theorem 7 in [11]) considered the question of when one could find
well-behaved norming sequences in the symmetric case. This is equivalent to considering
the two-sided problem for general distihutions if the centering is at the median of S,,. He
found that it was unusual v ve able to find a nice norming sequence that would work for
the two-sided problem once the distribution had infinite variance. In fact, it is not possible
even for many distributions in the domain of attraction of the normal distribution (i.e.,
with lim inf replaced by lim in (1.7)) which come very close to having finite variance. In
the one-sided problem it is still the case that under the necessary and sufficient condition
(1.8) the norming sequences need not be very nice. But there are nice norming sequences
which do work quite generally for the one-sided problem. In particular, nice sequences can
always be used in the theorem stated above for E (X*)? < « or any time the positive tail is
smaller that the negative tail divided by a factor slightly larger than log x. Furthermore
these nice sequences are easy to obtain. Results concerning these nice norming sequences
for the one-sided problem with centering at the expectation when it exists have been
obtained by Klass [13, 14]. )

The reason for studying (1.1) is to obtain information about the large values in the
sequence {S,}. Note that if a norming sequence {8.} can be found such that (1.1) is
positive and finite for a particular centering sequence {«,}, then for any other centering
sequence {a,} with a,, < a, the sequence {8} defined by

Br = max{Bn,, an — az}

will serve as an appropriate norming sequence although it may not be monotone. We
obtain the best bound from (1.1) when {a,} is chosen so that {8,} is as small as possible.
This is the reason that we consider different centering sequences. Comparisons of the
various norming sequences are made in Section 9. Also Example 9.3 illustrates how more
information is obtained when {8,} is smaller.

It should be pointed out that typically there will be no best place to center in the one-
sided problem. Thus even if the {X;} are normal with mean zero, variance one, then (1.3)
is true but zero is not the best centering sequence. The integral test of Kolmogorov (for a
statement see [2]) implies that

S, — v2nloglogn _ 3 as
\/Z!O?P"f_"]": n/+vlog logn 2v2

This idea can be repeated so as to obtain better and better centering sequences. Of course
the ultimate answer to the problem is to have an integral test that will determine for a
given distribution F and increasing sequence {8.} whether S, > B, i.o. But this is far too
much to hope for at present. Indeed, it is not yet possible to even obtain the constant value
of the lim sup when using a nice norming sequence. (Of course an integral test is usually
rather easy to come by when lim sup 8,'S, is zero or infinity for all norming sequences.)
An integral test was obtained by Lipschutz-Yevick [18] for a subset of the distributions in
the domain of attraction of a stable law.

Many of the results that are in the literature are included here as this can be done with
very little extra effort. The organization of the paper will now be described briefly. Section
2 consists of the basic facts we need about the functions G and K defined in (1.6) and some
related functions. Also the norming sequences to be used are defined here and some of
their properties are obtained. Section 3 contains the required probability estimates. In
Section 4 we prove the fundamental convergence lemmas which can be used in a large
variety of problems. These are basically lim sup results for normed sums of truncated
variables when centered at truncated means. The unusual feature is that the truncation is

lim sup,—«
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one-sided. However, they have been formulated so they can be used in proving both one-
and two-sided results. The lemma which deals with the case when the lim sup is necessarily
zero or infinity is also in this section. The two-sided results are given in Section 5. These
include Kesten’s theorem as well as necessary and sufficient conditions for (1.5) when
a, = 0 and a, = ES,. This solves a problem listed by Kesten in [11]. The proof that (1.8)
is necessary and sufficient in the one-sided case for a centering sequence satisfying (1.4) is
given in Section 6. The theorems giving the nice norming sequences are developed in
Section 7 for centering at the median of S, and at the expectation when it exists. Centering
at zero is somewhat different and this is discussed in Section 8. Of course, if E | X| <
then centering at zero corresponds to the strong law if EX # 0 or to centering at ES, if
EX = 0. Thus we only consider this case when E|X| = o. This problem was solved by
Fristedt and the author [6] under a very weak tail condition for the case of negative
random variables. Erickson has since obtained an elegant criterion [1] for determining
when S, is positive infinitely often. We give a slight extension of his result that shows that
when this criterion fails then
i Xr+--.+X;:_O
]m"_"”Xl‘+ TTrxX as.

This means that one can deal with negative random variables in this case with no loss of
generality. Some comparisons between the norming sequences are made in Section 9 and
also some examples are given. An extension of the results of Klass and Teicher [15] for the
case when the mean barely exists or barely does not exist is also included here. The one-
sided Strassen converse is in Section 10 and some open problems are listed in the final
section. Two problems which can be mentioned here are finding necessary and sufficient
conditions analogous to (1.8) for centering at 0 or at ES,. The first one has a different
aspect since it may not be possible to find an appropriate norming sequence {8,} for
B-' S, even when X = 0 as. I do not believe that this phenomenon is adequately
understood as yet. Ruling this case out some way, it is not hard to obtain separate
necessary conditions and sufficient conditions. But for both problems what seemed to the
author to be the most natural conjecture based on the other results in this paper proved
to be incorrect.

The techniques used are all fairly standard and in most cases date back to Khintchine
at least. Of course various improvements have been made by other authors including
Kolmogorov, Lévy and Feller. I have made no effort to attribute these techniques to
particular authors except in a couple of recent cases where some important ..ew observation
was made.

Most of the results in this paper were obtained during a sabbatical leave in 1977-78
spent at Cornell University. During the year I benefitted from many discussions with
Harry Kesten. In particular, after I had obtained the two-sided results he suggested that
I consider the one-sided problem. The question of what could be said when one only
assumed the lim sup finite in Strassen’s converse was suggested to me by Henry Teicher.

2. Preliminaries. For a given nondegenerate random variable X with distribution
function F, we introduce three basic functions defined for x > 0:

G(x) = P{|X|>x}, K(x)=x‘2J YdF(y), M(x)=x“f y dF(y).
|y|=x |y|=x

Note that G and K depend only on the distribution of | X|. It will also be convenient to
have a special notation for these functions corresponding to the random variables X* and
X~. For this we will use + and — subscripts. Thus, for example,

G.(x) = P{X > x}, M_(x) =—-x" f y dF(y).
—x=<y=0
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In order to make our integrals compatible with G, we adopt the convention that the
upper limit is to be included in the interval of integration iff it is in [0, o) while the lower
limit is to be included iff it is in (—oo, 0].

Define the function

@2.1) fx) = Gx) + K(x) = E{xX)*A 1), x>0
= P{X#0}, x=0.

It is easy to verify that f is positive, continuous, decreasing, and zero at infinity. Also fis
strictly decreasing on [a, ®) where a is the infinum of the support of the distribution of
| X|. Thus f has an inverse function uniquely defined on (0, f(0)). We will also use the
function
(2.2) g(x) =x“f G(y)dy,x>0; g(0)=P{X#0}.

0

The function g has the same properties as f.

LEMMA 2.1. ForA >0,

xf(x) = f Y HAG(y) — (2 —NK(y)} dy.
0

Proor. It is sufficient to prove this for nonnegative random variables since G, K, and
f are the same for X and | X |. We have

f MW'G(y) dy=f Ay*“J dF(2) dy+J WG (x) dy
0 0 (yx] 0

(2.3) = f f M ldy dF(z) + x*G(x)
[0x] Jo

= f 2MF(z) + x*G(x)
[0.x]
and

f 2—-Ny"'K(y) dy =J 2- }\)yx_if 22dF(z) dy
0 0 [0v]

(2.4) = f f (2 — Ny 3dy 2%dF (2)
[0,x]

z

= f (22— V92U dF(2) = 2dF (z) — x* K (x).
[0,x]

[0,x]

Subtracting the two equations completes the proof.
LEMMA 2.2. For a nonnegative random variable

f G(y) dy = x{M(x) + G(x)}, f K(y)dy=x{M(x) — K(x)}.
0

0

PrOOF. Set A =1in (2.3) and (2.4).
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At this point it may be useful to point out some further properties of f and g. First we
note that for x > 0, using Lemma 2.2 for | X | yields

(2.5) gx)=E{|]x'X|A1}.
It is clear from the definitions (or Lemma 2.1) that
(2.6) x*f(x) and xg(x) are nondecreasing.
By Lemma 2.1,
2.7 J {G(y) — K(y)} dy = xf(x)
0
and so
(2.8) flx) = g(x).
Alternatively,

flx) = E{|x"X|? A1) < E{|x"X|A1) = g(x).

It is easy to check that for A > 0, E | X |* < « implies that x*G(x) — 0 as x — o and also
2K (x) — 0 as x — o provided that A < 2. Thus we have

2.9) E|X|*<w implies lim,..xf(x) =0, 0<A<2,
(2.10) E|X|*<o implies lim,..xg(x) =0, O<A<l.

For A = 1 we need the more precise result:

LEMMA 2.3. For any random variable X

E|X| <o iff J f(y) dy <o iff J G(y) dy <o iff J K(y) dy < .
[ 0 0

In this case

oo oo 1 00
E|X|=f G(y) dy=f K(y) dy=-2-j f(y) dy.
0 0 0

Proor. If E|X| < o, then by (2.5)
J G(y) dy = xg(x) < E|X|
0

and by (2.7)

x

jK(y)dySJ G(y) dy.
0

0

Thus the three only if statements are clear. Now suppose that [ K(y) dy converges.
Although K need not be monotone, we do know that x2K (x) increases so that

f K(y) dy = x*K(x) J y 2 dy = xK(x).

Thus xK(x) — 0 and then by Lemma 2.2 E | X | =[§ K(y) dy.
Next we need more information about the rate of decay of f. This is given in

LEMMA 24. IfK(y) =nG(y) on some interval then y*f(y) decreases on that interval
where A = 2y /(1 + n). If K(y) < nG(y) then y*f(y) increases.
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Proor. First note that 2 — A = Ay~". Then by Lemma 2.1,
2f(2) — xf(x) =j MG (y) —n7'K(y)} dy

and the integrand is nonpositive in the first case and nonnegative in the second.

Much of the previous work in this area has been for the case of a regularly varying G.
We will not stress this case but it may be worth pointing out some of the implications.
First we have ([4], pages 303 and 544)

K(x) A

A . . . . =
xf(x) is slowly varying iff lim, . G _3-n

and these are equivalent to x*K (x) slowly varying if A > 0 and x*G(x) slowly varying if
A < 2. These equivalences are not hard to prove using Lemma 2.4 and standard facts about
regularly varying functions. Of course these conditions are exactly that of | X | being in the
domain of attraction of the stable law of index A. The situation is somewhat special when
A = 0 or 2 since then either G or K dominates. We will use this fact when A = 0 so we now
prove what we need.

LEMmMA 2.5. For a nonnegative random variable
M(x) e 1 K(x)
=0 iff limye——
G 0 M G

Proor. For a nonnegative random variable, K (x) = M (x) so the first only if statement
is clear. Next assume that K(x)/G(x) — 0 and ¢ > 1. Then for a given n > 0, there is an
x such that K(y) = nG(y) for y = x. By Lemma 2.4

Y(y) = (ey)fley), y=x.

lim, o =0 iff G isslowly varying.

But then
G(y) =f(y) = f(ey) = 1 +m)G(ey), y=x.
Since we can make c(1 + ) arbitrarily close to one by a proper choice of 7 (recall that

A = 21/(1 + 1)) and since G(cy) < G(y), this proves the second only if statement. If G is
slowly varying,

f G(y) dy ~ xG(x)
0

and the final implication then follows from Lemma 2.2.

REMARK. The second and third statements of Lemma 2.5 are equivalent and imply
the first statement for an arbitrary random variable. This observation follows by applying
the lemma to | X |. The second and third statements are also equivalent to f slowly varying
and to g slowly varying.

We require one more lemma concerning the asymptotic behavior of these functions.

LeMMA 2.6. For an arbitrary random variable X,

G(x)

@ A 1M ]

(2.11) lim inf, ..

if and only if at least one of the following conditions holds:
G(x) + | M(x) | _

lim inf, . )

0

or



8 WILLIAM E. PRUITT

flx)

lim infy e ——t— = 0.
| M(x) |

Proor. The sufficiency of either of the two conditions is clear. If they both fail then
we have for some positive C

(2.12) fx)=C{|M(x)| + G(x)}, |M(x)|= Cf(x) for all x.

For ¢ > 1, note that

K(ex) =c¢ %72 f y2dF + c‘2x‘2f y2dF =< ¢ ?K(x) + G(x)
lyl=x x<|y|=cx
and
|M(x)| = x’IJ de—x'lf de'SC|M(cx)|+cG(x).
|y|=cx x<|y|=cx
Thus

|M(x)| < c|M(cx)| + ¢cG(x) = cCf(cx) + cG(x)
= cC{c?K(x) + G(x) + G(cx)} + cG(x)
=c'C* | M(x)| + {c'C? + 2¢C + ¢}G(x).

Taking ¢ = 2C? V 2 shows that M(x) = O(G(x)) and then by (2.12) f(x) = O(G(x)) also.
But this means that (2.11) fails as well.

Next we introduce some sequences which are defined in terms of f and are used in the
definitions of the norming sequences {8,}. We define {a.}, {b.} by

(2.13) fla,) =n""loglogn,  f(by) =yn".

v is a parameter whose value will vary depending on the context. Of course, b, depends on
v but this dependence will be suppressed when possible to simplify the notation. When
centering at the median in the “nice” case, the norming sequence is defined by

by
(2.14) Br.=a,loglogn +n f f(x) dx.
B will also depend on y. When centering at the mean in the “nice” case we will use
(2.15) Br.=anloglogn +n f f(x) dx.

The integral converges by Lemma 2.3. We note that the latter definition does not depend
on v; in general, it gives a larger value for 8, than (2.14).

We now collect some facts about these sequences. Since f decreases, both a, and b,
increase. In fact by (2.6)

(2.16) ain'loglogn and bZn’!

are nondecreasing.
Since a, < b, for large n, using (2.6) again, we see that
(2.17) alloglog n < yb%: for large n.

Thus a,b,' — 0. Note that (2.14) may also be written

b,
(2.18) B.=n j {f(x) A n™" log log n} dx = nb,f(b,) = ybn.
0
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Also by using (2.6) again we have

by b
n [ f(x) dx = na’f(a,) j x2dx = na.f(a,)(1 — a,by")
(2.19) ~ %n Gn

= a, log log n(1 — a,b;"') ~ a, log log n,
the last step being a consequence of (2.17). This means that in both (2.14) and (2.15) the
a, log log n term could be omitted without changing the order of magnitude of f..
However, it is useful to keep these terms in order to provide B, with the desired

monotonicity properties. For example, note that if £, is as in (2.15) it can be written as in
(2.18) but with the upper limit of integration being infinite. This shows that for this 8,

(2.20) n"'B, decreases.

Another monotonicity property is the subject of the next lemma.

LEMMA 2.7. If B, is defined by either (2.14) or (2.15) then n™'/?B, is increasing for
large n.

Proor. With B, as in (2.14),

Br+1 Bn _ log log(n + 1) log log n
N e T | e

b’l
+ {(n + 1% = n'% J f(x) dx

log log n
nm% (@ns1 — @n)

+(n+ )2 (bpat — ba) —
2.21) n+1

loglog(n + 1) loglogn
= Gnel m+1)7Z  n”

b,
+ {(n + 1) = n'% J f(x) dx

Cnt

Y
+ (rL+_1)1/2 (brs1 — by).

If B, is given by (2.15) we have the same lower bound with b, replaced by o as the upper
limit on the integral and the last term omitted. By the mean value theorem, the first term

is
loglogn 1 loglogn
—Qnp+1 { 2n3/2 - n3/2 log n + 0 < n5/2 .

For the second term we use the fact that x?f(x) is nondecreasing as in (2.19) to obtain a

lower bound of
1 1 log log(n + 1) Anr1
(g 0l5m) am B2 (1-52).
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Combining these two estimates gives a lower bound for the first two terms of

1 _ G log log(n + 1) 0 log log n
logn b, 2n'*(n+1) n°? )

(2'22) Qn+1 {n3/2

This is sufficient for 8, given by (2.15) since the middle term above is missing. For 8, as in
(2.14), we consider two possibilities. If b, an+; =< n~'/% the lower bound in (2.22) will be
positive for large n and we can throw away the third term in (2.21) since it is nonnegative.
If, on the other hand, we have b,'a,+1 = n™/% then we use (2.16) and argue as in (2.17) to
see that

Y 1 1 Ybn bn
S Y”"{W K nw} =37t 0<nT/z

1  aZ.iloglog(n+1) + 0<an+1)~

=
2n'’?p, n+1 n’

The sum of this bound and the bound in (2.22) is then positive for large n.
We conclude this section by introducing the analogous sequences for the “nice” case
when E | X | = « and we center at zero. First define {c.}, {d.} by

(2.23) g(c,) =8n""loglogn, g(d,) =yn "

As before, the dependence on 8 and y will usually be suppressed. By (2.8) we have b,=d,
and, if § =< 1, a, < c.. In this case the norming sequence is defined by

(2.24) B» = ¢ log log n.
By (2.6)
(2.25) n”'B. and n7'd, are nondecreasing

and for large n
(2.26) 0Bn =< ydn.

3. Probability estimates. In this section we will derive the necessary probability
estimates and also state some standard results that will be used. The letters r and a will
denote arbitrary positive constants and it will be convenient to let u = ra™. {X,} will be
a sequence of independent, identically distributed random variables with common distri-
bution function F and S, = }i.; X;. We introduce the truncated variables

(3.1) Y.=X Aa, Z;=—aVY;
and their sums
(3.2) T.=Y4LY; Ve=Yr12.

The usual practice of letting X, Y, Z denote random variables with the same distributions
as X1, Y1, Z1 will be used.

The first three lemmas are closely related to what are usually called exponential bounds.
The main differences are that the truncation used here is one-sided and in Lemma 3.2 we
work in the range where the usual lower bound fails to apply. In Lemma 3.2 we assume
that EX = 0 if EX? < . A bound of this type is still valid when EX # 0 but then the
constants in the lemma must depend on the distribution. This will also be the case for the
results which use Lemma 3.2; for example, in Lemma 4.2 the lower bound may be smaller
although it will still be positive if EX 0 and EX* < . Since the final results for EX % 0
are easily obtained by considering the summands X; — EX we thought it best to make this
simplifying assumption where necessary. The functions f and g appearing in these lemmas
are defined in (2.1) and (2.2).

LEMMA 3.1. For any s > 0,

P{V,=EV,+ } ernaf(a) + sar'} < e
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Proor. Note that

Ee“ = J' e“dF + e"*G+(a) + e “*G_(a)

= J' (1+ ux + 1 eu’s*) dF + e’'G+(a) + e "G-(a)

(3.3) <1-G(a) + uaM(a) + 1 e'v’a’K(a) + 1 + r + 1 e'r})Gi(a)
+(1—-r+31r)G-(a)
=1+ r{M(a) + Gi(a) — G-(a)} + } er*f(a)
=< exp{uEZ + } e'r*f(a)}.

The result now follows from the elementary inequality
P{V,=t} < Ee"""* = {Ee"*}"e .
LEMMA 3.2. If EX* < o, suppose that EX = 0. Then if C, < .1795 and both a and
nf(a) are sufficiently large
P{T, = EV, + Cinaf(a)} = e @,
REMARK. Since T, < V,, Lemmas 3.1 and 3.2 both apply to both T, and V,. Also

letting r = 1 and s = nf(a) in Lemma 3.1 we see that they give very similar upper and
lower bounds.

Proor. We start with the inequality

Ee*Y = j e dF + e““G(a) = J’ (1 + ux + % e"u’x?) dF + e’G+(a)

=1- G(a) + uaM(a) + 4 e"u?a®K(a) + 1 + r + % r*)G+(a)
=1+ uEZ+3er*{K(a) + Gi(a)} + (r — 1)G-(a).

Now let r = ro = 1.2195 and uo = rea™". This has the effect of making the coefficients of the
last two terms equal. Thus

(3.4) Ee*Y =1+ wEZ + (ro — 1)f(a) = 1 + ¢,
say. Now € — 0 as @ — o but we also need to know that € = o(f(a)). Since
|a'EZ| = |M(a) + G+(a) — G-(a)| = |M(a)| + f(a)

and M(a) —» 0 as a — o we only need to show that {M(a)}* = o(f(a)). If
EX? < o, then M(a) = o(a™") since we have assumed that EX = 0 in this case and
f(a) ~ a2EX? If EX? = , let n > 0 be given and b = na{K(a)}"/*. Then

alj xdF+a_1j xdF’I
|x|=b b<|x|=a

= n{K(a)}'”* + a“U

b<|x|=a

|M(a)| =

1/2
x* dF} {G(b)}"?

= {K(a)}*(n + {G®)}").

Since EX? = o implies that b — o as a — «, we have that {M(a)}? = o(f(a)) in this case
also. Now we use the inequality 1 + € = exp{e — €’} which is valid in a neighborhood of
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zero in conjunction with (3.4) to obtain for sufficiently large a

Ee*" = exp{ucEZ + .219 f(a)}.
Here we have decreased the coefficient of f(a) to allow for the € term. Then
(3.5) Ee*!Tx"EVa) > exp{(.219nf(a)}

for a sufficiently large. Since T, — EV, < 2na, we can integrate by parts to obtain

(3.6) Ee"!TnEVa) = J' uoe"*P{T, — EV, = x} dx.

Now we let ¢ = Cinaf(a) and & = 28naf(a). Since Ciro < .219 we have by (3.5) that

31
(3.7 j uoe"*P{T, — EV, = x} dx < e“1 = ¢Cvo"@ = o(Ee"TEVn))

as nf(a) — «. Next, using (3.3)

j uee"*P{T, — EV,=x} dx < J' uoeo* Ee2toTnmEVa=2uox gy
& &

= Ee20Tn=EVy) g—uoks
= Eez"o(Vn—EVn)e—"oﬁz
=< exp{(2e>°r§ — 28ro)nf(a)}.
Since the coefficient of nf(a) is negative this term is also small compared to (3.6) when
nf(a) is large. Thus we have by (3.6) and (3.7)
£
Ee* T EVD) < nEetoTn=EVa) 4 f uoe"*P{T, — EV, = x} dx
&
or, using (3.5),
1= (1 - n)exp{.219nf(a)} < P{T. — EV, = &1 }e"™

This completes the proof since uoé2: = 28ronf(a) < 35 nf(a).
In Section 8 we will need a different lower bound which is somewhat easier to obtain.

LEMMA 3.3. Suppose that X < 0 and C. > 1, C; > 1. Then if both a and ng(a) are
sufficiently large

P(S, = —Cinag(a)} = e @
Proor. Welet u = a™' and apply Lemma 2.2:

0 0
Ee* = J’ e dF = j (1+ ux)dF=1-G-(a) — M_(a)

=1-a! j G_(x) dx =1 — g(a).
0

Then

(3.8) EveuS,l > e—ng(a)(1+g(a)) > e—(1+s)ng(a)

for large a. But
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0
Ee*Sr = j ue”P{S,=x}dx<e ™+ P{S, = -¢)

which, together with (3.8), gives
P{S, = —Conag(a)} = e 1*Ime@ _ o=Congl@

Choosing € so that 1 + € < C: A Cs yields the result.

Now we will derive some simple probability estimates which are consequences of
Chebyshev’s inequality. In addition to the sums of truncated variables introduced in (3.2)
it will be convenient to let

(39) Wn = 2;;1 —b \/ Yi
where we will always assume that a < b. However, the specific values of a and b will vary

with the context. When E | X | < oo,

0 —b
EW, — ES, = naG.(a) — nbG-(b) — n j xdF —n J’ x dF

(3.10)
= —nJ' G+(x) dx + nf G-(x) dx.
a b
Since
E(-byY):= J’ x2 dF + a’G+(a) + b2 G-(b)
—b
b
= J’ x2 dF + b%G+(b) + b2G-(b) = b*f(b),
—-b
we have
(3.11) P{|W,— EW,| = Cb} = C*nf(d).
We will typically use this with & = b, as defined in (2.13). Then
(3.12) P(T,#W,})<1-{1-G-(b)})"<1—-(1—yn)"'~1—¢"

so that for large n and n > 0

(3.13) P{|T.—-EW,|=Cbh,}<1—e"+7n+C?.

If y < log 2 the right side of (3.13) is less than % if we take n small enough and C large
enough. Thus for large n

(3.14) med S, = med T, = EW, — Cb,, y <log 2.

If, in addition, we take a = b in the definition of W, then P {S, # W,} can be bounded as
in (3.12) and

med S, = EW, + Cb,, vy <log 2.

However, we will need to use a slightly different approach in obtaining the upper bound
for med S,. We will find later that a modified version of this bound will be valid even if
v = log 2 provided that we have an added condition which will be available when we need
the upper bound. In Section 8 we will be working with summands X; which are nonpositive.
In this case S, = T, and we will take b = c,, as defined in (2.23). Since f(x) < g(x), (3.11)
leads to
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(3.15) P{|S,. — EW,| = ¢cn} = nG(cm) + nf(cm)
= 28nm™" log log m.

We will also use b = d, as defined in (2.23). Then, by Lemma 2.2,

EW,.=n fo x dF — nd,G-(d,) = —nd.{M_(d.) + G-(d»)}
(3.16) ~n
= —nd,g(d,) = —y da.
Since f(x) = g(x), (3.12) is also valid in this case with b = d, so that
P{|S.—EW,|=Cd,}<1—e"+n+ C%.

Thus, for any given y > 0 we can choose C large enough so this probability will be less than
one. Recalling (3.16) we have

(3.17) P{S,=-Cd,} =e>0

for an appropriate C and e.
We conclude this section with the statements of two well-known lemmas which will be
used extensively.

LEMMA 3.4. (Borel-Cantelli). Let {A,}, {B.} be two sequences of events such that the
events {A,} are independent and for each n the pair A,, B, are independent. Suppose
that ZP(A,) diverges and that P(B,) = ¢ > 0 for all n. Then P{A,B, i0.} > 0. If
{A.B.1.0.} is also a tail event for the sequence {S,} then

P{A,B,io0} =1.
Proor. Let E, = A,B,. Since P(E,) = cP(A,), ZP(E,) diverges and for j # k
P(E,;E:) < P(AjA:) = P(A;)P(A:) < ¢ *P(E;)P(E}).

Then the result follows from one of the standard Borel-Cantelli lemmas, e.g., [16]. The
Hewitt-Savage 0-1 law [8] gives the last statement.

LEMMA 3.5. (Skorokhod). Suppose that
P{S,—-S=—-¢(}=c>0 forall j=n.
Then
P{max;<, S;= A + £} < ¢ 'P{S, = A}.

This is a slight extension of Lévy’s inequality which is quite useful. It was used in
essentially this form by Skorokhod in [21]. The proof is the same as for Lévy’s inequality.

4. Fundamental convergence lemmas. In this section we will prove the three
fundamental lemmas. The first will lead readily to the necessity of the various conditions
in the theorems of Sections 5 and 6 and also will be used in proving the lim sup infinite in
the divergent cases of Sections 7 and 8. The two-sided case is essentially due to Heyde [9].
We introduce the truncated variables and their sums

(4.1) Z;=—Biv (Xi A\ By, R.=Y"Z.
LEMMA 4.1. (a) Suppose that

(4.2) f(x) = CG(x) for all x.
For any monotone sequence { 8.}, if SP{| X | > B.} < « then



ONE-SIDED LOG LOG LAWS 15

(4.3) lim. 2 EBr g,
B
with R, as in (4.1). On the other hand, if ZP{| X | > B,} = x, then
. l Sn - On I
lim supn—e B = as.

for any centering sequence {a,} such that either (1) an, — an1 = O(B,) or (2)
P{S, = a,} = € and P{S, < a,} = € for some € > 0. The divergent case is also valid
without (4.2) provided that n™8, increases for some A > 0.

(b) Suppose that

(4.4) f(x) = CG+(x) for all x.

For any monotone sequence {f,}, if ZP{X > B.} < x then (4.3) holds. On the other
hand, if ZP{X > B,} = o, then
S, — an

Br

for any centering sequence {a,} such that P{S, = a.} = € > 0. The divergent case is also
valid without (4.4) provided that n=8, increases for some A > 0. )

lim sup,—e =00 as.

REMARK. The result is valid even if {8,} is not monotone if one changes the criterion
to the convergence or divergence of

T 2% maxoi-1cn<t P{| X| > Bn)}
in the first case and the analogous one-sided condition in the second case. However, a

somewhat different proof is required.

Proor. The two cases will be proved together. If the series converges, note first that
since f is positive for all x so is G(G+). Thus 8, — ®. Now 8,°EZ% = f(B.) which is
summable in either case. Then = 8, (Z, — EZ,) converges a.s. ([19], page 236) and so

li-rnn—woﬂ;l zn=1 (ZL - EZ;) =0 a.s.

by Kronecker ([19], page 238). This is sufficient since TP {Z; # X;} also converges (note
that G-(x) = CG.+(x) in case (b)) and so P{Z; # X;i.0.} = 0. If the series diverges we have
by (2.6) that for M > 1

(4.5) x22G(x) < x*f(x) < M*x*f(Mx) < CM*x*G(Mx).
Thus ZP{| X | > MpB.} also diverges and so
(4.6) lim sup,.«B8.'|Xn| = as.

(To see that this is still true without assuming (4.2) when n_"Bn increases note that
this implies M8, < Bu. for any integer M > 1. Then ZP{|X| > M8.} =
ZP{|X| > Bun} = ».) The same argument with G replaced by G+ shows that lim sup
B'X, =  a.s. in case (b). Writing

X, = (Sn - an) - (Sn—l — Qp-1) + (an — an—l)
we see that if a, — a,—1 = O(B,) then (4.6) implies that
lim SUPrew B’ | (Sn — &) = (Sp-1 = @n-1) | = as.

which is sufficient. Under the second assumption on the centering sequence we choose M
so that P{| X | > M.} <'%efor all n. Either SP{X > 2MB,} or TP {X < —2Mp,} diverges.
We assume the former; otherwise the same argument applies to —X. From this point on
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the proof in case (b) is the same. Note that
P{S, 1= a,— MB.} = P{S, = an, X, = MB,.}
=P{S,=an} — P{X,.>MB.} = %e
Now let
E, = {X, = 2MBn, Sp-1 = an — MB»}.
By Lemma 3.4 we have P{E, i.0.} =1 and thus

. Sr —an
lim sup; o ——— = as.
B

The other two lemmas will be used in proving the sufficiency of the various conditions
in the theorems of Sections 5 and 6 and also in proving that the lim sup is positive and
finite in the “nice” cases when centering at the mean or the median in Section 7. Since
they are to be used in a variety of situations, we have been forced to keep the assumptions
and notation rather general. We will use an increasing sequence of truncation points {u} .
The actual values will vary with the context. Then the sums of truncated variables are as
in (3.2) and (3.9):

(4.7) Tor=Y1 Xi Nur, Va=Yim1 —tr vV (Xi A\ up),
War = Yim1 (=ba A\ —uz) v (Xi A\ ),

where {b,} is defined in (2.13). We will also have a subsequence of times {n.} and we let
(4~8) Tn = Tnk, Vn = Vnk, Wn = Wnk, Np—1 <N < nyg.

The norming sequence {8.} will be defined by either

(4.9) Br = urlog k&, 1< N < ny,
or
bavup
(4.10) Bn=urlog k + nj f(x) dx, N1 <N < ng,
up

depending on whether a, = EV,, or EW,,.

LEMMA 4.2. Assume that EX = 0 if EX® < ». Suppose that

(4.11) flur) ~ ny'log k

and that ni+1 = 40n,. Then with T,, V, as in (4.7) and (4.8) and B, as in (4.9),
—=<lims T"_EV"<4 a.s
240 ~ R SUPnoe g =4 A8

The lower bound is still valid if the values of n used in computing the lim sup are
restricted to the intervals (n./40, ni). (The requirement that n,., = 40n; is only needed
in the lower bound.)

Proor. Take C> 1. By (3.11), for n < n,
(4.12) P{| Ve — EVai| = (2C log k)?us} < (2C log k) 'nf(us) < %
for large k. Then by Lemmas 3.5 and 3.1
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P{maX,<n, (Vi — EVix) = % eniu f(ur) + 2us log k + (2C log k)*u.}
= 2P{V,, — EV,, =% enpunf(ur) + 2uz log k} < 2k7°.
Therefore we have for n,—; < n < n, and & sufficiently large
T.,— EV,<Vuy— EV,. < 4ulog k.

For the lower bound we need to consider a subsequence of {n;}. Let &, = 1, k; = 2, and

ki=2+ Yi_; {[log log i] + 1}, Jj=3.
Then for large j
(4.13) nyny', = 404751 = 40'°¢°¢/ = 5C log j.
Furthermore,
(4.14) log j = log k; =< log(j + j log log j) ~ log j.

Now we introduce the sequences

m; = [nkj/40]’ V= ij:=1 m;.

Note that for large j, m; = m,;—, 4 C log j and so »; ~ m,. This means that »; < n, and we
also have

V= 2+ m;=1+ nk]./40 > N1
so that »; is in the same “block” as ni,. Now by (4.11), (4.13), and (4.14)

P{T,,j_lkj #* V"jAlkj} = w_lG_(uk],) = nkj_lCn;jl log kj =%

and then by (4.12)
P{T"i—lkj = EV";AH’; -@2C log kj)l/zukj} = Y.
By Lemma 3.2, (4.11), and (4.14), for large j
P{T",‘kj - T"jflk]‘ = EV,,,].),, + Clmjuk,. f(uk])} = exp{—35mj f(uk])}
-_35C/40

=J

for any C > 1. Utilizing the last two bounds in Lemma 3.4 we have infinitely often with
probability one

T,,J. = EV,,], + Cl m; Uy, f(ukj) - (2 C log kj)l/zukj
= EV,,j + U, log k;/240.

The final statement of the lemma is due to the fact that »; €(ns,/40, ns].

LEMMA 4.3. Assume that EX = 0 if EX* < ». Suppose that
(4.15) f(ur) ~ni'log k

and that ny+, = 40 n,. Furthermore, suppose that at least one of the following two
conditions holds:

(4.16) limg—e ne G+(uz) =0
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or
by,
(4.17) lime e SUPne(n, /40,2,17 87" J’ Gi(x)dx=0
Uy,
where B, is given by (4.10). Then with T,, W, as in (4.7), (4.8) and B, as in (4.10)
L =< lim sup,,_.m—T"_—E% =<4 as.
480 B

The lower bound is still valid if the values of n used in computing the lim sup are
restricted to the intervals (n./40, n.). (The requirement that ny+1 = 40 n, and the
assumption (4.16) or (4.17) are only needed in the lower bound. Also the value of y
involved in the definition of b,, B., and W, may be allowed to depend on n as long as
(4.17) is satisfied. In fact, b, may even be replaced by an arbitrary sequence provided
that (4.17) is true.)

ProoF. First we note that for n < n,

b,
nB’_ll J’ Gi(x) dx =y ,8;1 G (ur) bn.

'k

Also if n, /40 < n < n, then u; < b, and we have by (4.10) for large &
(4‘18) :B" = U lOg k + n(bn - uk)f(bn) = nbnf(bn) = Ybn~

Thus (4.16) implies (4.17). Next we observe that if b, < u; for any n € (ng—1, n:] then
EV, = EW, and the B, in (4.10) is the same as in (4.9) so that the upper bound for these
n follows immediately from Lemma 4.2. Therefore in the remainder of the proof we will
assume that b, = u,.. Then for n,_1 <n=<n,

—u
EV,—EW,=-n j xdF — nurG-(ur) + nb,G-(b,)
(4.19) b

by, by,
=nf G- (x) dxsnf f(x) dx

'k

by Lemma 2.2. Furthermore, for n,/40 < n < n; and > 0 by (2.7)

b, by, bn
nJ’ f(x) dx = nJ' {K(x) — G(x)}dx + 2nJ’ G(x) dx

k
b,

n by
(4.20) = —n b,f(b,) + nupf(ur) + 2nJ’ G.(x) dx + 2nj G-(x) dx

Uy

by
=1+ nurlogk+ B, + 2nJ' G_(x) dx

&

where at the last step we have used (4.15) and (4.17). Using this in conjunction with (4.19)
shows that for n,/40 < n < n,

b,
1 n
EVn—EWnZ'ZTOnJ;k G-(x) dx

(4.21)

1 on 1+
e — —
—480”L fx) dx = 55

w log k —Z;'—Oﬁn.
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Adding the bounds in (4.19) and (4.21) to the result of Lemma 4.2 completes the proof.

5. Two-sided results. In this section we will prove Kesten’s theorem and also obtain
necessary and sufficient conditions to be able to find {8,.} so that

) S, —a
0 < lim sup,,_,ml;———"—l—<oo a.s.

Br

when a, = 0 and a, = ES,. Since we view these as existence results only, we have been
content to use a { 8.} sequence which simplifies the proof. It is possible to find norming
sequences { 8.} which satisfy additional conditions. Kesten [11], pages 716-718, gives some
information on this for the case of centering at the median of S,. We use Lemma 4.2 in the
proofs but we do not need to assume EX = 0 when EX*® < w since the results are clear if
EX # 0, EX? < co.

THEOREM 5.1. (Kesten). Suppose that { a, }satisfies
P{S, = a,} = ¢, P{S,=a.} =€
for some € > 0. Then there is a nondecreasing sequence {8,} such that
Sn — Qn
0 < lim sup,—« w <o as.

B
if and only if X is in the domain of partial attraction of the normal distribution, i.e.,
G(x)

(5. 1) hm lnfx—boo ﬁ‘x_)"

0.

If (5.1) fails and {B.} is nondecreasing then
| Sn — an |
B

according as = P{| X| > B,.} converges or diverges.

lim sup, .« =0 or o as.

Proor. First suppose that (5.1) fails. The case when £ P{| X| > 8.} diverges follows
immediately from Lemma 4.1. For the convergent case we only need to show that
a, — ER, = o(B,). But (4.3) implies that for any n > 0

ER, — 78, < o, < ER, + nf,

for large n. Now suppose that (5.1) is satisfied. We can find {u.} such that
f(ur+1) < f(ur)/40 and

G(ur)

flur)

We let n, = [log k/f(uz)]. Then f(u) ~ ni' log k and ng+; = 40 ng. Thus Lemma 4.2
applies so that

Ylog k <o

T.—EV,

(5.2) 0 < lim sup,—,« —B— <o as.
Since
(5.3) Y P{S.# T, forsome ni_i<n=n,}=<YrnG(u) <o

we will have S, = T, for sufficiently large n. By (3.11)
(5.4) P{|V.,—EV.|= (2 "' logk)"* w} <%, ne1<n=<n
and since P {S, # V,} — 0 this means for large %
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EV,— 2 'log ) Pur < a, < EV, + (2¢ ' log )" up, np—1<n<ny.

Then a, — EV,, = 0(B8,) and so T, can be replaced by S, and EV, by a, in (5.2). We can
use the same sequences {ux}, {nz} and thus {8,} if we consider —X instead of X so that
the same proof shows that the lim inf is negative and finite.

The next theorem solves a problem posed by Kesten in [11]. Actually the statement is
slightly different as he requires that

.. S, .. Sn
—oo < lim inf, ,o — < lim sup,«— < ®© as.
B’l ,Bn
The difference is that our formulation allows the limit to exist so long as it is not zero,
which seems reasonable. However, the criterion (5.5) is the solution to both problems
because it is easy to check that the given construction makes the lim inf and lim sup
distinct. Thus, for example, if EX = 1 instead of using {r} as the norming sequence as in
the strong law one could use 8, = 2* for 2! < n = 2* and obtain

lim inf,_,» % = —;-, lim sup, .« % =1 as.
THEOREM 5.2. There is a nondecreasing sequence {8,} such that
0 < lim sup,_,« 1. ] <o as.
if and only if
(56.5) lim inf, ., Mf;l?lu)l =0.
If (5.5) fails and {B.} is nondecreasing then
lim Sup,— lzzl =0 or » as.

according as £ P{| X| > B.} converges or diverges.

Proor. First suppose that (5.5) fails so that there is a positive constant C such that
fx) + | M(x)| = C G(x)

for all x. The divergent case follows immediately from Lemma 4.1 and for the convergent
case we only need to show that ER, = o(8,). With Z, as in (4.1),

|Bx' EZy| = |M(B.) + G+ (Bn) — G- (Br) | = CG(By)

and so = B, EZ, converges. Since 8, must tend to infinity as in the proof of Lemma 4.1
this implies that ER, = 0(8.) by Kronecker. Now we suppose that (5.5) is satisfied. By
Lemma 2.6 we must have

(5.6) lim inf,,, 20 FIM@] _,
f(x)
or
. flx)
(5.7) hm lnf,_,m m = u.

If we have (5.6) we proceed as in the proof of Theorem 5.1 except that when we choose
{u.} we also insist that M (u:)/f(ur) — 0. But then for n,—1 < n < n,
| M(up)| + G(up) _

|EV,| = |nux {M(ur) + G+ (ur) — G- (ur)} | < Bo—————=0(Bn).
f(ur)
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The rest of the proof is as before. Now suppose that (5.7) is true. Choose {u:} so that
| M (ur+1) | = | M () |/2 and

flur)
5.8
(5.8) M|
and define n, = [1/| M (u) |],
Bn = us, Np—1 <N = ng.

Then with V, as in (4.7), (4.8) we have by Kolmogorov’s inequality
P{max,, ,<n<n, | Vo — EV,| = €B,} = € * nuf(wr)
and
P{S,#V, forsome ni_<n=m}=<nGu).

Since both of these are summable by (5.8),

(5.9) limye S"—_ﬁﬂ’- =0 as.

But for np-1 <n =m,
|EVa| = | nus{M(ur) + G.(ur) — G- (ux)} | ~ nun | M(ur)| ~ nurni’

which, in conjunction with (5.9), shows that

| Snl
Br

=1 as.

lim sup,—«

THEOREM 5.3. Suppose that E|X| < «. Then there is a nondecreasing sequence
{B.} such that
n — E n
0 < lim sup,_« l—S—Bi—l< © as.
if and only if
G(x)

(5.10) lim infee S T

where

M.(x) = x71 J’ y dF(y).

ly|>x

If (5.10) fails and {B.} is nondecreasing then
| S, — ES,|
Bn

according as 2 P{| X| > B.} converges or diverges.

lim sup,—« =0 or « as.

ProoF. Note first that if EX = 0 then |M(x) | = | M(x) | and Theorem 5.2 implies
Theorem 5.3 immediately. To complete the proof it is sufficient to show that the condition
(5.10) and the convergence of & P{|X| > B.} when (5.10) fails are equivalent to the
analogous conditions for the random variable X — EX. Thus we suppose that

(5.11) f(x) + | M.(x)| < CG(x)

for all x = 1. Then as in (4.5) we have G(x) = O(G(2x)) so that for any fixed pu,
P{|X|>x} and P{| X — p| > x} are comparable for large x. Similarly, for large x,
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E(X - w*1{ X — p| = x} = EX? 1{| X| = 2x} + O(1)
=2’ K(x) + 4x*G(x) + 0(1) = O(x*G (%))
and
E(X - pl{|X — u| > x} = EX1{|X| > 2} + O(xG (% x)) = O(xG(x)).

Thus (5.11) is also valid for the random variable X — p and the series = P{| X| > 8.} and
2 P{|X — p| > B} will converge or diverge together. (Once more we are using the fact
that under (5.11) the convergence of £ G(8,) implies 8, — ®.)

6. One-sided results: necessary and sufficient conditions. In this section we
will give necessary and sufficient conditions for finding norming sequences when centering
at the median of S,. We have not tried to make the norming sequence satisfy any
conditions other than monotonicity. A very general situation where there are “nice”
norming sequences when one centers at the median of S, is discussed in the next section.
As in the last section, the result is clear when EX # 0, EX? < o so that we may use Lemma
4.3.

THEOREM 6.1. Suppose that {a,} satisfies

(6.1) P{S, = a,} = ¢, P{S,=a,} =€
for some € > 0. Then there is a nondecreasing sequence {8,} such that
0 < lim sup,_.. S"B_ * <o as.
if and only if
.. Gi(x)
6.2 lim inf, ., ——=0.
©2) f(x)
If (6.2) fails and {B.} is nondecreasing then
(6.3) lim sup,—« §"'8_—a" =0orwo as.

according as  P{X > B,} converges or diverges.

REMARKs. 1. If (6.2) holds, then one can find a norming sequence {8.} provided the
first condition in (6.1) is satisfied. But if {a»} is sufficiently negative that it dominates S,,
then one can find a sequence {8} even without (6.2).

2. In case (6.2) fails and = P{X > B,.} converges, the lim sup in (6.3) can be replaced
by lim.

Proor. First suppose that (6.2) is not true. The case when Y P{X > B,} diverges
follows immediately from Lemma 4.1. For the convergent case we only need to show that
an — ER, = 0(B.) and this is an immediate consequence of (4.3) as in the proof of Theorem
5.1. Now suppose that (6.2) is true and choose {u:} so that f(ue+1) =< f(ur)/40 and

G (ur)

flue)

We let n, = [log &/f(ux)] so that f(ux) ~ ni' log %2 and ng.+; = 40n,. Fix a value of
y=2-10% " and use b, corresponding to this y in Lemma 4.3. Since (4.16) is a consequence

of (6.4) we have all the conditions satisfied. In addition, it follows from (6.4) that
P{S, # T,i.0.} = 0 so that with B, as in (4.10)

S"_EW"<4 as
R S.

(6.4) Y log %

< ®©

(6.5) 002 < lim sup,.«
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If n./40 < n =< n, then u, < b. so by (3.11)
P{| W, — EW,.| = 2ye )b} = 2ye ") 'nf(b,) = %e.
Also P{S, # T,} = nG+(ux) = o(1) so that for large n
P{S,=EW, + (2ye ")*b,} = P(T, = EW, + (2y¢ ")/?b,} + o(1)
<=P{W,=EW, + (2ye )?b,} + o(1) <e.
Thus by (6.1) and (4.18) for n,/40 < n < n,
(6.6) < EW, + (2ve ")?b, < EW, + 2y ¢ )?8, < EW, + 107°8,

by the choice of y. Now the idea is that (6.5) shows that {8.} will serve as a norming
sequence if we center at EW, + 107°8, and (6.6) shows that a, is smaller in the range
where it matters so that we can also center at a,. To make this precise and show that we
can make the norming sequence monotone we let

Br = Bn + MaXpmen {EWn — an).
It is not hard to check that since n.f(u:) < log &,

Ug+1 N
urlog k + n, f f(x) dx =< uplog k + npf(ur)(uer1 — ur) < ur+1log &
up

and then the sequence {f,} is increasing and so {8} is also. It is clear from (6.5) that

S, — ar

lim sup,—,» ——=<4 as.
1Y IR
For the lower bound there are two cases. First suppose that for some positive constant C
(6.7) Br=CB. forall n € (n/40, n:]

and all large &. Since the lower bound in (6.5) is till valid if we restrict n to the intervals
(ne/40, n;] we have by (6.6)

S, —

Qn . (Sn_EWn) + (EWn_an) Bn _3y—

———— = lim sup—« . —=10"°C™" as.
B P B B

If (6.7) fails then we can find a subsequence {m:} which is in U(n;/40, n;] and such that

Brm,/Bm, — 0. Let v, < my, be such that

lim supr—w

EW,, — a,, = maXm=m, {EWn — am}.

Since for m, € (n;, /40, n,,] we have b, > u;, and since both {b,} and {u;} are monotone
it follows that both the upper and lower truncation points for W, ate contained in
[~bm,, bm,]. This means that the second moment of the summands in W,, is bounded by
b, f(bm,) and as in (3.11)

P{|W,,— EW,,| = Cbm,} = C*nf(bm,) = C .
Also, even if the lower truncation point is less than —b,, we still have
P(T,#W,}<s1-{1-G(b,)}"*=1-(1—-y)*~1-e™™
Thus for n > 0 and % large
P(T,,=EW, — Cb,)=e"—n—C?

and we can choose 7 small enough and C large enough to make this positive. Sirice
P{S, # T} — 0 this will still be the case if T, is replaced by S,,. Then by (4.18) we have
infinitely often with probability one
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S, — &y, = EW,, — Cbm, — &, = Bin, — B, — Cbim,
= B, — (CY ™' + 1), ~ By = B,

and so the lim sup will be at least one in this case.

7. One-sided results: the nice case. In this section we will show that a nice
sequence of norming constants works under quite general conditions. This will be done for
the cases of centering at the median of S, and at ES, when EX exists. The latter case in
conjunction with the strong law also takes care of centering at zero when EX exists.
Centering at zero when E | X | = « is discussed in the next section.

Our work on centering at ES, is a different approach to the results of Michael Klass
[13, 14]. The norming sequence looks different but is comparable to his. We were led to
the other definition because we considered the problem of centering at the median of S,
first. The methods used by Klass give very much tighter bounds on the actual value of the
lim sup. We include this case here for purposes of comparison and since it requires very
little extra work.

The first four lemmas are needed to handle the positive tail of the distribution. They
are essentially due to Klass [13, 14]. Note that Lemmas 7.1-7.3 apply to fairly general
norming sequences {8,} and not only the specific sequences considered thus far.

LEmMMA 7.1. Forp > 1let n, = [p*] and
Zi=X1{0<X=<8B,).
Suppose that n~'28, increases and = P{X > 8,} converges. Then
S niBr EZ} < .

ProoF. First we note that n.8;’ is dominated by a convergent geometric series:

172, —1/2

-3 —-1p3 -1/2
N1, ne B, < ninpif ~ p 72

Then

Bn, Bn,

x°dF = Z,j % dF Y=, nifn?
Bnl_

SemeBnlEZ} = Y nifBnl Yi<k j

B"/—l 1

Br,
sCZ,n,ﬂ;ff xadFSCEjan{X>,3nj_l}<°0.
B’l

Y-1

LEMMA 7.2. For p > 1 let ny = [p*] and

ﬂll
A= {n: nf x dF = 28,/log log n}

n

where a, is defined by (2.13). Suppose that n~'28, increases and ¥, P{X > f3,} converges.
Then

Card{k: 2’ <k =2/"'and n, € A} = o(j°).

Proor. First note that letting r, = a, v 8./(log log n)?®

i np. loglogn B,
" f xdF = (loglogn)? n  loglogn

a,
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sothatforne A

B
n J x dF = B,/log log n.

n

With Z; as in Lemma 7.1, we have for n, € A

By
EZ} = j x* dF = 1}, Bn,/nx log log ni = B3, /ns(log log ny)°.

For 2/ < k < 2/*', log log ni ~ j log 2 so that if we sum n,B8;°EZ} for k in this range we
will obtain at least j > times the cardinality of the set of interest. This goes to zero by
Lemma 7.1.
LEMMA 7.3. Forp > 1let n, = [p*] and

ij = ()(1 - ank)l{ank < X/ = B"k—l}

Un = 2_7=1 ij, npa<n= ng,
where a, is defined by (2.13). Suppose that
(7.1) n"V2B, 7,  EZp=0(ng'Bn,,)
and Y P{X > B,} converges. Then

U.-EU,

lim, . ————=0 as.

Bn

ReEMARK. Condition (7.1) is satisfied if 8, is defined by either (2.14) or (2.15). The first
part follows from Lemma 2.7 while for the second part we have by Lemma 2.2, with either
definition of 8,,

'B"k—l B"k—-l
EZJI; = J X dF = ] G+(x) dx — Bnk_] G"‘(B"k—l) + ankG+(an,,)

bnyy b"lc—ﬁ’ﬂn,,”
= an,f(an,) + j f(x) dx +J f(x) dx
a, b,

ny -1

=nilBn,, + ynrtiBn,_,-

ProoF. If v, = min{;j: B, > a,,} then

Bn,
EZ3 <Yk} J' x*dF = ¥, B3 P{X > Bn_} = nilifBh,_, i niP{X > B}
Bn_

so that EZ}, = o(n'B2,_,). Thus for n < n,
P{| Y71 (Zx — EZjx)| = €Bn,_,} < € *Br; ,nEZ}: = 0(1).
By Lemma 3.5
P{maxn, <p=n, |Un — EU,| = 2€Bn,_,} < 2P{| U, — EU,,| = €Bn,_,}
<2¢78;t E(U,, — EU,,)".

To estimate this, with Z; as in Lemma 7.1,
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E(U,, — EU,)* = iE(Zix — EZ1)* + ni(ni — V{E(Zi — EZ)%)?
< CniEZ%: + ni{EZ%)?
= CmiEZ}-1 + niEZ\EZ3,
=< CnuBn, EZ}-1 + Cruf3n, EZ}_:.

Substituting this estimate in the previous bound we obtain a convergent series by Lemma
7.1 so that by Borel-Cantelli we have for n,_; < n < n; and k& sufficiently large

| Un — EU,| < 2€Bn,_, < 2€Bn.

LEMMA 7.4. Suppose that E|X| < » and B, is given by (2.15). If 3 P{X > B.}
converges then

nJ' x dF = o(f)
B,

n

asn— o,

ProoF. We let n, = 2* and suppose that 7, < n < ns+:. Then by (2.20).

L B,
f xdF <Y %, j X dF < Y5 Br PAX > Br)

X B,
=nT By Yk nin P{X > B,} = o(n7'Bn).

Now we are ready to prove the two main results of this section. We will prove the
theorem for centering at the mean first since it now requires very little work. In case
EX? < w, it is easy to check that 8, ~ 2(EX?n log log n)"/2. Thus considering X — EX
instead of X only changes the constant and so we need not assume that EX = 0 when
EX* < o,

THEOREM 7.5. (Klass). Suppose that E|X| < « and B, is given by (2.15). If
3 P{X > B,.)} converges then

. S, — ES,
0 < lim sup,—« ——F—— <oo a.s.
On the other hand, if ¥, P{X > B,} diverges then
. Sn - ESn
lim supn—,» —,8— =00 as.

ProOF. For the first part we fix p > 1 and let n;, = [p*] and u; =a,,. Then by Lemma
4.2
. T.— EV,
lim supp—ow————=<4 as.
B
where 87, = a,, log k ~ a,, log log n, for nx_; < n < n,. By Lemma 7.3
U,—-EU,
lim, o ————=0 as.

Bn

Also P{S, # T, + U, for some ny_1 <n < n;} < mP{X > B,,_} which is summable. Thus
for large n

(7.2) S,—ES,<EV,+ EU,—ES, + (4 +7)B%+ 18

and for n,_; < n < n;, by Lemma 2.2
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EVn+EUn—ES,,=—nf kxdF—nf x dF
—oo B

-1

(7.3) + nan,G+(Bn,_,) — na,, G-(a,)

=n J G_(x) dx + o(an,)

=n J f(x) dx + n8.
Now (7.2) and (7.3) give the upper bound since by (2.20)

B+ nf f(x) dx ~ a,, log log n; + nf fx) dx < Bo, <= men'Bu =< (p +1)Bx.

In fact 4 will still serve as an upper bound for the lim sup. For the lower bound we consider
the sequence 40’ and form a subsequence {n;} of this sequence by including 40* in the
subsequence if and only if 40°' € A where A is defined in Lemma 7.2. We let
Up = @n,. Now n; = 40* so that

log log n,. = log % + log log 40.
On the other hand, by Lemma 7.2 if we choose j so that
2T (-1 <k=2/ - °
then n, < 402", This leads to
log log n. = (5 + 1)log 2 + log log 40 < log £ + 3 log 2 + log log 40
so that log log n; ~ log % and (4.11) is satisfied. Thus by Lemma 4.2

Tn_EVn 1
—_—

(7.4) lim sup,—« A =5

a.s.

Letting m;. = n, /40 we have for m; < n < n; by (3.10)

EV,—ES, = J’ G-(x)dx —n f Gy (x) dx
(7.5) o
=n J' G(x) dx —2n f G+ (x) dx.

n, ny,

Using the fact that m, & A and Lemma 74,

00 o ﬂmk 00
(7.6) nj G.(x) denf xdF =40 ka' x dF + 40mkf x dF = o(Bm,).
a, a, a, B,

n, m, m, m,

Next observe that by (2.7) and Lemma 2.3

(7.7) J' K(x) dx = J' G(x) dx + an, f(an,).

e My

Thus by (7.5)-(7.7) we have for m, < n < n,,
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EV,-ES, =%n {J f(x) dx — an, f(an,,)} + 0(f)
= %2- n {J f(x) dx — an, f(ank)} + 0(Br)

24;_0nkf f(x) dx _ﬁa”k log log 75 + 0(Bs).

Since S, = T, and since (7.4) is valid even when n is restricted to the intervals (my, n.] we
obtain the result by adding this last statement to (7.4). For the divergent case we fix a
value of y and choose 7 and C so that by (3.13)

P{T,=EW,—-Cb,})=e"—5—C2%y>0.
Then since S, = T, and by (3.10)
EW,—-ES, = nj G_(x) dx — nf G+(x) dx = _nf f(x) dx= —p,
b, a,

n n a,

we have by (2.18)
P{S,=ES,— (Cy'+1)8,}=c>0.
Then by Lemmas 4.1 and 2.7

n — E n + - + n
lim sup,_e S Sn + (Cy LA =0 as.

B
and this implies the final result of the theorem.

REMARK. Note that when X P{X > B,} converges, if it happens to be the case that
2 P{|X| > B.)} diverges then we may apply the divergent case of the theorem to the
random variable —X to obtain

(7.8) lim inf,,_ -SL_BE—SE =—o a.s.

Although the series 3 P{| X| > 8.} does diverge somewhat generally it does not when K
is sufficiently dominant as in the classical case. However, it will diverge whenever

(7.9) K(x) = 0(:5‘1 f [¥] dF).
|y|>x

To see this, we note that if ¥ P{| X| > 8.} converges then by Lemmas 7.2 and 7.4 applied
to | X|,

(7.10) n f |x| dF < 1B,
|x|>a,
for infinitely many n. Then by Lemma 2.2

Br = na.f(a,) +nf f(x) dx=2nf |x| dF + 2na,.K(a,)
an 1x>a,

=O<n f | x| dF)
|x|>a,

by (7.9). But this is small compared to B8, infinitely often, a contradiction.
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Now we will prove the main result for centering at the median of S,, in the nice case. We
assume that G is not slowly varying in this theorem. The case of slowly varying G is treated
at the end of the section. The reason for the separation is that when G is slowly varying
the median of S, may grow so rapidly that it is difficult to estimate its exact rate of growth.
This means that 8, must be defined directly in terms of the median. The comment about
the case when EX? < oo which preceded the statement of Theorem 7.5 also applies here.

THEOREM 7.6. Suppose that G is not slowly varying and B, is defined by (2.14). There
is a value yo such that if yo < y <log 2 and = P{X > 8.} converges then

. S, — med S,
0 < lim Sup”"‘”—,g—< © as.
On the other hand, if = P{X > B,} diverges then
. S, — med S,
lim sup,,_,m——'g——— =0 as.

REMARK. The divergent case is valid for any y. Since 8, decreases as y increases we
have in the convergent case that the upper bound improves as y increases while the lower
bound improves as y decreases. Example 9.6 shows that the upper bound may fail when
y = log 2 even though the series converges. Furthermore, it should be noted that the series
2 P{X > B.} might converge for some values of y and diverge for others.

Proor. The divergent case follows immediately from Lemmas 4.1 and 2.7. The upper
bound in the convergent case works for any y < log 2. We let n, = 2% w; =a,,.
Then by Lemma 4.3

T.— EW,
lim sup,w —————=<4 a.s.

Bx

where for n,_1 <n=<=n,;

by by
Br=anlogk+n j f(x) dx ~ an, log log n + nj f(x) dx.
Since for x € [ax, a,, ],

ni'loglogn = f(x) =n 'loglogn
this means that
(7.11) Bn=Br=(2+n)pn.

By Lemma 7.3
U.-EU,
lim, .o ————=0 as.
B
and P {S, # T, + U, for some n;_; <n <nx} < np P{X >B,,_, } which is summable. Thus
for large n we will have by (3.14), (7.1), and (2.18)
S, —medS,<EW,+ EU, —med S, + (8 + 1)8.
= Cb, + O(Br,_,) + 8+ 1)B.= O0(B).

The lower bound is considerably more delicate. We start by choosing some constants. By
Lemma 2.5 we can choose 7 so that 7o < 1 and
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. K(x)
(712) 0< N < lim SUPx— m .

Then we let Ao = 10/2(1 + 10/4) and choose y so that 2™ log 2 < y < log 2 and then y, so
that log 2 < y; < y2™. Next we choose 7; to satisfy

(713) 1+ 3m)yiy ' <2 e+ 10myi<¥%, ml+10y)) <e™, mi<n¢/4
Finally we let

(7.14) 2 =107 v =mn3"

There will be two parts to the proof of the lower bound. For the first part we assume that
for all sufficiently large n we have at least one of the following conditions satisfied:

(7.15) b, < n28x for the y selected above
or
(7.16) Kix)=nmG(x) forall x & [ba(y2), b.(y)]

Suppose, for the moment, that (7.16) is satisfied. Then by Lemma 2.4 with
A=2n/(1+m)

b,(y) N
n f f(x) dx = n{ba(y2)} y2n 7 {Ba(¥)} 721 = N7 = 121 = N) M yey ) balye)
bplyz)
since

{bn(v2) Y yven ™t = {ba(y)} yn
But then by (2.18)

b(y)

(7.17) Br(y) = Bnly2) + n f f(x) dx = O(Bn(y2)).

b, (ys)

Now we choose n;. as in the proof of the lower bound in Theorem 7.5 and let u;. = a,,. With
my, = n; /40 we have for m; < n < n; since m; € A and 2 P{X > 8,} converges (when the
parameter in b, or B, is not specified it is to be the chosen value of y)

ﬁm,, B"‘Iz
n f Gi(x) dx = nJr x dF + n{Bn,G+(Bmn,) — an,G+(arn,)}

3 3

B’"k
= 40 my, f x dF + 40 mpG+(Bm,) Bm, = 0(Bm,) = 0(Bx).

My

Since log % ~ log log n, we still have 8, = (1 + 7)8. as in (7.11) so that if b, =< B8, this
implies (4.17). If b, > B.,, then by (2.18)

b
n f G(x) dx = 40 mr G+(Bm,) b = 0(br) = 0(Bn).
B

Thus we can apply Lemma 4.3 and (7.11) to obtain

. Tn -E Wn 1
(7.18) lim sup,—« —,Bn_ =5 as.
Note that since b.(y2) < b.(y) we will still have (4.17) satisfied if we use b.(y2) and
Br(y). But if n satisfies (7.16) then (7.17) is true so that (4.17) remains valid with both b,,
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B replaced by b.(y2) and B.(yz). This means that (7.18) still holds if we use EW,, and 83,
depending on v, instead of -y for those n satisfying (7.16). Now apply Lemma 7.3 to the
entire sequence {40%}; the definition of U, is to be in terms of 8,(y) for all n but for those
n satisfying (7.16) we can also use 8,(y2) to norm with in view of (7.17). Then, since (7.18)
is valid for n restricted to the intervals [ ms, n:],

S.—EW,—-EU, T,,+U,,—EW,,—EU,.> 1

B = lim supp—« o =10 &

(7.19) lim sup,—«

By (3.11) it follows that
P{T,— EW,=2y"?b,} = P{W, — EW,=2y"%b,} <%

and by Lemma 7.3, U, < EU, + 728, for large n a.s. Again this is true with 8,(y2) for those
n satisfying (7.16). Finally, for m; < n < n,, since the upper truncation point for the
summands in U, is B, (y),

P{S, # T, + Up} = nG+(Bm,) — 0.
Thus we have for m;, < n < n; and large %
med S, < EW,, + EU, + 2y"?b, + 1288x.
If n satisfies (7.15) we use this with y to obtain
(7.20) med S, < EW, + EU, + 3728,
while if n satisfies (7.16) we use this with y; to obtain by (2.18)
med S, < EW, + EU, + 2y7"*Bn + 12fx

which by (7.14) is the same as (7.20) except that EW,, and 8, depend on v,. Since this was
also the case in (7.19) and since 39, < 1073 this gives

S, — med S,
Br

This is still under the provision that we use 8.(y2) when n satisfies (7.16) .but then by
(7.17) we see that this lim sup is positive even if we norm with 8,(y) for all n. We are now
ready for the second part of the proof. Thus we will have for infinitely many n that both

(7.21) b, =12, for the selected y

and also that (7.16) fails. For the remainder of the proof we will work with this sequence
of values of n. We define

Xn = sup {x € [ba(y2), ba(y)]: K(x) = 11 G(x)}
yo=1inf{x = x,: K(x) = 70G(x)}
w, = sup {x € [x,, y»]: K(x) = 11 G(x)}

lim sup,—« =102

with w, = x, if the last set is empty. The first two sets are nonempty since (7.16) fails and
by (7.12). Since G and K are right continuous,

(7.22) K(yz) = 10G(y).
We take z, € [% wn, w,] with
(7.23) K(2,) =11 G(2y).

We will need an estimate for G.(z,). Let
Vn = [Y/f(zn)]a jn =1+ ['YI/G—(Zn)]~
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First we suppose that n < »,. This implies 2, = b,. Since K(x) < 170G (x) for x € [x,, y»)
and x, < b, < z, < y, we have by Lemma 2.4 with A1 = 2n0/(1 + 7o) and (2.18)

by 2,
vilB, < j {f(x) A vi'log log v} dx + f f(x) dx
0 b,

(7.24) =n718, + 23 f(2a)2 M1 = A) 7!
=720 + (1 — A1) ywn'zn,

where we have used (7.21) at the last step. Another application of Lemma 2.4 yields
yn7lby = bYf(b,) = 23 f(2,) < 23 yvy!

and this means that

(7.25) B, =z (an™) Mz + (1= A1) yze = {02t + y(1 = A1) 2.

Since n~?B, increases we have = P{X > CB,} converges for any C > 0 and thus

Gi(2n)
f(z)

If, on the other hand, », = n then K(x) = 7:G(x) for x € [x,, b.] so that with
A = 27’1/(1 + 7’1)9

(7.26)

=y + DG4(CB,,) — 0.

xhyan ' = 2hf(xa) = BAf(ba) = Blyn .
Then by (7.21)
(7.27) 20 =% %, = % (yy2 ) bn = % (yy2') ' n28n
so that
1, G+(2,) = nG.(CB,) — 0
and we have (7.26) in this case also. iNext we need to show that
(7.28) By, = O(zy).
By the definitions, we have v, < j,. If j, < n, thenB;, < B, = O(z,) by (7.27). Otherwise,

as in (7.24) we use

b]n
Bi. Sj,.u;lﬁ,," + Jn J f(x) dx if n<w,,
(7.29) b

b,
Bi, <Jnn7'Bu + ju f f(x)dx if v,<n.
b’l

Since f(2,) = (1 + 11) G(2,) by (7.23), we have G.(z,)/G-(z,) — 0 by (7.26) and then

D= YL oo v1(1 + 1) v1(1 + 1)
(7.30) ]"_1+G_(z,.) 1+G(zn)_1+ I7PN)

This means that the first term in (7.29) is O (z,) in either case by (7.25) and (7.27). Next we
observe that if x € [ y., 2y.] then by (7.22)

(7.31) K(x) = 2% K (yn) = Y 170G (¥n) = Y4 170G (%)
and so with )\0 = 1]()/2(1 + 1’]0/4),

=1+

(vn + 1).

Y (yn) = (2Y2)F (2yn)

by Lemma 2.4. Thus, for large n,
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f(2yn) = 27%f(yn) = 27%f(2,) = 27°(1 + 211) G-(2»)
=271 + 3n1)y1j;1 < yj;l

by (7.13). This implies that b,, < 2y,. Next we have K (x) =1, G (x) for all x € [w,, 2y.] by
(7.31) and (7.13). With A = 29:/(1 + 1), this means that if b; = w, then

Yin'b), = bLf(b;,) < whf(ws) < wif(z,) < yva'wh

so that b, =< (jx»z')*w,. Then by (7.30)
b]n
Jn J' f(x) dx Sjnwf‘,f(w,,)b}:)‘(l —-A)7!

=(1- >\)_1jnyl'r_z1(jn";1)_Hl/)\wn =O0(w,) = O(zn)-
Finally, if b,, < w, we have by (7.30)

jnJ f(x) dx < Jayvr'wn. = O(wy) = O(2,)
b,

with a similar bound holding for the second case in (7.29). This also covers the possibility
that b;, = w,. Thus we have shown (7.28). Now we can complete the proof. Define

Vi, = Y X 1| X| < za).

Then
P{|V, —EV;|=% 2.} < YnK(2n) < M1JuG(2n)
~ I JjnG-(2n) ~ IMM1
and
P{X, > z, for some i < j,} < j.G+(2n) = 0(jnG-(2»)) = 0(1).
Also
(7.32) P{X;= —zn, i < Jju} = {1 = G-(2n)}’" < exp{—jnG-(2,)) < €7

Then by (7.13)
P{I’V,-n —EVj|<%zn Xi<z.fori=<j, atleastone X, <-z,fori=j,}=%.
On this event, S,, < EV,, + % 2, — 2, so that
(7.33) med S; < EV; — % z,.
Since the probability in (7.32) tends to e™* we also have
P{|V), - EV,|<Y%zn |Xi|s znfori=<jp.} = e (1 —m) — 10my:
for large n. This is positive by (7.13) so that we have
P{S; =z EV; — % z,i0} =1

by the Hewitt-Savage zero-one law. Then by (7.33)
S; — med S; 1

~=— a.s.

lim supp—w
2n 3

Recalling (7.28) completes the proof.
For the case where G is slowly varying we will first need to prove two lemmas.
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LEMMA 7.7. Suppose that G is slowly varying. Then if y < log 2, med S,/b, — 0. If
n P{X > b,} — 0 (this condition is independent of the value of y) and y: > log 2 then
med S,./bn(y1) = —oo.

ProoF. Fix y and let
Vo = 21 X1{ | Xi| = ba}.
Then
P{|V,— EV,|=¢€bn} <€ ’n K(b,) = 0(nG(b,)) =0(1)

by Lemma 2.5. Also EV, = nb,M(b,) = 0(b.) by the same lemma so that b,'V, — 0
in probability. Now if y < log 2

P{Sn = Vn} = {1 - G(bn)}n = eXp{_nG(bn)(l + G(bn))}
= exp{—y(1 + G(b,))} > %

for large n. Thus we can ensure that | S, | < eb, with probability at least one half so that
| med S, | < eb.. For the other part, take y; € (log 2, y1). Now

P{X;> b, forsomei=<n}<=nP{X>b,} —0.
But
P{X, < —bu(y2) forsomei=n}=1—{1—G-(baly2))}" ~1—e2>%
for large n since K(b,) = 0(G(b,)) by Lemma 2.5 and nG.(b,) — 0 sc we must have

nG-(b,) — ¥ in this case. Since we showed above that b,'V,, — 0 in probability (for any
y) we will have

med S, < — (1 — €)bn(y2).

To complete the proof we note that b.(y1)/b(y2) — 0. This is so since G slowly varying
implies that f is also and then if b,(y1) = €b.(y.) for infinitely many n we would have for
such n

flebn(y2)) _ f(Baly2)) _ 2

1= =—<1

fn(v1))  f(Ba(y1)) ™

LEMMA 7.8. Suppose that G is slowly varying. If ¥ P{X > b,} converges, then
lim sup b7'S» = 0 a.s. (The series either converges for all y or diverges for all y.)

ProOF. Let V, be as in the proof of the last lemma. We showed thatb;'V, — 0 in
probability, n P{X > b,} — 0, and

P{X;=— by, i=n}={1-G-(b)}" ~e.
Thus for large n
P{S,= —eb,} =% e

and so we will have S, = — €b, i.0. with probability one by the Hewitt-Savage zero-one
law. This means that lim sup b,'S, = 0 a.s. For the upper bound we let n, = 2* and for
ny < n < npy, let

T.=3Y4 X 1{0< X, < b,}.
Then
P {maxs,<n<n,, Sn > €by,} < P{Tn,, > €bn} + np 1 P{X > by}

<€ 'b;'ET,,,, + meuP{X > b,).

Rpr1

k+1
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Since the last term will converge when summed on &, it will suffice to show that the first
term dees also. This is true.since

Zk b;klET"kn = Zk b;klnk“'l ZJSk b"JP{X > bnffl}
=3, bn P{X > by} Yiy bairin
=2%,n.P{X> bn_} <o,

where the last inequality follows from the fact that n~?b, increases which results from
using n = % in Lemma 2.4.

THEOREM 7.9. Suppose that G is slowly varying. Then if ¥ P{X > b,} converges we
have

(7.34) li Sn—medS. . as
. im Supne ———— S - S
If Y P{X > b,} diverges then

. S, — med S,

lim supn_,w——b— =0 as.

for all v.

REMARKS. 1. It is a consequence of Lemma 7.7 that the convergence of ¥ P{X > b,}
is equivalent to the convergence of ), P{X > —med S,} but the condition in terms of b,
will usually be easier to check.

2. The norming sequence {—med S, } need not be monotone but it is easy to see that
(7.34) is still true if one norms with max,<,(—med S;) instead of —med S,. The key fact
here is that the proof of Lemma 7.8 actually shows that lim sup ,'S, = 0 a.s. along an
arbitrary subsequence.

Proor. In the convergent case this follows immediately from Lemmas 7.7 and 7.8
since
S )
—med S, b.(y:)) —medS,

and this has lim sup zero. The divergent case follows immediately from Lemma 4.1.

8. Centering at zero. In this section we will assume that E | X | = o. This is because
the strong law implies that {n} will serve as a norming sequence if EX # 0 while if
EX = 0 centering at zero is the same as centering at ES, and this was discussed in the last
section.

The results of this section are of a fundamentally different nature than the earlier ones
since lim sup 'S, is negative. This means that we are using centering constants which
are “almost” outside the support of the distribution of S, on the right side. Nevertheless,
this may be a useful thing to do since in many cases the norming sequence {8,} used here
will be smaller than the norming sequence for centering at the median of S,.

Although the main theorem in this section follows easily from the results of Fristedt
and the author [6] in conjunction with the integral test of Erickson [1], we believe that it
is worth giving a new proof of the results in [6]. There are two reasons for this. One is that
the main result in [6] is for continuous time subordinators with the observation being made
at the end that the same method will work for sums of independent random variables. The
other reason is that it fits in better with the present work if the norming sequence is
defined in terms of the function G instead of in terms of the exponent of the Laplace
transform of the distribution function F as is the case in [6]. The price one pays for this
change is in losing some information about the precise value of the lim sup.
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We start with a lemma which gives a slight extension of Erickson’s result and also
translates his condition into our notation. We will use the function g defined in (2.2) as
well as the analogous g, and g- defined in the same way for the random variables X* and
X~. In our notation the integral /., defined by Erickson is

Jy = JO ﬁ dF(x).
Erickson proves that
8.1) Jr < oo iff  limp_.n'S,=—o as.
and in the alternative case lim sup n™'S, = . He also proves that (8.1) is equivalent to
(8.2) lim sup,.o(X, /%1 Xi) =0 as.

with this lim sup also being infinite in the alternative case. We will show that g_ may be
replaced by g in the definition of J. without changing the criterion and that (8.2) still
holds if X, is replaced by Yi-; X;. The importance of this is that it allows us to work with
negative summands.

LEMMA 8.1. Assume E|X| = . Then for any y>0

(8.3) J. <o iff J L arxy <o it Y P{X>d.) <o
o 8(®)

where d,, is defined in (2.23). Furthermore, the conditions in (8.3) are equivalent to
(8.4) lim sup,e(Xi: X7 /1 X7) =0 as.

When J. = o, the lim sup in (8.4) is infinite.

Proor. The first only if statement is clear since g(x) = g_(x). Next we observe that

| 1
—dF =K —— >
Lg(x) W =E-m 1 E=0

and this is finite if and only if
1
Pl——>y 0, X=0; =Y P{(X>d,} <.
X { 7007 } T P{ }
Now suppose that 3, P{X > d,} converges. Let n, = 2* and observe that by (2.25)
dp,
J Gi(x)dx = Y5 i d, P{X>d, } =<ni'd, St i nP{X > dy,_}

d,

and the sum may be made small by choice of i. Thus
g+(dn) = di)dn + eni’ = ni' {midy}d,, + €}
and so n g+(d,,) — 0 since E | X| = o implies that

d,

n'd, = dng(d,) = j G(y) dy — o

0

by Lemma 2.3. Now suppose thatd,, , < x =d,,. Then

g+(x) = gi(dn,_)) = 0(nit) = o(ny")
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while
g(x) = g(d»,) = yni'.

This implies that g+(x) = o0 (g(x)) and thus g (x) ~ g-(x). This completes the proof of (8.3).
To see that (8.3) implies (8.4) we observe that by (2.6) for any C > 1

g(Cx) = C7'g(x)

and so the integral in (8.3) is still finite if the distribution of X* is changed to that of CX™.
Then (8.1) implies that

CYL Xt - S Xi=0

for all sufficiently large n. This implies (8.4). The final statement follows since Erickson
proved that even the lim sup in (8.2) is infinite when JJ. = oo,
Now we will prove the fundamental convergence lemmas for this case.

LEMmMA 8.2. Suppose that X < 0 a.s. and § > 8. Then with B8, as defined in (2.23) and
(2.24),

lim sup,.. 8-S, <0 as.

PRrOOF. Let n, = [p*] where p > 1. By Lemma 3.1 with r = %
P{(S,, ,Z EV,,_, + e ’nricnf(cn,) + 4 cn, log log n} < {log nx) 2
since S,, , = Ty, , < Va,_,. Now by Lemma 2.2 and (2.8)

EV,  + % e’ ny_1cn,f(cCr,) + 4cn, log log nx

=- % Np--1Cn,&(Cn,) + 4cy, log log ny

= Cn, log log nk{—%8£—_l+ 4}

k
ng
~ Bnk{—%ﬁp_l + 4} )

Since 8 > 8 we can take p close enough to one to make the coefficient of 8, negative.
We then have S, < S,,_, for n,_; < n < n, and this proves the lemma.

REMARK. When the random variables are nonpositive the factor e” in Lemma 3.1 is not
needed. Then one may use r = 1 and s = (1 + €)log log n, to see that it is actually enough
to assume that 6§ > 2.

LEMMA 8.3. Suppose that E | X |¢ < « for some € > 0. Let § be given and c, be defined
by (2.23). Let ny, = [p*] for p > 1 and
C=p" if e<l, C=p*' if e>1.
Then
Nj=card{k: 2 <k <2™' and cn,, = Cc,) =2
for large j.
Proor. There is no loss in assuming that € = 1. By (2.10) and Lemma 2.3 c;g(c,)

is bounded which implies that c, < n'/* for large n. Let m,; = n, where & = 2/. Then for j
sufficiently large
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N, N, 1
Ch=C 'Crm, = Cm,,, = mj_{_el

or

Njlog C = e 'log mjv1 < € '2" log p
and substituting the given value of C yields the result.

LEMMA 8.4. Suppose that X < 0 a.s. and E|X | < o for some € > 0. Then with 8, as
defined in (2.23) and (2.24),

lim sup, .« 87'S, > — o as.

Proor. We take p > 35V 1, p an integer, and apply Lemma 8.3. For large j there must
be at least 2/ values of & € [2/, 2/*!) such that

(8.5) Cnypy = Con,.

We form a subsequence {m;} by taking every jth one of these n; for j =1, 2, .... There
will be at least 72" — 1 values of n, with % € [2/, 2/*") in the subsequence for large Jj.
Now let £ € (807", 1) and u, = c.(£). By Lemma 3.3 with Cs = £,

P{(Sn = —2 nu.g(un)} = (log n)™".
For n, with & € [2/, 2/*"),
(log nx)™ = (k log p)™' = (log p)~1277%.

If we sum this for those n, in the subsequence we will have a contribution of j ! from this
range of % and thus a divergent series. Now we let

v, = ij:=1 m;.

Since m; = pm;_;, we have v; < m;p/(p — 1). By the way the m; subsequence was spaced we
have for those i with m; = n, where k € [2/, 2/*") that m; = m,_;p’ and so

(8.6) vioumi ' log log mi < mi_1p(p — 1) 'm;" log log m; < j/p’*(p — 1).
Then by (3.15),
P{|S,,—EW,_|= un) <2t v,.ym;' log log m;— 0
and by Lemma 2.2
EW,

Vi-1

= —Vi1Unm & (Um) = —viif M7 Um, log log m; = 0 (un,).
Thus
P{S,  =—2un}—1
and so by Lemma 3.4,
P{S, - S,_, = —2miun g(un,); S,_, = —2um, io} =1.
But this means that infinitely often
(8.7) S,, = —26u,, log log m; — 2um, = —2u,, log log m;.
Now for large i,
&(com,) = 807 'm;" log log(pm;) < ¢m7" log log m, = g(um,)
and then by (8.5)

Um, = Com, < CCp,.
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Recalling (8.7), we see that
S, = —2CBn, = —2CB,, i.o.
with probability one.
The main result of this section now follows easily from what we have proved. We will

assume in the theorem that E(X™)¢ < « for some € > 0. Example 9.7 shows that some
condition of this sort is needed.

THEOREM 8.5. Suppose that E|X| =  and E(X™)¢ < « for some € > 0. Define d,, B
as in (2.23), (2.24) with 6 > 8. If ZP{X > d,.} converges then

. S
—o00 < lim supp—~.— <0 as.

Br

and

(8.8) lim inf, . é = lim inf, .« ﬂ =—c0 as.

Bn d,
On the other hand, if ZP{X > d,} diverges then

Sn S,
R li n—ow T — i n—so —5— = .S.
(8.9) im sup, 2 lim sup 7 © as

(The assumption about E(X™)¢ is not needed for (8.8) or (8.9).)
REMARKS. The convergence of ZP{X > d,} is independent of y by Lemma 8.1. Also

this convergence is implied by the convergence of ZP{X > 8.} by (2.25) and (2.26). As in
Lemma 8.2, it is actually enough to assume that § > 2.

Proor. Suppose first that TP {X > d,} converges. We showed in the proof of Lemma
8.1 that this implies g(x) ~ g-(x). Then if £ € (8, §) and we define ¢, (8) by
g-(c7(8)) =8n""log log n
we will have for large n
g(cn(§)) = én""log log n < g(c. ()
so that ¢, (8) < ¢, < cr(§). Then if 8,(8) = c»(8)log log n we obtain by Lemma 8.4

. S, _ .. —i X7 i X7
lim sup,—«» — = lim sup,—«

—E P > lim SUPpae —2t > —0  as.
B B P 8116)
Also by Lemmas 8.1 and 8.2
lim sup. .. S _ lim Sups_.- —2i X < lim Supp_.. —2 X, <0 as.

Bh Bn :8;(&)

For the divergent case we can apply Lemma 4.1 by (2.25) and (3.17) if we let a, = —Cd,,.
Thus we obtain

S + Cd,
_—_ =0
dr

which gives the final result by (2.26). To obtain (8.8) we note first that in the proof of
Lemma 8.1 we showed that the convergence of 2P {X > d,} implies that ng.(d.) — 0.
Applying this argument to | X| would lead to ng(d.) — 0 which is not true. Thus
ZP{|X| > d.} always diverges. Since we have assumed that ZP {X > d,.} converges this
means that ZP{—X > d,} diverges. Hence the divergent case applies to —S,,.

lim supn—e a.s.

9. Some comparisons and examples. First we will look at the question of comparing
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the sizes of the various norming sequences. It is not hard to see by modifying Lemma 4.2
that if the positive tail is small enough then one can center at a, = nE(—a, V (X A\ a,))
and use B, = a. log log n provided that a, is defined by f(a.) = én~" log log n and
& < 1/35. (This possibility is discussed further in Section 11.) This is always the smallest
of the norming sequences we consider. But since it is quite common to use other centering
sequences it is of interest to compare the sizes of the other norming sequences. Although
it is probably not possible to state any useful completely general comparison result there
are some fairly general situations that will give some feeling for the problem.
First suppose that

9.1) YM(y) = CxM(x) for y=x=1

for some C > 0, A > 1. This includes, for example, f regularly varying with exponent
£ < —1oreven f such that

2
lim sup,@mM =2¢

f(x)
Under (9.1), E | X | < « by Lemma 2.3 and with a, as in (2.13)

n J f(x) dx = nCa) f(an) J xdx=CM\ - 1)"'a, log log n.

Also, under (9.1), the a, defined above in terms of § are all comparable. Thus the norming
sequences for centering at nE(—a. \/ (X A a,)), ES,, and median S, are all comparable
under (9.1). It is also possible to check that in this case

ES, — median S, = O(b,) = o(a, log log n).

However, the difference between nE(—a, \/ (X A\ a.)) and ES, will typically be as large as
a, log log n.
As the next case, suppose that

9.2) Y(y) = exf(x) for y=x

for some ¢ > 0, A < 1. This includes f regularly varying with exponent ¢ > —1 or even f
such that

f(2x)
f(x)

lim inf, .« =2f

Under (9.2), E | X| = o and by (2.8)

fx) =gx)<x7! J f(y) dy=c 2 f(x)(1 = A)Tx
(9.3) 0

=c7(1 - N7 Y(x).

Even with this comparison between f and g, c. log log n and a. log log n need not be
comparable because if g decays very slowly then changing the value of § may change c,
significantly. But both of these sequences will be much smaller than the norming sequence
for centering at the median of S, since by (9.2)

an log log n < (ye ™) b,(log log n)""*/* = o(b,)

and then we use (2.18). A similar argument using (9.3) as well shows that ¢, log log n =
o(b,). Typically the median of S, in this case will be comparable to —8, with 8, as in
(2.14).

More can be said if f is regularly varying with exponent 0, —1, or —2. These are the
cases that have received more study in the literature. In the first case G dominates both
K and M as we have seen in Lemma 2.5. One can show that in the last case K dominates
both G and M (if EX = 0) while in the middle case the function M corresponding to | X|
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dominates both G and K. Actually in this situation the dominance is true under a weaker
condition which we will now consider. As mentioned in Section 2, the functions xf(x),
xG(x), and xK(x) are all slowly varying when any one of them is. But there is a weaker set
of equivalent conditions which will be useful. For a nonnegative random variable X, the
following are equivalent:

(1) xg(x) is slowly varying; (2) xM(x) is slowly varying;
(9.4)

Glx) . K(x) _
W = 0, (4) llmx_.m ———M(x) =

(3) lim; .o
Of course these are equivalent for a general random variable if M is replaced by the M
corresponding to | X |. These conditions are implied by the slow variation of xf(x) but the
distribution with

1

PX=2"}=—,
( =

n=1,2, -

is an example for which xg(x) is slowly varying but xf(x) is not. (This is the Petersburg
game. Incidentally, this shows the first sentence in the footnote on page 233 of [4] is
incorrect.) The conditions in (9.4) are all trivially satisfied when E | X| < o; they are of
interest when E | X | = o. There is an analogous set of conditions that are of interest when
E | X| < . In this case we define

h(x)=x"‘J’ K(y) dy, Mm(x)=x‘lj y dF(y).
x |y|>x

Then the following are equivalent for a nonnegative random variable X with EX < co:

(1) xh(x) is slowly varying; (2) xM.(x) is slowly varying;
(9.5)
G(x)

K(x) _
M.(x)

(3) llm,,_,m m =

0; (4) lim, ... 0.

These conditions are implied by the slow variation of xf(x).

As an example of the usefulness of the domination of M or M., in these cases we will
derive a (slight) generalization of the results of Klass and Teicher [15]. This theorem is
equivalent to (2.14) of [14].

THEOREM 9.1. (Klass). Suppose E | X | < o and xh(x) is slowly varying. If
(9.6) SP{X >} <w
where B, is defined by (2.15) then

S.— ES, 1
9.7 lim SUpPn-«» Tw = 5 a.s.,
©9.8) lim inf, ... §";ﬂ -  as

REMARK. Under (9.5), 8. ~ 2nju(a.) where i is defined by Klass and Teicher. This is
not comparable in general to the sequence {b.} used in their Theorem 3. However, under
their supplementary hypothesis (19) it follows that 8, ~ 2b,. The condition (9.6) is
equivalent to their condition (18) when (19) is assumed. Thus their theorem is true with
(19) replaced by the weaker assumption that xA(x) is slowly varying provided that their
sequence {b,} is changed to {B.} and (18) is changed to (9.6).

ProoF. First we use Lemma 4.2 with n, = 40* and u;, =a,,. The result is that

T.—-EV,
= lim suppo0 ——5—=4 a.s.

9.9
(9:9) A

240
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where B, = a., log & for n,-; < n < n,. Next we note that by (2.7)
J' f(y)dy = 2J' K(y) dy — J {K(y) — G(y)} dy = 2xh(x) — xf(x).

Also we have for | X |
h(x) = M.(x) + K(x) ~ M.(x)
by Lemma 2.2 and (9.5) so that

J f(y) dy ~ 2xh(x).
Thus

Br=asloglogn+n J f(x) dx ~ na,f(a,) + 2na, h(a,) ~ 2na, h(a,)

and
(9.10)  Br ~ ax, log log n, = nras, f(as,) = o(nxan, h(an,)) = o(na, h(a,)) = o(B.)

since xh(x) decreases. Thus
T,.— EV,
lim sup,sw——————=0 as.
B
Then by (9.6) and Lemma 7.3 we obtain
S.— EV,—EU,
(9.11) lim sup,._.m—F——U= 0 as.

By (7.3),

EV,+ EU,- ES, = nJ G-(x) dx — nJ x dF + na,, G (B.,_,).
@ 8

Tk L]

The second term is 0(8,) by Lemma 7.4 and the third is o(a.,) by (9.6) and this is also
o(B.) by (9.10). Thus

(9.12) EV,.+ EU,— ES,=n J’ G-(x) dx + o(B).

"

Then we use

nJ G_(x)denJ G(x)de%nJ f(x)dxs%,@n.

n

For the lower bound we note that as in the proof of Theorem 7.5 we have the lower bound
in (9.9) even if we restrict to those n with m, < n < n; and m, & A where A is defined in
Lemma 7.2 and m: = n./40. Then (9.11) is still valid if we restrict to these n. But for
m, < n < n; and m; & A we have by (7.6) that

n J G+ (x) dx = o(fm,) = 0(Bx)

i3

and then by (9.12) and (9.10)

EV,,+EU,,—ES,,=nJ G(x) dx + o(B.) =%nj f(x) dx + o(B.) =%,8,L + 0(B.)

i3
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since

n J’ f(x) dx = a,, log log n.

The fact that the lim inf is —c in this case is a consequence of the remark following
Theorem 7.5 since by (9.5) we have (7.9) satisfied.

The analogous result for the case of an infinite mean is similar but slightly easier so we
omit the proof.

THEOREM 9.2. Suppose E | X| = » and xg(x) is slowly varying. If
(9.13) SP{X>d,} <

where d, is defined by (2.23) then with B, as in (2.24)

S
(9.14) lim sup,—« .3_ =-§ as,
.. S, .. . S,
(9.15) lim inf,_» E = lim inf,_, . - © a.s.

REMARK. In this case 8, = 8 'nu(c,) where p is defined by Klass and Teicher. This is
not comparable in general to the sequence {b,} used in their Theorem 4. However, under
their supplementary hypothesis (34) it follows that 8, ~ 8 'b,. The condition (9.13) is
equivalent to their condition (33). Thus their theorem is true with (34) replaced by the
weaker assumption that xg(x) is slowly varying provided that their sequence {b,} is
changed to {8.}.

The apparent advantage of Theorems 9.1 and 9.2 as compared to Theorems 7.5 and 8.5
is that the constant value of the lim sup is obtained. But the reason this can be done in
these cases is that the norming sequence for centering at the median of S,, is smaller and
so in Theorem 9.1 one is simply picking up the difference between the median and expected
value of S, and in Theorem 9.2 simply the median of S,. We now give an example to
illustrate this point.

ExaMPLE 9.3. Consider the distribution F with density

1
- -
2x%log’ | x|’ r=re

and the rest of the mass placed at zero. (We could put on any positive tail having finite
variance and it would only change the values of the expectation and the median of S, in
the obvious way.) Then it is easy to check that

1 1

G(x) ~ K(x) ~ h(x) ~oxlogx’

2x log’ x’
a~— by o~
" lognloglogn’ " ylog*n’
nlogloglogn

n .
Bn(mean) ~ ——, Br(median) ~ To@ n

logn

Furthermore, it is clear that ES, = —'% n and by (3.14) and the sentence following it

med S, = EW, + O(n/log® n) = —% n(l — 1/log b,) + O(n/log® n)

1 1 n nloglogn ( n >

" §logn+ log*n log*n



44 WILLIAM E. PRUITT

Thus we see that Theorem 7.6 implies that

lim supp_., > — 25 _ 1
Pnee n/logn 2
in this case as theorem 9.1 asserts. Since there is no positive tail in the present case we also
have

. S.— EV,
0 < lim sup, .« W< ©  as.

where we are letting EV,, = nE(—a, V X). Now

EV, = —% n(l — 1/log a,) + O(n/log® n)

1 1 n nloglogn 1 nlogloglogn n
+ - + += +0

2" 73 log n log®n 2 log® n log® n

so that one can even obtain the constant in Theorem 7.6 in this case:

S, — med S,
n log log log n/log® n

. 1
lim sup,—e =— as.
2
But this is due to the fact that this result is only picking up the difference between the
median of S, and the better centering sequence EV,,.

If X = 0 and G is slowly varying it is an immediate consequence of Lemma 2.5 and
Theorem 6.1 that it is impossible to find a norming sequence for S, — med S,.. Teicher [23]
has shown that it is still impossible in this case even if the centering is at zero and the
criterion for (6.3) remains the same. This is basically due to the fact that M (x)/G(x) —> 0
in this case which allows comparison of the median of S, with any norming sequence that
might work.

When f is regularly varying with exponent —2, i.e., F is in the domain of attraction of
the normal, most of the work has been for the two-sided problem [5, 11]. But even when
there is a norming sequence for the two-sided problem there may be an advantage in
considering the one-sided problem. To illustrate this we consider the following example.

ExAMPLE 94. Let F have density

1
| x

|3, x=<-1,

with mass % at zero. Then G(x) = % x~? and K(x) = x™? log x so that F is in the domain
of attraction of the normal. Thus even if we made F symmetric by spreading the mass at
the origin with density x %, x = 1, it would be possible to find a norming sequence {83,} for
lim sup B3;'| S |. But it would not be a nice norming sequence. On the other hand, if the
positive tail is a little smaller then there will be a nice norming sequence for the one-sided
problem when centering at either the mean or the median of S,. The sequence
Br = (n log n log log n)"/* will work whenever = P{X > §,} converges. Thus if the density
on the positive axis is x7*(log log log x)'"¢ for some € > 0 then one may use this nice
norming sequence in the one-sided problem.

Next we will clarify the point made in the introduction that if the positive tail is smaller
than the negative tail by an appropriate factor then the nice norming sequences will always
work. First if E(X*)* < o then = P{X > f8,} converges since for any of the norming
sequences 3, = vn log log n and even 2 P{X > «/—n} converges when the positive tail has
a finite second moment. If the negative tail barely has an infinite second moment this is
about as much as one can say in general. But when the negative tail is fatter one can put
less restrictive assumptions on the positive tail. For example, we have

THEOREM 9.5. If
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(9.16) P{X>x} = P{|X| > x}/log x log log x{log log log x}'**

for some € > 0 then the condition on the positive tail (the convergence of Z P{X > f3,},
SP{X>b,},orZP{X>d,}) is satisfied in Theorems 7.5, 7.6, 7.9 and 8.5.

ProoF. Since we have b, = O(8,) and b, < d, and n™"/?b, increases it is enough to
show that = P{X > b,} converges. This is clear from (9.16) since G(b,) = O(n™") and
b, > cn'?

This result is given as an indication of the wide applicability of the various theorems.
The conditions on the positive tail in terms of the convergence of £ P{X > fB.},
S P{X>b,},or £ P{X>d,)} are precise and not hard to check.

ExaMPLE 9.6. This is the example mentioned in Section 7 that shows that the upper
bound in Theorem 7.6 may fail if y = log 2. Let n, =2% and let the distribution F have
mass

log 2 L log 2
nr + 1/10 Np+1 + 1/10

at —Ng+1, k = 0,

with the remaining mass to be at zero. Then the median of S,, is no larger than —rn.;
since the probability that all the summands are greater than —ns.; is less than one half.
By truncating at —n,. (include the mass at —n,) and using Chebyshev it follows that

P{S,, =-n}*)=c>0.
Thus
Sn, — med Sn, = —n¥? + ni1 ~ ni o,
with probability one. On the other hand, with y = log 2 one can check that
bn, = O(¥*) and B., = Oni*).

ExaMPLE 9.7. This is the example mentioned in Section 8 that shows that some
condition is needed on the negative tail in Theorem 8.5. An example of this type is given
in [6] but it is easier to explain now that Erickson’s test is available. Let F have density

1

— x=-10,
|| log* | x|

and place the remaining mass at zero. We will also use a distribution H with the same
negative tail as F' but also having density
1

—_—, =10,
xlog®* x *

with the remaining mass placed at zero. We let { Y.} be a sequence of independent random
variables having distribution H. The {X,} will have distribution F' as usual. For either
distribution we have

g(x) ~ G(x) ~ (log x)™".

Then
"
J —— dH(x) <
, &)
so by Lemma 8.1
(9.17) limp e 20e1 Y/ Yi =0 as.

Now observe that for x = 10
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1 2 1

PUY|>x) = log x *3 log*? x > log x/2

= P(2|X|>x}.

This means that it is possible to construct the {X;}, { Y.} sequences in such a way that
I Y,l = 2IX,| Then

— S YI (14 B YT/ Yk Y7) <28,

Divide this by 8. and use (9.17) and the fact that —Y ™ has the same distribution as X. We
obtain

S, n
lim supp—w — < 2 lim sup,_e —
= B P,
and so this lim sup must be nonnegative or minus infinity. Since the S, are nonpositive
this means that lim sup 8:'S. is either zero or minus infinity for any norming sequence

{8}

10. The one-sided Strassen converse. This result follows easily from a theorem of
Kesten [10] and the work of Klass [14]. This result has been proved independently by
Rosalsky [24]. His paper also contains some complementary results.

THEOREM 10.1. If

S,
R i oo e = .S,
(10.1) im sup, @n loglog 1) 1 as

then EX =0, EX® = 1.

Proor. Kesten proves that whenever E|X| = o then
lim sup—«n"'S, = o as.

Under (10.1), lim sup n7'S, = 0 a.s. so we must have E| X| < » and then EX = 0 by the
strong law. Thus we may consider that we have centered at ES, in (10.1). Now by Theorem
7.5,

S,
(10.2) lim sup,—w B— >0 as.
where B, is given by (2.15); the lim sup may even be infinite. If EX? = o, then
x%f(x) — o which implies
2 2 2
Bx - ar(log log n) — a2f(an) — o
nloglogn nloglogn

and then (10.2) contradicts (10.1). Thus EX? < « and must equal one by the Hartman-
Wintner theorem.

11. Open problems. The first two problems are those mentioned in the introduction:

ProBLEM 1. Find necessary and sufficient conditions for there to exist a monotone
norming sequence {B,.} such that

S, — ES,

lim sup,_.« =1 as.
B

ProBLEM 2. Find necessary and sufficient conditions for there to exist a monotone
norming sequence {f.} such that

S,
lim sup—w ,3— =c as.

n
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with c a finite nonzero constant. In this case ¢ might be positive in some cases and negative
in others.

Solving Problem 2 will presumably result in a better understanding of the phenomenon
illustrated by Example 9.7 when there is no correct norming sequence even though the
summands are negative. As an indication of the lack of knowledge about this case there is
no known criterion to distinguish whether lim sup 8,'S, is minus infinity or zero for a
given sequence { 8.} even in the case of Example 9.7.

ProBLEM 3. For an appropriate centering sequence {a,}, which may need to be a
slight modification of EV,, find the right condition on the positive tail so that
Sr — an

(11.1) 0 < lim suppyo0—————— < ®© as.
a,loglogn

This problem is different from the ones for centering at the expectation or median of S,
since a, log log n may be much smaller than the norming sequences used in those problems.
We can show that if

T P{X> an(loglog n)*} <«

for some A < 1 then (11.1) is true with a, = nE(—a, V (X N\ a, log log n)) provided that a,
is defined by f(a.) = én"" log log n and & < Ys. Although this is certainly not the right
condition it is enough to show that (11.1) is valid when E(X*)? < o since in any case
a, = cn**{log log n} "',

This is an important problem since a, log log n may be significantly smaller than the
other norming sequences. Although there cannot really be any best place to center in the
one-sided problem as we pointed out in the introduction, it seems that some truncated
mean such as EV, may be the best universal centering sequence.

Finally, it should be possible to tighten the bounds on the constant value of the
lim sup in some of the problems. We did not consider this because we started working on
the problem of centering at the median and it seems highly unlikely that very good bounds
can be obtained in general for this problem because of the possible erratic behavior of the
median. However, Klass obtained very tight bounds for the case of centering at the mean
and this can probably also be done when centering at zero or EV,.
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