GAUSSIAN MEASURABLE DUAL AND BOCHNER'S THEOREM

By Hiroshi Sato

Kyushu University

Let E be a locally convex Hausdorff linear topological space, E' be the topological dual of E and γ be a nondegenerate, centered Gaussian-Radon measure on E. Then every nonnegative definite continuous functional on E is the characteristic functional of a Borel probability measure on E^{γ} , the closure of E' in $L_0(\gamma)$. In other words, identifying E^{γ} with the reproducing kernel Hilbert space \mathscr{H}_{γ} of γ , we may say that for every continuous nonnegative definite function f on E there exists a Borel probability μ on \mathscr{H}_{γ} such that f is the characteristic functional of μ .

1. Introduction. Let E be a locally convex Hausdorff linear topological space, E' be the topological dual and E^a be the algebraic dual of E. Let E and F be two linear spaces in duality with canonical bilinear form $\langle x, \xi \rangle$, $x \in E$, $\xi \in F$. Then the minimal σ -algebra of subsets of E that makes all functions $\{\langle x, \xi \rangle; \xi \in F\}$ measurable is denoted by $\mathscr{C}(E, F)$.

Let μ be a Radon probability measure on E and $L_0(\mu)$ be the linear metric space of all μ -measurable functions with metric

$$\rho(x, y) = \int_{E} \frac{|x(\xi) - y(\xi)|}{1 + |x(\xi) - y(\xi)|} d\mu(\xi), \qquad x, y \in L_{0}(\mu).$$

Then it is well-known that $L_0(\mu)$ is a complete metric space and the *canonical map* R_{μ} of E' into $L_0(\mu)$ defined by

$$R_{\mu}: x \in E' \to x(\xi) = \langle x, \xi \rangle \in L_0(\mu)$$

is continuous with respect to the compact convergence topology of E'. The measurable dual of $E=(E,\mu)$ is defined as the closure of $R_{\mu}(E')$ in $L_0(\mu)$ and denoted by E^{μ} . A Radon probability measure μ on E is called nondegenerate if the whole space E coincides with the minimal closed subspace of μ -measure 1. If μ is nondegenerate then R_{μ} is one-to-one. A Radon probability measure γ on E is called centered Gaussian if for every x in E' the real random variable $x(\xi) = \langle x, \xi \rangle$ on the probability space (E, γ) obeys a Gaussian law of mean 0.

In this paper, we will prove the following theorem.

Theorem 1. Let E be a locally convex Hausdorff linear topological space, γ be a nondegenerate centered Gaussian Radon measure on E and f be a continuous nonnegative definite functional with f(0) = 1 on E. Then there exists a Radon probability measure μ on E^{γ} such that:

- (1) The canonical map $R_{\mu}: (E^{\gamma})' \to (E^{\gamma})^{\mu}$ is extended to E.
- (2) For every ξ in E we have

$$f(\xi) = \int_{F_{\lambda}} e^{i\xi(x)} d_{\mu}(x),$$

where $\xi(x) = (R_{\mu}\xi)(x)$.

Received May 31, 1979; revised April 2, 1980.

AMS 1980 subject classifications. Primary 60E10; secondary 28C20, 60B11.

Key words and phrases. Measurable dual, Bochner's theorem, Gaussian-Radon measure, characteristic functional.

In fact, identifying E^{γ} with the reproducing kernel Hilbert space \mathcal{H}_{γ} of γ , we will explicitly construct such a probability measure μ on \mathcal{H}_{γ} .

Theorem 1 is claimed in a further general form in D. Xia [7], Theorem 4-3-11, but it is incorrect even in the case of a Hilbert space, and yet the author would like to mark that this work was greatly motivated by [7]. Theorem 1 is also a generalization of *the Duality Theorem* of L. Schwartz [6].

Recently, Y. Okazaki [4] has proved the theorem showing that u^* , the adjoint map of the canonical injection $u: \mathcal{H}_{\gamma} \to E$, is 0-Radonising. In this paper we will prove it in a purely probabilistic and constructive manner. The crucial point of our proof is to show the stochastic approximation property of a Gaussian Radon probability space (E, γ) .

Throughout the paper we assume that the coefficients of linear spaces are real and that every nonnegative definite functional f satisfies f(0) = 1.

2. Stochastic approximation property. Let E be a locally convex Hausdorff linear topological space, γ be a nondegenerate centered Gaussian Radon measure on E and R_{γ} be the canonical map of E' into $L_0(\gamma)$. Then, since γ is nondegenerate, R_{γ} is injective and, since γ is Gaussian, R_{γ} transforms E' into $L_2(\gamma) \subset L_0(\gamma)$ and the measurable dual E^{γ} coincides with the closure of $R_{\gamma}(E')$ in $L_2(\gamma)$ as a linear topological space, which we denote by H_{γ} . Furthermore since γ is Gaussian Radon, $H_{\gamma} = E^{\gamma}$ is a separable Hilbert space and the adjoint map R_{γ}^{*} of R_{γ} is a linear injection of $H_{\gamma} = H'_{\gamma}$ into E (H. Sato and Y. Okazaki [5], C. Borell [1]). We translate the topology of H_{γ} onto $\mathscr{H}_{\gamma} = R_{\gamma}^{*}(H_{\gamma})$ and call \mathscr{H}_{γ} the reproducing kernel Hilbert space of γ . Obviously \mathscr{H}_{γ} is isomorphic to $H_{\gamma} = E^{\gamma}$ and we may identify all of them.

Since H_{γ} is separable and $R_{\gamma}(E')$ is dense in H_{γ} , we can choose a sequence $\{x_n\}$ in E' such that $\{R_{\gamma}x_n\}$ is a complete orthonormal system (CONS) of H_{γ} . Define

$$\xi_n = R_{\gamma}^* R_{\gamma} x_n, \qquad n = 1, 2, 3, \cdots,$$

and

$$\pi_n \xi = \sum_{j=1}^n \langle x_j, \xi \rangle \xi_j, \qquad \xi \in E.$$

Then obviously π_n is a continuous linear map of E into itself so that an E-valued random variable on the probability space (E, γ) .

LEMMA 1. For every bounded continuous function f on E we have

$$f(0) = \lim_{n} \int_{E} f(\xi - \pi_{n}\xi) \ d\gamma(\xi).$$

In other words the E-valued random variable $U_n(\xi) = \xi - \pi_n \xi$ converges to 0 in law.

PROOF. The idea of the proof is the same as that of Theorem 4-1 $(e) \rightarrow (d)$ of K. Itô and M. Nisio [2] but for completeness we state it below.

Since $\{R_{\gamma}x_n\}$ is a CONS of H_{γ} , $\{\langle x_n, \xi \rangle\}$ is an independent real random sequence with the same Gaussian distribution of mean 0 and variance 1 on the probability space (E, γ) . Therefore $\{\langle x_n, \xi \rangle \xi_n\}$ is an independent symmetric E-valued random sequence.

Obviously we have for every y in E'

$$\langle y, \pi_n \xi \rangle = \sum_{j=1}^n \langle x_n, \xi \rangle \langle y, \xi_n \rangle$$

$$= \sum_{j=1}^n \langle x_n, \xi \rangle \langle y, R_{\gamma}^* R_{\gamma} x_n \rangle$$

$$= \sum_{j=1}^n \langle R_{\gamma} y, R_{\gamma} x_n \rangle x_n(\xi)$$

$$\to y(\xi) = \langle y, \xi \rangle, \quad \text{a.s. } (\gamma) \quad \text{as } n \to +\infty,$$

where (\cdot, \cdot) is the inner product of H_{γ} , and for every n, $\langle y, \pi_n \xi \rangle$ and $\langle y, \xi - \pi_n \xi \rangle$ are independent.

It is easy to show that for every A, B in $\mathscr{C}(E, E')$

$$\gamma(\xi \in E; \pi_n \xi \in A, \xi - \pi_n \xi \in B)$$

$$= \gamma(\xi \in E; \pi_n \xi \in A) \gamma(\xi \in E; \xi - \pi_n \xi \in B)$$

and since γ is Radon, by Lemma 3-2 of H. Sato and Y. Okazaki [5] we have

$$\gamma(\xi; \pi_n \xi \in C, \xi - \pi_n \xi \in D)$$

$$= \gamma(\xi; \pi_n \xi \in C) \gamma(\xi; \xi - \pi_n \xi \in D)$$

for all Borel subsets C, D of E. This means that $\pi_n \xi$ and $\xi - \pi_n \xi$ are independent as E-valued random variables so that for every compact subset K of E we have

$$\gamma(K) = \int_E \gamma^n(K - \eta) \ d\gamma_n(\eta)$$

where γ_n and γ^n are the distributions of $\pi_n \xi$ and $\xi - \pi_n \xi$, respectively. Therefore there exists η_0 in E such that

$$\gamma^n(K-\eta_0) \geq \gamma(K).$$

Furthermore, since $\xi - \pi_n \xi$ is symmetrically distributed, we have

$$\gamma^n(K - \eta_0) = \gamma^n(-K + \eta_0) \ge \gamma(K).$$

On the other hand, since γ is Radon, for every positive number ϵ there exists a compact subset K such that

$$\gamma(K) \geq 1 - \frac{\epsilon}{2}.$$

Then $K_{\epsilon} = \frac{1}{2}(K - K)$ is also compact and we have

$$\gamma^{n}(K_{\epsilon}) = \gamma^{n}(\frac{1}{2}[K - K])$$

$$\geq \gamma^{n}([K - \eta_{0}] \cap [-K + \eta_{0}])$$

$$\geq 1 - \gamma^{n}([K - \eta_{0}]^{c}) - \gamma^{n}([-K + \eta_{0}]^{c})$$

$$\geq 1 - \frac{\epsilon}{2} - \frac{\epsilon}{2} = 1 - \epsilon.$$

Therefore $\{\gamma^n\}$ is weakly relatively compact and since we have

$$1 = \lim_{n \to \infty} \int_{E} e^{i(y,\xi)} d\gamma^{n}(\xi), \qquad y \in E',$$

 $\{\gamma^n\}$ converges weakly to the Dirac measure δ .

This proves the lemma.

REMARK. If E is a separable Fréchet space, then $\pi_n \xi$ converges to ξ almost surely (Nguen Zuy Tien [3]).

In a similar manner we can prove the following lemma.

LEMMA 2. For every bounded continuous function f we have

$$f(0) = \lim_{n,m\to+\infty} \int_{E} f(\pi_n \xi - \pi_m \xi) \ d\gamma(\xi).$$

3. Proof of the theorem. Let E be a locally convex Hausdorff linear topological space, γ be a nondegenerate centered Gaussian Radon measure on E and f be a continuous

nonnegative definite function with f(0) = 1 on E. Then there exists a probability measure Q on $(E^a, \mathscr{C}(E^a, E))$ such that

$$f(\xi) = \int_{E^a} e^{i(x,\xi)} dQ(x), \qquad \xi \in E,$$

where $\langle x, \xi \rangle$ is the canonical bilinear form on $E^a \times E$.

Define a sequence $\{x_n\}$ in E' such that $\{R_{\gamma}x_n\}$ is a CONS of H_{γ} ,

$$\xi_n = R_{\gamma}^* R_{\gamma} x_n,$$

$$\pi_n \xi = \sum_{j=1}^n \langle x_j, \xi \rangle \xi_j,$$

$$\psi_n(x, \xi) = \langle x, \pi_n \xi \rangle = \sum_{j=1}^n \langle x, \xi_j \rangle \langle x_j, \xi \rangle \qquad x \in E^a, \xi \in E, n = 1, 2, 3, \cdots.$$

Then obviously $\psi_n(x, \xi)$ is $\mathscr{C}(E^a, E) \times \mathscr{B}(E)$ -measurable, where $\mathscr{B}(E)$ is the Borel field of E, and continuous in ξ for every fixed x in E^a .

Since f is a bounded continuous function on E, by Lemma 2 we have

$$\int_{E} d\gamma(\xi) \int_{E^{a}} (1 - \exp[-|\psi_{n}(x, \xi) - \psi_{m}(x, \xi)|]) dQ(x)$$

$$= \int_{E} d\gamma \frac{1}{\pi} \int_{R^{1}} \frac{dt}{1 + t^{2}} \int_{E^{a}} (1 - e^{it\langle x, \pi_{n}\xi - \pi_{m}\xi \rangle}) dQ(x)$$

$$= \frac{1}{\pi} \int_{R^{1}} \frac{dt}{1 + t^{2}} \int_{E} \left[1 - f(t(\pi_{n}\xi + \pi_{m}\xi))\right] d\gamma(\xi)$$

$$\to 0, \quad \text{as} \quad n, m, \to +\infty.$$

Therefore $\psi_n(x, \xi)$ is a Cauchy sequence $L_0(Q \times \gamma)$ and there exists

$$\psi_{\infty}(x,\,\xi) = Q \times \gamma - \lim_{n} \psi_{n}(x,\,\xi).$$

The convergence is in probability so that we may extract an almost surely convergent subsequence.

On the other hand by Lemma 1 we have

$$\lim_{n} \int_{E} d\gamma(\xi) \int_{E^{a}} \left[1 - \exp(-|\langle x, \xi \rangle - \langle x, \pi_{n} \xi \rangle|) \right] dQ(x)$$

$$= \lim_{n} \int_{E} d\gamma(\xi) \int_{R^{1}} \frac{1}{1 + t^{2}} \left[1 - f(t(\xi - \pi_{n} \xi)) \right] dt$$

$$= \lim_{n} \int_{R^{1}} \frac{dt}{1 + t^{2}} \int_{E} \left[1 - f(t(\xi - \pi_{n} \xi)) \right] d\gamma(\xi) = 0.$$

Since

$$F_n(\xi) = \int_{E^a} \left[1 - \exp(-|\langle x, \xi \rangle - \langle x, \pi_n \xi \rangle|)\right] dQ(x)$$

is nonnegative and $\mathcal{B}(E)$ -measurable, $\{F_n\}$ converges to 0 in probability so that we can extract an almost surely convergent subsequence.

Therefore, for simplicity of notation, without loss of generality we may assume that

$$\psi_{\infty}(x, \xi) = \lim_{n} \psi_{n}(x, \xi),$$
 a.e. $(Q \times \gamma)$
 $\lim_{n} F_{n}(\xi) = 0,$ a.e. (γ) .

Obviously $\psi_{\infty}(x, \xi)$ is $Q \times \gamma$ -measurable.

Put

$$Z = \left\{ (x, \xi) \in E^a \times E; \ \lim_n \psi_n(x, \xi) \text{ exists}
ight\}$$

and let

$$\psi(x,\xi) = \lim_{n} \psi_n(x,\xi), \qquad (x,\xi) \in Z.$$

Then Z and $\psi(x, \xi)$ are $Q \times \gamma$ -measurable and we have

$$(Q \times \gamma)(Z) = 1$$

 $\psi(x, \xi) = \psi_{\infty}(x, \xi)$ a.e. $(Q \times \gamma)$.

Since $\lim_n F_n(\xi) = 0$ implies the convergence in probability of $\psi_n(x, \xi)$ to $\langle x, \xi \rangle$, the set

$$\mathscr{F} = \{ \xi \in E; \lim_{n} F_{n}(\xi) = 0 \}$$

$$= \{ \xi \in E; \langle x, \xi \rangle = Q - \lim_{n} \langle x, \pi_{n} \xi \rangle \}$$

is a $\mathcal{B}(E)$ -measurable linear subspace of E such that $\gamma(\mathcal{F}) = 1$.

By Fubini's Theorem there exists a Q-measurable subset W of E^a such that Q(W)=1, and for every x in W

$$E_x = \{ \xi \in E; (x, \xi) \in Z \}$$

is a γ -measurable linear subspace of E, $\gamma(E_x) = 1$,

$$\psi(x,\xi) = \lim_{n} \psi_n(x,\xi)$$

$$= \lim_{n} \langle x, \pi_n \xi \rangle, \qquad \xi \in E_x,$$

and $\psi(x, \xi)$ is linear on E_x . Since $\psi_n(x, \xi)$ is continuous in ξ , this shows that $\psi(x, \xi)$ belongs to E^{γ} for every x in W.

Let \mathscr{H}_{γ} be the reproducing kernel Hilbert space of γ . Then \mathscr{H}_{γ} is included in every γ -measurable linear subspace F_0 and E such that $\gamma(F_0) = 1$ (Theorem 3-4 (2) of H. Sato and Y. Okazaki [5]). Therefore we have

$$\mathscr{H}_{\gamma} \subset \bigcap_{x \in W} E_x$$
.

Define a map Ψ of W into \mathscr{H}_{γ} by

$$[\Psi(x), \xi] = \psi(x, \xi),$$
 $x \in W, \xi \in \mathscr{H}_{\gamma},$

where $[\ ,\]$ is the inner product of \mathscr{H}_{γ} . Obviously Ψ is a measurable linear map of $(W,\mathscr{C}_Q(W))$ into $(\mathscr{H}_{\gamma},\mathscr{C}(\mathscr{H}_{\gamma},\mathscr{H}_{\gamma}))$ where $\mathscr{C}_Q(W)$ is the σ -algebra of all Q-measurable subsets of W. Then $\mu=Q\circ\Psi^{-1}$ is a probability measure on $(\mathscr{H}_{\gamma},\mathscr{C}(\mathscr{H}_{\gamma},\mathscr{H}_{\gamma}))$ and, since \mathscr{H}_{γ} is a separable Hilbert space, $\mathscr{C}(\mathscr{H}_{\gamma},\mathscr{H}_{\gamma})$ coincides with the Borel field of \mathscr{H}_{γ} .

On the other hand, for every ξ in \mathcal{H}_{γ} we have

$$\langle x, \xi \rangle = Q - \lim_n \langle x, \pi_n \xi \rangle$$
 $\xi \in \mathcal{H}_{\gamma}.$
= $\psi(x, \xi)$, a.e. (Q) ,

This implies that

$$\int_{\mathscr{K}} e^{i[y,\xi]} d\mu(y) = \int_{W} e^{i[\Psi(x),\xi]} dQ(x)$$

$$= \int_{W} e^{i\psi(x,\xi)} dQ(x)$$

$$= \int_{W} e^{i(x,\xi)} dQ(x) = f(\xi), \qquad \xi \in \mathscr{H}_{\gamma}.$$

Let R_{μ} be the canonical map of $\mathscr{H}_{\gamma} = (\mathscr{H}_{\gamma})'$ into $L_0(\mu)$ and $\xi(y) = [y, \xi] = (R_{\mu}\xi)(y)$. Since \mathscr{H}_{γ} is dense in E (Theorem 5-1 of [5], Corollary 8-2 of [1]), for every ξ in E there exists a net $\{\xi_{\alpha}\}$ of \mathscr{H}_{γ} which converges to ξ in the topology of E. The continuity of f implies that

$$\begin{split} &\lim_{\alpha,\beta} \int_{\mathscr{H}_{\gamma}} \left(1 - \exp[-|\xi_{\alpha}(y) - \xi_{\beta}(y)|]\right) \, d\mu(y) \\ &= \lim_{\alpha,\beta} \frac{1}{\pi} \int_{\Omega} \frac{1}{1 + t^2} \left\{1 - f(t(\xi_{\alpha} - \xi_{\beta}))\right\} \, dt = 0. \end{split}$$

Therefore there exists a limit of $R_{\mu}\xi_{\alpha}$ in $L_0(\mu)$ which does not depend on the choice of the net $\{\xi_{\alpha}\}$. We define $R_{\mu}\xi$ by this limit and consequently R_{μ} is extended to a map of E into $(\mathscr{H}_{\gamma})^{\mu}$. Then the relation

$$f(\xi) = \int_{\mathscr{H}_{\nu}} e^{i\xi(x)} d\mu(x), \qquad \xi \in E$$

is evident.

Since, by the definition, \mathcal{H}_{γ} is isomorphic to $H_{\gamma} = E^{\gamma}$, this proves the theorem.

REMARK. The existence of a nondegenerate centered Gaussian Radon measure on an arbitrary locally convex Hausdorff space E is not trivial. But in the case where E is a separable Fréchet space, we have the following lemma.

 ${\tt Lemma~3.}^1$ On every separable Fréchet space E there exists a nondegenerate centered Gaussian measure.

PROOF. Let $\{|\cdot|_n\}$ be a sequence of seminorms which defines the topology of E and $\{\xi_n\}$ be a countable dense subset of E. Without loss of generality, we may assume that $\xi_n \neq 0$ for every n and

$$|\xi|_1 \le |\xi|_2 \le |\xi|_3, \dots,$$

for every ξ in E.

Let $\{g_n\}$ be a sequence of independent real random variables with the same Gaussian distribution of mean 0 and variance 1. Then

$$X = \sum_{n} 2^{-n} a_n g_n \xi_n$$

converges almost surely in E where

$$a_n = (1 + |\xi_n|_n)^{-1}, \qquad n = 1, 2, 3, \cdots.$$

In fact for every natural number k we have

$$E[|\sum_{n} 2^{-n} a_{n} g_{n} \xi_{n}|_{k}]$$

$$\leq \sum_{n} 2^{-n} a_{n} |\xi_{n}|_{k} E[|g_{n}|]$$

$$\leq \sum_{n < k} 2^{-n} a_{n} |\xi_{n}|_{k} + \sum_{n > k} 2^{-n} < +\infty,$$

where $E[\cdot]$ is the mathematical expectation. Therefore the series X converges in probability, so that almost surely (K. Itô and M. Nisio [1]), with respect to every seminorm $|\cdot|_k$. This implies the almost sure convergence of X in the topology of E.

Let γ be the distribution of X. Then obviously γ is a centered Gaussian Borel measure on E.

¹ Lemma 3 was suggested by Y. Okazaki.

In order to prove that γ is nondegenerate, it is enough to show that the minimal closed linear subspace E_0 of γ -measure 1 contains all the ξ_n 's. Suppose that, say, ξ_1 does not belong to E_0 and put $Y = \sum_{n=2}^{+\infty} 2^{-n} a_n g_n \xi_n$. Then we have

$$\begin{split} 1 &= \gamma(E_0) = P(X \in E_0) \\ &= P\left(\frac{1}{2} a_1 g_1 \xi_1 + Y \in E_0\right) \\ &= P(Y \in E_0 - 2^{-1} a_1 g_1 \xi_1) \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \nu(E_0 - q^{-1} a_1 t \xi_1) e^{-\frac{t^2}{2}} dt, \end{split}$$

where ν is the distribution of Y. Therefore we have

$$\nu(E_0-t\xi_1)=1$$

for at least infinitely many real numbers t.

On the other hand, since E_0 is a linear subspace, $E_0 - t\xi_1$ and $E_0 - s\xi_1$ are mutually disjoint unless t = s. This is a contradiction and the lemma is proved.

REFERENCES

- [1] Borell, C. (1976). Gaussian Radon measures on locally convex spaces. Math. Scand. 38 265-284.
- [2] Irô, K. and Nisio, M. (1968). On the convergence of sums of independent Banach space valued random variables. Osaka J. Math.5 35-48.
- [3] NGUEN, ZUY TIEN (1979). On the structure of measurable linear functionals on Banach spaces with Gaussian measures. Theo. Probability Appl. 24 165-168.
- [4] OKAZAKI, Y. (1981). Bochner's theorem on measurable linear functionals of a Gaussian measure. Ann. Probability 9 663-664.
- [5] Sato, H. and Okazaki, Y. (1975). Separabilities of a Gaussian Radon measure. Ann. Inst. H. Poincaré. 11 287-298.
- [6] SCHWARTZ, L. (1969). Un théorème de dualité pour les applications radonifiantes. C. R. Acad. Sci. Paris Sér. A. 268 1410-1413.
- [7] XIA, D. (1972). Measure and Integration Theory on Infinite-Dimensional Spaces. Academic, New York.

DEPARTMENT OF MATHEMATICS KYUSHU UNIVERSITY-33 HAKOZAKI FUKUOKA 812 JAPAN