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TRANSITIVITY IN PROBLEMS OF OPTIMAL STOPPING

BY ALBRECHT IRLE

Universitdt Miinster

In a sequential decision problem it is usually assumed that the available
information is represented by an increasing family & of o-algebras. Often a
reduction, e.g., according to principles of sufficiency or invariance, is performed
which yields a smaller family %. The consequences of such a reduction for
problems of optimal stopping are treated in this paper.

It is shown that ¢ is transitive for & (in the Bahadur sense) if and only if
for any stochastic process adapted to ¢ the value (i.e., maximal reward by
optimal stopping) under % and the value under & are equal.

1. Introduction and basic concepts. When we consider a sequential decision
problem we usually assume that the amount of available information is increasing with
time. We then represent the possible data which we can obtain up to the time ¢ € T'by a
o-algebra %, and thus come to the formal requirement ‘%, C % for s < ¢’. But it is often
hard to store and handle all the data as represented by # = (&.).er since their actual
amount may be very large, so we want to apply a reduction procedure which leads to a
smaller family ¥ = (%).er of o-algebras. Such a reduction should of course take into
account the underlying statistical structure and may, e.g., be accomplished according to
the principles of sufficiency or invariance.

The consequences of reduction in sequential decision problems were treated by Bahadur
(1954) who introduced the notion of transitivity. He showed (in the case T'= N) that for
every sequential decision rule with respect to & there exists an equivalent sequential
decision rule with respect to % if % is sufficient and transitive. The case that the parameter
space of the decision problem contains only one element is trivial from the point of view
of decision theory, and in this case the trivial family ({3, @} ).cr is obviously sufficient and
transitive. But from the point of view of optimal stopping there seems to emerge a problem
of some significance.

Let us assume that all the available information is represented by a family % = (#)cer
and that a data reduction has led to a smaller family ¥ = (%,):er, and furthermore that
we are given a probability measure on the underlying sample space and a real-valued
stochastic process X = (X,).er such that each X, is ,-measurable. The problem of optimal
stopping for X with respect to %, resp % then is to maximize the reward EX. in a certain
set of ‘reasonable’ stopping times 7 with respect to ¥, resp % i.e., find the supremum v(X,
%), resp v(X, &), of possible rewards and look for optimal stopping times. It will usually
be easier to determine v(X, %) since there are fewer stopping times with respect to the
smaller family %, and so the problem arises to characterize those families %, # for which
v(X, %) and v(X, &) are equal. For a formalization of these considerations let us introduce
some notions and notations which will be used from now on.

Let (8, 7, P) be the basic probaility space, T # & an ordered set—the set of time
parameters. Furthermore let

g(T) = {% = (%) ier: % sub-c-algebra of &/}
m(T) = (% = (%)er: 4 € g(T), % C % for s <t}.
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For ¥ € g(T) define ¥* € m(T) by 4 = 6(Us=: 9;), thus ¥, C 4.

Let there be given a point « such that « & T and « > ¢ for all ¢t € T and set T* =
Tu {o} and for 4 € g(T) Y~ = 6(U,er%:). A mapping 7:Q — T* is called a stopping time
with respect to ¥ € g(7) iff for all £ € T'* the following holds:

) {r=t}={r=t} n D, for some D, € %,

(i) {r=t} € 9 and P({r=o})=0.

The set of all stopping times with respect to ¢ is denoted by s(¥). Condition (i) has the
interpretation that, having observed up to the time ¢, the decision to stop the observation
at this time is only to be based on events in %,. This definition yields the usual notion if
% is an increasing family, but in the general case it may, e.g., happen that the maximum
of two stopping times is no longer a stopping time (the minimum always is).

We now introduce some more notations: For ¢ € g(T) let M(¥%) denote the set of all
real-valued stochastic processes X = (X;)ier on (2, <, P) such that X, is %;-measurable,
and M(¥9) all X € M(9) with X,(Q) C [0; 1] P-as. for all £t € T. We set

M=u{M(%:%€g(T)}, M =u{M(%9:%€g())}

and call X € M integrable iff EX, is finite for all ¢ € T. Typical examples of stopping times
with respect to a general family are (under suitable assumptions on measurability) hitting
times of the form 7 = inf{t € T:X, € B;} with X € M(9).

For X e M, 4 € g(T) and 7 € s(%) the mapping X is defined by X, (w) = I<x) (w)
X‘r(w) ((0) .

The problem to maximize EX, in a certain set of ‘reasonable’ stopping times with
respect to ¥ is called the problem of optimal stopping for X with respect to %.

For the following formal definition we denote by d( %) the set of all stopping times with
respect to ¢ such that 7(2) n T is order-isomorphic to a subset of the natural numbers.

(1.1) DEFINITION. For X € M, ¥ € g(T) define
v(X, 9 =sup{EX,: 1€ d(¥%), EX; < x} (sup T = — ).
v(X, %) is called value of X with respect to %.

The quantity v(X, %) thus gives the supremum which can be achieved in the problem
of optimal stopping for X with respect to certain ‘well-behaved’ stopping times in s( %) and
obviously depends on %in general. To obtain a unified definition for arbitrary time sets T’
we only use stopping times in d(%) for the definition of the value. This is certainly no
restriction if already 7' C N holds, but also in other interesting cases v(X, ¥) is an upper
bound of EX, for arbitrary r € s(¥%). We want to illustrate this fact in the case T' = [0; ©)
and for this and further use we introduce the following notion: Considering here and in the
following order relations between random variables to hold a.s., we call a measurable
process X € M %-bounded from below (above) for ¥ € m(T) iff there exists an integrable
random variable h with X, = E(h| %,) (X, < E(h| %)) for all T € s(¥%).

(1.2) PROPOSITION. Suppose T = [0; ), ¥ € m(T) and X a measurable process. Assume
that X is %-bounded from below and that for every decreasing sequence (7). in s(%)
Xiim -, < lim inf X, holds. Then for every v € s(%) EX; < » and EX. < v(X, ¥%).

The easy proof is omitted; compare Thompson (1971), page 310.
2. Bahadur-transitivity. In the definition of transitivity families ¢ and # will be
considered, which are ordered in the following way: We define ¥ < &iff for every t € T

%, C % holds P-a.s., i.e., for any G; € %, there exists F,; € & with P(G.AF,) =0.If 4<%
holds then obviously for any X € M, v(X, 9) < v(X, %).

(2.1) DEFINITION. Suppose 9, # € g(T). 9 is called Bahadur-(B-) transitive for Ziff ¥
=%andforalls,t € Twiths<¢

P(G¢I%)=P(G¢|%) for all G;E %..
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The following result shows the importance of B-transitivity for problems of optimal
stopping. Let us remark that no assumptions are made on the ordered set 7'

(2.2) THEOREM. Assume 9 € g(T), #€ m(T) with 9 < %. Then the following statements
are equivalent:

(i) % is B-transitive for %.

(ii) For every integrable X € M(%) we have

v(X, 9) = v(X, Z).
(iii) For every X € M,(%) we have
v(X, 9) =v(X, %).

ProoF. (i) = (ii). By the definition of the value it is obviously enough to show this for
T = N. But for T = N we may apply the arguments of Chow, Robbins and Siegmund
(1971), page 103, page 111, which easily give the proof.

(ii) => (iii) is obviously true.

(iii) = (i). Consider s, t € T with s < t and G; € %,. We define X € M,(¥%) by

0 ré&{s,t}
X, = IG, r=t

P(G:| %) r=s
Obviously P(G,) = v(X, 9).
For 7 € d(9) there exists D, € ¥, with {r = s} = {r = s} n D,. This implies {r = s} C D,
and {7 = ¢} C Dg, thus

T=t}

EX, = f P(G:| %) dP + f I, dP
{r=s) {

= j P(G:| %) dP + f I, dP = P(Gy).
D Dg

s

From this we have v(X, ¥) = P(G,) and by (iii)
P(G) = v(X, ) = sup{EX,:T € s(F), 7(Q) C {s, t}} = P(G)).
This implies
P(Gy) = E max{P(G:| %), P(G:| %)},

thus max{P(G:| %), P(G:| %)} = P(G:| %). But this yields at once P(G:| %) = P(G.| %).
O

Let us remark on the important special case that X is induced by a stochastic process,
ie., consider # € m(T), X € M(%) and o(X) = (6(X,))er € g(T'). Then o(X) is B-
transitive for & iff X has the Markov property with respect to &% so that (2.2) gives a
characterization of Markov processes by considering the behaviour in problems of optimal
stopping. In this context the statement (i) = (ii) is well-known, see, e.g., Chow, Robbins
and Siegmund (1971), page 103.

For increasing families the following result is easily obtained, so that we omit the proof:

i3

(2.3) PROPOSITION. For 4, #€ m(T) with % C % for all t € T the following statements
are equivalent:
(i) % is B-transitive for %.
(ii) Every supermartingale with respect to % is a supermartingale with respect to %.
(iii) Every martingale with respect to % is a martingale with respect to %.
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The definition of transitivity furthermore has the following measure-theoretical conse-
quences.

(2.4) PROPOSITION. Assume % € g(T), # € m(T) and T linearly ordered. If % is B-
transitive for %, then %* is B-transitive for # and

(% N F)ier < G*.

Proor. Itis easily seen that ¥* is B-transitive for # and thus by (2.3) every martingale
with respect to %* is a martingale with respect to % This implies, see Sekiguchi (1976),
page 213, that for every t € T, 9¥ D %. n % P-a.s., thus (% N & )wer< 9*.0

A necessary condition for the B-transitivity of an increasing family % is thus given by
(% N %) ier < %. 1t is easy to construct examples (already for 7' = {1, 2}) which show that
this condition is not sufficient. Let us remark that in (2.4) the reverse relation, i.e., ¥* <
(%% N % )eer, is trivially true.

The statements in (2.2 and (2.3)—given for arbitrary time sets—were essentially based
on a discrete parameter argument. In the following we will treat the continuous parameter
case—i.e., T' = [0; =), and consider arbitrary stopping times for well-measurable processes
where in general an approximation by stopping times taking only countably many values
does not seem to be possible. The following notions will be useful.

A family ¥ € m(T) is called regular iff %. is P-complete, % contains all P-zero sets of
%. and ¥ is right-continuous. These are the families usually encountered in the ‘general
theory of processes’. For a regular family ¥ € m(T') we define (compare Mertens (1972)):
An integrable X € M(%) is called a strong %-supermartingale iff X is %-well-measurable
and for all bounded p, T € s(¥9) withp <7

EX,>-o and E(X.|9)=<X,.

X is called a strong %-martingale iff X and —X are strong %-supermartingales. A strong
%-supermartingale is called regular iff for all p, 7 € s(%) withp <7

EX, existsand E(X,|%,) <X,

It is well known that every %-supermartingale with right-continuous paths (P-as.) is a
strong %-supermartingale and furthermore that every strong %-supermartingale, which is
%-bounded from below, is regular. Conversely we have according to Mertens (1972): Every
strong %-supermartingale has (P-a.s.) paths which are upper semicontinuous from the
right; every strong %-martingale has (P-a.s.) right-continuous paths. We can now prove:

(2.5) THEOREM. Assume T = [0; ), 9, #F€ m(T'), % and Fregular with 9, C % for all
t € T. Then the following statements are equivalent:
(i) %is B-transitive for %.
(ii)) sup{EX.:7 € s(¥9)} = sup{EX.:1 € s(F)} for all %-well-measurable X € M:(9).
(iii) sup{EX,:1 € s(%9)} = sup{EX,:1 € s(#)} for all Y-well-measurable X € M(%),
which are 9-bounded from below.
(iv) Every strong %-supermartingale is a strong #supermartingale.
(v) Every strong 9-martingale is a strong #martingale.

Proor. We will prove (i) = (v) = (iv) = (iii) = (ii) = (i); (i) = (v): Let Y be a strong
%-martingale; then Y is a martingale with respect to % (in the usual sense), thus by (2.3)
Y is a martingale with respect to % According to the above remarks Y has (P-a.s.) right-
continuous paths, thus Y is a strong #martingale.

(v) = (iv): Let X be a strong %-supermartingale, then for n € N min{X, n} defines a
strong %-supermartingale, for which we may apply the Doob-Meyer-decomposition theo-
rem (see Mertens (1972)). Thus there is a strong %martingale Y" and a process A™ €
M(%) with increasing paths, such that P(U,r{min{X,, n} # Y} — A'}) = 0. By (v) Y"is
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a strong #martingale, which implies that min{X, n} is a strong #supermartingale. Letting
n tend to infinity we obtain that X is a strong #supermartingale.
(iv) = (iii): We need the following auxiliary statement:

(2.6). If (iv) holds, then every %-well-measurable X € M(%), which is %-bounded from
below, is also #-bounded from below.

Proor oF (2.6): Consider a %-well-measurable X € M(%) and an integrable random
variable & such that X, = E(h|%,) for all 7 € s(¥). From the regularity of ¥ we may
choose versions E(h | %), such that (E(h | %,)).er has right-continuous paths. Now the well-
measurability of X implies together with the assumption of %-boundedness that

P(Uier(X: < E(h| %)}) = 0.

We may assume, without loss of generality, that 4 with this property is %.-measurable.
Now as in (2.3), (iv) implies (v) and—using the regularity of ¥—(v) implies (i).

From (i) one concludes by the usual extension procedure, that for every G € %, we
have P(G| %) = P(G| %) for every t € T, thus also E(h| %) = E(h| %) for every t € T.
Choosing versions E(h| %), such that (E(h|%))«<r has right-continuous paths, we may
conclude

P(Uer{E(h| %) # E(h| %)}) =0,

and
P(Uer{X: < E(h|%)}) = 0.
This yields X, = E(h| %) for every T € s(F), thus X is #bounded from below.

To prove the implication ‘(iv) = (iii)’ consider X as in (2.6), thus EX, > — oo for all
T € s(£) D s(%). Since for all 1 € s(¥), EX, = sup,eN E min{X,, n}, we may assume,
without loss of generality, that sup, EX, < & for some k£ € N. According to Mertens (1972)
there exists the minimal dominating regular %-(resp %) supermartingale Z(¥) (resp Z(%))
for X such that

sup{EX.:7 € s(%)} = EZ(%)o, sup{EX,:T € s(F)} = EZ(F)o,
see Mertens (1972), page 54-55 for details. (The condition ‘sup, EX, < &’ here ensures the
integrability of Z(¥), Z(£), but otherwise does not enter into the argument.) Since X is

Zbounded from below, Z(¥) is also #bounded from below and by (iv) Z(¥) is a strong
Fsupermartingale. Thus Z( %) is regular. Now the minimality of Z(%) implies

Z(F)o = Z(%9)o,
thus '
sup{EX,:1 € s(9)} = EZ(¥%)o = EZ(F)o = sup{EX,:1 € s(F)}.

Since the other inequality is obvious this proves (iii). (iii) = (ii) is obvious and (ii) = (i)
follows as in (2.2). 0

In the following we want to consider a situation, appearing rather naturally in statistical
problems, in which we find B-transitivity.

(2.7) ExaMPLE. Let 7' = [0; ») and P, @ Gaussian measures on ({2, &) where & = RT and
& the product-o-algebra of the Borel sets of R. For ¢ € T let % be the o-algebra generated
by the coordinate mappings up to the time ¢£. We denote the mean value function of
P(resp Q) by m,(resp mg); to simplify the exposition we assume mp = 0 and mg(0) = 0.
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Furthermore we assume that P and @ have a common covariance kernel K, K
continuous and nonsingular, and that for every ¢t € T' mgq| [0; £] belongs to the reproducing
kernel Hilbert space of K | [0; £] X [0; t]. Then for every ¢t € T' P| % and @ | &% are equivalent
with density

Q| _ 1
?1? % = exp(Y; Er(t))’

where r: T — T'is increasing, and (Y}).cr is with respect to P a Gaussian process with mean
value function 0 and covariance kernel r(min{s, ¢}); see Bhattacharya and Smith (1972);
now mg(0) = 0 implies 7(0) = 0 and Y, = 0 P-a.s. Assume now that r is continuous, strictly
increasing and unbounded. Then (see, e.g.,, Irle (1980)) any separable version of
(Y,-19)eer is a Wiener process with respect to the increasing right-continuous family
(Friw)er (under P). Setting % = o(Y,) it follows that ¢ is B-transitive for #*

We remark that this can be used to obtain locally best tests for Gaussian processes; see
Irle (1980).
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