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AN EXTENDED DICHOTOMY THEOREM FOR SEQUENCES OF
PAIRS OF GAUSSIAN MEASURES

By G. K. EAGLEsSON
University of Cambridge

A dichotomy for sequences of pairs of Gaussian measures is proved. This
result is then used to give a simple proof of the famous equivalence/singularity
dichotomy for Gaussian processes. The proof uses tightness arguments and
can be directly applied to the theory of hypothesis testing to show that two
sequences of simple hypotheses which specify Gaussian measures are either
contiguous or entirely separable.

1. Introduction. In this note we prove a dichotomy for sequences of pairs of Gaussian
measures. Roughly speaking, we show that the sequence of Radon-Nikodym derivatives of
the pairs is either tight or there exists a subsequence along which all the mass is dissipated.
The proof of this result is extremely simple and, apart from its own interest, it can be used
to obtain the equivalance/singularity dichotomy for Gaussian processes and to extend that
result to sequences of probability measures which are not necessarily defined on the same
sample space. Thus we are able to apply our basic dichotomy to the theory of hypothesis
testing to show that two sequences of simple hypotheses which specify Gaussian measures
are either contiguous or entirely separable.

2. Background information. Suppose that {X., n = 1, 2, --.} is a sequence of
Gaussian random variables with X,, ~ N(u,, 02), say. It is obvious that the distributions of
the {X,} are tight if and only if both the {u.} and {02} lie in compact sets. If this is not
the case, there will exist a subsequence {n’} such that for all A >0

@ limy oo P(| X | < A) = 0.

That is, either the distributions are tight or there exists a subsequence along which all the
mass is dissipated.
The proof of our theorem is based on the simple observation that a similar dichotomy
also holds for the distributions of quadratic forms in Gaussian random variables.
Suppose that {X/”;j=1,.-.,n;n=1,2, ...} is a triangular array of Gaussian random
variables and that A™ = (a{?) is, for each n, an n X n symmetric matrix. We consider the
sequence of quadratic forms

2 Z, =Y X{PaP X"

and ask when are their distributions tight. By simultaneously reducing the variance-
covariance matrix of {X”, j =1, -.-, n} to the unit matrix and diagonalizing A", it is
clear that the distribution of Z, is the same as that of .

3) Z = Y AP(Y + m™ ),
where the {Y,} are independent, identically distributed N(0, 1) random variables, the

{m{”} are constants and {A\™} are the eigenvalues of A™.

PROPOSITION 1. A sequence of distributions of quadratic forms, Z,, in Gaussian
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random variables is either tight or there exists a subsequence {n’} such that for all
A>0

(4) limy e P(| Zy| = A) =0.
Proor. Considering the {Z;} introduced above, we have
EZ, = pn =Y AP (1 + m™?)
and
Var Z,, = 0% = 2 ¥ A2(1 + 2m{™?).

If sup,o2 < o, then Chebyshev’s inequality shows that the Z;, are tight if sup, | i1, | < ® and
that the total mass is dissipated along a subsequence if sup | .| = .
On the other hand, if f,(¢) denotes the characteristic function of Z;, then

f2(® = [[Tr=1 @ — 20A78) 7 lexp[Yr-1 Y%emM2((1 — 2A8) ™" — 1)]
and
[ Fu(8) |2 = [48% Trei A2]7Y2 exp[—4t2 Yrs m2AP2 /(1 + 402 ¢9)].

When sup, o7 = , either there exists a subsequence {n’} along whichY%, A"’? — o, in
which case | f.(£) | = 0, or the {A{"?} are uniformly bounded in n and r. If

AMZ < C) (1 + 4AM2%2) < (1 + 4Ct?)
and
S mIAD2/(1 + AN = (1 + 4Ct%) 7 I, mM2Am2,

As, in this second case, there exists a subsequence {n’} along whichY/; m{"?A{*"? — oo,
we have, once again that | f,-(¢) | = 0. But | f»(t) | — 0 implies (4) (see, for example, Loéve
12.4.4° page 197).

3. A dichotomy for sequences of Gaussian measures. If two Gaussian distribu-
tions are equivalent, their likelihood ratio is the exponential of a quadratic or a linear
form. This simple observation, together with Proposition 1, gives the following Theorem.

THEOREM. Suppose that foreachn=1,2, - .., (R", #*) is endowed with two Gaussian
probability measures, P, and @,. We assume that @, < P, for all n and write
L,=dQ,/dP,.

Either {L,} is tight (Q,) or there exists a subsequence {n’} and constants A, 1 ®© such
that

(5) limy e @v(Ly = Ay) =0.

Proor. For each n, log L, is (after maybe completing a square) either a quadratic
form plus a constant or a linear form in random variables which are Gaussian under @,
(as well as under P,). If the {log L,} are all essentially quadratic forms then, either they
(and hence {L.}) are tight (@.), or there exists a subsequence {n’} such that for all
A>0 )
' lim, ... @(|log L.|<A) =0.
Hence there exist constants A, increasing to « and such that

limy o @ (|log Ly | = Ayx) =0

(see Chung, Section 7.2, Lemma 1). Together with the estimate,
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Qul,<A™h) = j L,dP, <A,

[L,<Aa™1]

this proves that (5) holds.

If the {log L.} are all linear forms it is even more straightforward to see that they are
either tight or (5) holds. It is also clear that the dichotomy of the theorem will continue to
hold when the {log L.} are sometimes linear and sometimes quadratic forms.

4. Applications. There exist in the literature a number of different proofs of the
equivalence/singularity dichotomy for Gaussian processes; Hajek (1958) used information
theoretic arguments, Feldman (1958) Hilbert space techniques, Brody (1971) properties of
Gaussian distributions, Le Page and Mandrekar (1972) a 0-1 law for Gaussian processes,
Kabanov, Liptser and Shiraev (1977) the fact that a series of squared Gaussian random
variables converges with probability zero or one, and Chatterji and Mandrekar (1978)
reproducing kernel Hilbert spaces. Here we show that this classical result is a straightfor-
ward consequence of our Theorem.

1. Gaussian sequences.

COROLLARY 1. Suppose that {X,,n =1, 2, ...} is a canonical sequence of random
variables, defined on (R*, %), which is Gaussian under both the measures P and Q.
Then either P~ @ or P L Q.

Proor. Let &, denote the o-field generated by (X, ---, X,) and set P, = Pz, @, =
Q%. As P, and @, are finite dimensional Gaussian distributions, either P, ~ @, or P, L
@n. As P, L @, for one n implies that P L @, we may assume that P, ~ @, for all n. Then
{L.} is an (%,, P)-martingale and it is well-known that @ < P if and only if {L,} is
uniformly integrable (P). But

f L,dP=Q(L,>A)
[L,>A]

so that {L,} is uniformly integrable (P) if and only if {L,} is tight (§). Thus the Theorem
gives immediately that either @ << P or (5) holds. In the later case, as

Pu(Ly > Ay) <1/Ay  forall n/,

the measures P and @ must be mutually singular. By symmetry, either P << Q or P L @
and the dichotomy is proved.

2. Gaussian processes.

COROLLARY 2. Suppose that {X,,t € [0, T']} is a stochastic process on (RT, #") which
is Gaussian under both P and Q. Then either P ~ Q or P L Q.

Proor. The proof is exactly the same as that of Corollary 1, with %, here denoting
the o-fields generated by nested finite subsets of {X;, t € [0, T]}.

3. Testing Gaussian hypotheses. Suppose that we are interested in testing two
simple hypotheses. As we shall be interested in asymptotic size and power, we consider a
sequence of probability spaces which we may, without loss of generality, take to be (R",
A", un). (Typically, n is the sample size.) For each n, we suppose that the null and
alternative hypotheses are given by

H(()n) :Mn=Pn’
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H®" :p, = Q., say.

Here the analogue of absolute continuity is Le Cam’s idea of contiguity: the sequence
of measures {@,} is said to be contiguous to {P,} if whenever P,(A,) =7« 0 as n — o for
some sequence of events A, € %" then @n(A.) —n.. 0 also. If {@,} is contiguous to {P,}
then, at least in “nice” cases, the asymptotic distribution of statistics under @, can be
derived from their asymptotic distribution under P,, allowing the asymptotic power of
tests based on these statistics to be calculated. (For a recent, elegant paper on contiguity,
see Hall and Loynes (1977).)

The analogue of singularity is the entire separation of the two sequences of measures
{P.} and {@.} (see Le Cam (1977)). For two measures P and @, let | P A @| denote the
infimum of the sum of error probabilities over all tests of P against . The sequences {P,}
and {Q.} are said to separate entirely if

lim inf, .|| P A @, | = 0.

That is, {P,} and {@.} separate entirely if, and only if, there is a sequence of test functions
{¢»} and a subsequence, along which the ¢, give a consistent sequence of tests of H™
against H{ of asymptotic size zero.

It may seem strange to require only the existence of a consistent subsequence of tests,
but this is forced upon us by the fact that the measures may be defined on different
probability spaces. In practice, the subsequence will coincide with the whole sequence.
That entire separation is the natural analogue of singularity is shown by the following
Proposition.

ProposITION 2. The following statements are equivalent:
(i) the sequences of measures {P,} and {Q,} separate entirely;
(i) there exists a subsequence n’ and sets A, € B" such that

P.(Ay)— 0 while Qu(Ay) — 1.

ProoF. Suppose that {P,} and {@.} are separated entirely by the test functions {¢.}
along the subsequence {n’}. Set

A, =[¢n =]
Then
P,(Ay) = 2Ep (¢(X)) = 0
and
Qn(Av) = 2Eq/(1 — ¢pw(X)) — 0.

Conversely, if (ii) holds, then ¢, = I, will provide a consistent subsequence of tests.

It follows that when the P, and @, are the finite-dimensional distributions of two
measures P and @, contiguity is simply absolute continuity and entire separability, mutual
singularity. In this case, Kraft (1955) showed that singularity is equivalent to the existence
of a consistent sequence of tests of H{” against H{™.

We can now apply our theorem to see that if the hypotheses specify Gaussian measures
then only the two extreme situations of continguity and entire separability are possible.

COROLLARY 3. If the sequence of null and alternative hypotheses HS” and H{® specify
Gaussian measures P, and @, respectively, then {P,} and {Q,} are either mutually
contiguous or entirely separable.

Proor. As the P, and @, are Gaussian measures, for each n either P, ~ @, or P, L
Q.. If there exists infinitely many n for which P, L @,, then {P,} and {@.} are clearly
entirely separable. On the other hand, if there are only finitely many such n, for n larger.
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than some N, we may assume that P, ~ @, and that the likelihood ratio L, = dQ./dP,
exists. It then follows (Hall and Loynes (1977), Proposition 4) that {@.} is contiguous to
{P,} if and only if {L., n = N} is tight (@.). The result follows immediately from the
theorem above on noting that

P(L,>A)<A"! for all n.

ExaAMPLE. Suppose that H{” specifies that the random variables (X1, - - -, Xz.) are
independent N(0, 1) and H{” that they are independent with X,.; ~ N(an;, 1),i=1, ---, n.
Here log L, is the linear form

St @riXni — Yo Y @l
which is distributed under H{® as N(% ¥ @, ¥ a%). It follows immediately that {@.)} is
contiguous to {P,} if and only if

lim SUPne Y1 @i < .
This condition should be compared with that obtained by Hajek and Sidék (VI.2.1) where

they show that {Q,} is contiguous to {P,} (and that log L, is asymptotically normal under
P,) if

linln—mo maXi<i<n ar%i =0

and

lim, .o Y21 a2 = b7, 0< b’ <o,

REMARK. While the existence of a dichotomy is interesting, one also needs to have
straightforward necessary and sufficient conditions for one or other of the two possibilities
to hold. Such conditions have been derived for Gaussian processes by Rao and Varadarajan
(1963) and Shepp (1964). However, one can use the Theorem (as in the above example) to
immediately give conditions for equivalence/singularity or contiguity/separability. In fact
the proof of the Theorem shows that {L,} will be tight (@) if, and only if, both

|Eq,log L, |
and
Varg, (log L)

are bounded. By simultaneously reducing @, to N(0, I,) and P, to N(u,, diag(sa, -« -,
o)),

1 1
log L = ¥j-110g 0 = 5 Y-t &7 + 5 Yo (3 = )/ 025

2
1 nj
= Y% log anj—§z7=1 (l—alf)[xf"' a ]

0,2,j -1
2
n Knj
+ =
2 ZJ ! 0,2,1' -1

It follows that ’

1, 1 1 1.,

Eq, log L, = — E p =Y (loga—ﬁj +1- 0_?;,) + 3 i Hﬁj/d?u‘

and that

Varg, log L, = % Y- (1 — 05})" + Yot phs/0ns.
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In order that Varg, log L. be bounded, it is necessary and sufficient that

(6) supn YJ-1 (1 — 07;)* < oo
and that
(7) SUpn X1 w0ty < co.

As (6) implies that the 62 are uniformly bounded away from zero, (7) may be replaced
by
(7) Sup, Y1 pZ; < oo,

On the other hand, aslog x + 1 — x <0, Eg_log L, will be bounded if and only if

8) sup, Y71 (log 62, — 1 + 0,7) <
and
©) SUPn Y11 i/ Onj < 0.

As (8) implies that the o are uniformly bounded, and as there exist positive constants
¢ and d such that

y—cy’=log(l+y) <y—dy’

f~l1<a;<y<a;<w»(a; <1< ap), condition (8) is equivalent to

(10) SUp, MaX;= p 05j < ®
together with
1) sups Y1 (1 — 077)% < oo,

Thus we have proved:

COROLLARY 4. Suppose that for each n =1, 2, --., (R", #") is endowed with two
Gaussian probability measures, P, and @, with P, ~ N(p., diag(os, - - -, 02,)) and @, ~
N(0, I,.). Then {P,} and {Q.} are mutually contiguous or entirely separable. They will
be mutually contiguous if, and only if,

(i) SUp, Maxj< » 05; < %,

(i) sup, Y1 (1 = 077)° < o,
and

(i) SUp, Y1 iy < oo,

These conditions are exactly the same as those obtained by Chatterji and Mandrekar
(1978) (Lemma 4.1(c)) when the P, and @, are finite-dimensional distributions of a
Gaussian process.
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