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GAUSSIAN MEASURABLE DUAL AND BOCHNER’S THEOREM

By HirosHI SATO

Kyushu University

Let E be a locally convex Hausdorff linear topological space, E’ be the
topological dual of E and y be a nondegenerate, centered Gaussian-Radon
measure on E. Then every nonnegative definite continuous functional on E is
the characteristic functional of a Borel probability measure on E?, the closure
of E’ in Lo(y). In other words, identifying E with the reproducing kernel
Hilbert space J, of y, we may say that for every continuous nonnegative
definite function f on E there exists a Borel probability 1 on 5, such that fis
the characteristic functional of p.

1. Introduction. Let E be a locally convex Hausdorff linear topological space, E’ be
the topological dual and E be the algebraic dual of E. Let E and F be two linear spaces
in duality with canonical bilinear form (x, £¢), x € E, £ € F. Then the minimal o-algebra of
subsets of E that makes all functions {(x, £); £ € F} measurable is denoted by ¢(E, F).

Let p be a Radon probability measure on E and Lo(y) be the linear metric space of all
p-measurable functions with metric

_ [x(§) —y(©|

Then it is well-known that Lo(u) is a complete metric space and the canonical map R, of
E’ into Lo(p) defined by

Ri:x€E — x(¢§) = (x,§) € Lo(p)

is continuous with respect to the compact convergence topology of E’. The measurable
dual of E = (E, p) is defined as the closure of R,(E’) in Lo(p) and denoted by E*. A
Radon probability measure p on E is called nondegenerate if the whole space E coincides
with the minimal closed subspace of u-measure 1. If p is nondegenerate then R, is one-to-
one. A Radon probability measure y on E is called centered Gaussian if for every x in E’
the real random variable x(§) = (x, £) on the probability space (E, y) obeys a Gaussian
law of mean 0.
In this paper, we will prove the following theorem.

THEOREM 1. Let E be a locally convex Hausdorff linear topological space, y be a
nondegenerate centered Gaussian Radon measure on E and f be a continuous non-
negative definite functional with f(0) = 1 on E. Then there exists a Radon probability
measure y. on E” such that:

(1) The canonical map R,:(E") — (E")* is extended to E.

(2) For every ¢ in E we have

f(€) =f e*® d,(x),
Ev

where £(x) = (R,£)(x).
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In fact, identifying E¥ with the reproducing kernel Hilbert space J#, of y, we will
explicitly construct such a probability measure p on 5%,

Theorem 1 is claimed in a further general form in D. Xia [7], Theorem 4-3-11, but it is
incorrect even in the case of a Hilbert space, and yet the author would like to mark that
this work was greatly motivated by [7]. Theorem 1 is also a generalization of the Duality
Theorem of L. Schwartz [6].

Recently, Y. Okazaki [4] has proved the theorem showing that u*, the adjoint map of
the canonical injection u:5, — E, is 0-Radonising. In this paper we will prove it in a
purely probabilistic and constructive manner. The crucial point of our proof is to show the
stochastic approximation property of a Gaussian Radon probability space (E, v).

Throughout the paper we assume that the coefficients of linear spaces are real and that
every nonnegative definite functional f satisfies f(0) = 1.

2. Stochastic approximation property. Let E be a locally convex Hausdorff linear
topological space, y be a nondegenerate centered Gaussian Radon measure on E and R, be
the canonical map of E’ into Lo(y). Then, since y is nondegenerate, R, is injective and,
since y is Gaussian, R, transforms E’ into Lis(y) C Lo(y) and the measurable dual E”
coincides with the closure of R,(E’) in Ly(y) as a linear topological space, which we denote
by H,. Furthermore since y is Gaussian Radon, H, = E" is a separable Hilbert space and
the adjoint map R of R, is a linear injection of H, = H, into E (H. Sato and Y. Okazaki
[5], C. Borell [1]). We translate the topology of H, onto 5, = R}(H,) and call 5, the
reproducing kernel Hilbert space of y. Obviously % is isomorphic to H, = E¥ and we may
identify all of them.

Since H, is separable and R,(E’) is dense in H,, we can choose a sequence {x,} in E’
such that {R,x,] is a complete orthonormal system (CONS) of H,. Define

£ = RJR, x5, n=123, ...,

and
g = X i1 (%), £)§;, §EE.
Then obviously =, is a continuous linear map of E into itself so that an E-valued random

variable on the probability space (E, v).

LeEMMA 1. For every bounded continuous function f on E we have
fo) = limnj f(€— mé) dy(§).
E

In other words the E-valued random variable U,(§) = £ — m,.£ converges to 0 in law.

ProoF. The idea of the proof is the same as that of Theorem 4-1 (e) — (d) of K. Ité
and M. Nisio [2] but for completeness we state it below.

Since {R,x,} is a CONS of H,, {(xs, £)} is an independent real random sequence with
the same Gaussian distribution of mean 0 and variance 1 on the probability space (E, y).
Therefore {(xn, £)£:} is an independent symmetric E-valued random sequence.

Obviously we have for every y in E’

(y, '”n§> = Z/’LI (xny 5)(.}', gn)
= Zlﬁ‘l (xll’ §)<y; R‘r*Ryxn)
= ZJ!LI (Ryyy Ryxn)xn(g)

-y =(5¢, as(y) asn— +x

where (-, -) is the inner product of H,, and for every n, (y, m.£) and (y, £ — m.§) are

independent.
It is easy to show that for every A, B in ¥ (E, E’)
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YEEE; méEA E— méE B)
=YEEE mE€EA(EEE; {— miE B)
and since v is Radon, by Lemma 3-2 of H. Sato and Y. Okazaki [5] we have
(& mEEC, § — mEE D)
=y mEEC)y(§; 6~ mEED)
for all Borel subsets C, D of E. This means that #,¢ and £ — 7,£ are independent as E-

valued random variables so that for every compact subset K of E we have

y(K) = f Y™K =) dya(n)
E

where v, and y”" are the distributions of 7,{ and £ — m,§ respectively. Therefore there
exists 7 in E such that

Y (K — n0) = y(K).
Furthermore, since ¢ — 7, ¢ is symmetrically distributed, we have
Y (K = n0) = y"(=K + no) = y(K).

On the other hand, since y is Radon, for every positive number e there exists a compact
subset K such that

YK =1-2
Then K, = %(K — K) is also compact and we have
YK = y"(4[K - K])
= y"([K = mo] N [—K + m0])
=1 - y"([K = n]) = y"([-K + m0]°)

Therefore {y"} is weakly relatively compact and since we have

1= limn_,wf e">® dy™(§), YEE,
E

{y"} converges weakly to the Dirac measure 8.
This proves the lemma.

REMARK. If E is a separable Fréchet space, then m,.£ converges to £ almost surely
(Nguen Zuy Tien [3]).

In a similar manner we can prove the following lemma.

LEMMA 2. For every bounded continuous function f we have

f0) = limm-»mj f(mn€ — wm€) dy (£).
E

3. Proof of the theorem. Let E be a locally convex Hausdorff linear topological
space, y be a nondegenerate centered Gaussian Radon measure on E and fbe a continuous
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nonnegative definite function with £(0) = 1 on E. Then there exists a probability measure
Q on (E®, %(E*°, E)) such that

f($) =I e’ dQ(x), {E€EE,
Eo

where (x, ¢) is the canonical bilinear form on E* X E.
Define a sequence {x,} in E’ such that {R,x. is a CONS of H,,

¢ =R)R,xn,
an = Z!!:'I (xf’ g)gf’
‘pn(xy g) = (xy '”mf) = Z;’-l <xy &)(xj, g) xE Ea’ g € Ey n= 1’ 2) 3) M

Then obviously y»(x, £) is €(E?, E) X # (E)-measurable, where # (E) is the Borel field of
E, and continuous in ¢ for every fixed x in E°,
Since fis a bounded continuous function on E, by Lemma 2 we have

j dy(§) j (1 — exp[—| ¥n(x, §) — ¥Ym(x, £)]]) dQ(x)
E Ec

J' J’ J’ a1- eu(anf—wmf)) dQ(x)
Rl

_1 f f [1 = f(t(mn + )] (&)
Rl

-0, as n,m,— -+,
Therefore Y,(x, §) is a Cauchy sequence Lo(@ X y) and there exists
Yo, §) = @ X y — limy Yun(x, £).

The convergence is in probability so that we may extract an almost surely convergent
subsequence.
On the other hand by Lemma 1 we have

limnj dy(£)f [1— exp(—|(x, &) — (x, m&)|)] dQ(x)
E Ea

= lim, f dy(§) tz [1 - (¢ —md)) dt
E

l +
— lim, f f [1 = F(e(¢ — mat))] dy (&) =

Since
F,(§) = J' [1 — exp(—|{x, &) — (x, m&)])] dQ(x)
Ea
is nonnegative and % (E)-measurable, {F,} converges to 0 in probability so that we can

extract an almost surely convergent subsequence.
Therefore, for simplicity of notation, without loss of generality we may assume that
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Yul(x, £) = lim, Yu(x, £), ae (@ Xy)
lim, Fn(g) =0, a.e. (Y)~

Obviously Y (x, £) is @ X y-measurable.

Put
lim,, Yn(x, §) exists
Z=4(x,¢{) EE*XE;
lim, F,(§) =0
and let
Y(x, §) = lim, Yu(x, £), (x,¢) € Z
Then Z and ¢/(x, £) are @ X y-measurable and we have

@xy)2)=1
Y(x, §) =Yulx, §)  ae (@ Xy).
Since lim,, F,(¢) = 0 implies the convergence in probability of y»(x, £) to (x, ), the set
F={{ € E;lim, F.(§) =0}
={{€E;(x,§) = Q—lim, (x, m{)}

is a 4 (E')-measurable linear subspace of E such that y(#) = 1.
By Fubini’s Theorem there exists a @-measurable subset W of E“ such that @ (W) =1,
and for every x in W

E.={{€E;(x,§) €Z}
is a y-measurable linear subspace of E, y(E,) = 1,
¥(x, £) = lim, Yn(x, £)
= lim, (x, m.£), (€L,

and y/(x, £) is linear on E,. Since y,(x, £) is continuous in £, this shows that ¢ (x, £) belongs
to E” for every x in W,

Let %, be the reproducing kernel Hilbert space of y. Then #, is included in every y-
measurable linear subspace Fj, and E such that y(Fo) = 1 (Theorem 3-4 (2) of H. Sato and
Y. Okazaki [5]). Therefore we have

.%, Cn.ewk,.
Define a map ¥ of W into 5%, by
[¥ (x), £] = ¥(x, £), x €W, L€ A,

where [ , ] is the inner product of #,. Obviously ¥ is a measurable linear map of
(W, $o(W)) into (#, € (¥, #,)) where €o(W) is the o-algebra of all @-measurable subsets
of W. Then u = @ o ¥ ' is a probability measure on (¥, % (#;, 5)) and, since % is a
separable Hilbert space, € (5, #,) coincides with the Borel field of J,.

On the other hand, for every £ in J#, we have

(x,£)=Q—limn (xy'”n£> gey{;_
=y(x§), ae (@),
This implies that
j ei[y’fldu(y) =j ei["'("”fldQ(x)
#

i/ w
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- f e#8) dQ (x)
w

=J e'™® dQ(x) = f(4), §E€ .
w

Let R, be the canonical map of 5, = ()’ into Lo(r) and &(y) = [y, £] = (R.£)(y). Since
H#, is dense in E (Theorem 5-1 of [5], Corollary 8-2 of [1]), for every £ in E there exists a
net {£&} of # which converges to £ in the topology of E. The continuity of fimplies that

lima,ﬁj (1 — exp[—| &) — &)|D duly)

. 1 1
= lim, g - L] 138 {1—f(e(¢ — &)} dt = 0.

Therefore there exists a limit of R,£, in Lo(u) which does not depend on the choice of the
net {£.}. We define R, £ by this limit and consequently R, is extended to a map of E into
(#%)*. Then the relation

€3] =J e*™ du(x), ¢EE
v

is evident.
Since, by the definition, 5 is isomorphic to H, = E?, this proves the theorem.

REMARK. The existence of a nondegenerate centered Gaussian Radon measure on an
arbitrary locally convex Hausdorff space E is not trivial. But in the case where E is a
separable Fréchet space, we have the following lemma.

LEMMA 3.!  On every separable Fréchet space E there exists a nondegenerate centered
Gaussian measure.

Proor. Let {||.} be a sequence of seminorms which defines the topology of E and
{&.} be a countable dense subset of E. Without loss of generality, we may assume that &,

# 0 for every n and
[€h=|&lz=<|&ls -~

for every £in E.
Let {g.} be a sequence of independent real random variables with the same Gaussian

distribution of mean 0 and variance 1. Then
X =3,2""angnén

converges almost surely in E where
=1+ &), n=123,---.

In fact for every natural number k2 we have

E[| 3n 27" ngnén &]

=3 27"an | & RE[| &[]

=Yk 2770 | £n |k + Tnor 27" < oo,
'where E[-] is the mathematical expectation. Therefore the series X converges in proba-
bility, so that almost surely (K. Itd and M. Nisio [1]), with respect to every seminorm | [x.

This implies the almost sure convergence of X in the topology of E.
Let y be the distribution of X. Then obviously y is a centered Gaussian Borel measure

on E.

! Lemma 3 was suggested by Y. Okazaki.
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In order to prove that y is nondegenerate, it is enough to show that the minimal closed
linear subspace E, of y-measure 1 contains all the £&.’s. Suppose that, say, £; does not belong
to Eo and put Y = ¥ 1.2, 27"a,g,£.. Then we have

1= vy(E¢) = P(X € Ey)
= P(% a1g1£1 + YG Eo)

=P(YE E)— 2 'a18:4)

+oo 2

1 _v
= 75_; B V(Eo - q"lalt&)e 2 dt,
where v is the distribution of Y. Therefore we have
v(Eo—té) =1

for at least infinitely many real numbers ¢.
On the other hand, since E, is a linear subspace, E, — t¢ and E, — s§; are mutually

disjoint unless ¢ = s. This is a contradiction and the lemma is proved.
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