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A GEOMETRICAL CHARACTERIZATION OF BANACH SPACES IN
WHICH MARTINGALE DIFFERENCE SEQUENCES ARE
UNCONDITIONAL'!

By D. L. BURKHOLDER

University of Illinois

We study Banach-space-valued martingale transforms and, in particular,
characterize those Banach spaces for which the classical theorems of the real-
valued case carry over. For example, if B is a Banach space and 1 < p < oo,
then there exists a positive real number c, such that

ledi + -« + €ndnlls =< cplldi + -+ + dull,

for all B-valued martingale difference sequences d = (di, d, ---) and all
numbers €, €, --- in {—1, 1} if and only if there is a symmetric biconvex
function { on B X B satisfying {(0,0) >0 and {(x, y) < |x+ y|if|x|=1=
I>l.

Introduction. Let 1 < p < ». For what Banach spaces B does there exist a positive
real number ¢, such that

leds + « - + €udallp < collds + + -+ + dally

for all B-valued martingale difference sequences d = (d1, dz, - - +), all numbers €, €, - - - in
{—1, 1}, and all n = 1? This and closely related questions have been of interest to Maurey
[16], Pisier [17], Diestel and Uhl [12], Aldous [1], and others. Let us write B € UMD (the
space B has the unconditionality property for martingale differences) if such a constant c,
= ¢,(B) does exist. (Maurey uses a slightly different notation.) This class of spaces appears
to depend on p but, in fact, does not [16] as we shall see in another way. It was proved in
[4] that R € UMD and from this follows immediately that the Lebesgue spaces ¢, L"(0,
1) € UMD for 1 < r < w. Any UMD-space is reflexive, in fact superreflexive [16], [1], so,
for example, ¢, £~ & UMD. On the other hand, Pisier [17] has constructed an example
showing that a superreflexive space need not be UMD.

A function {:B X B — R is symmetric if {(x,y) = {(y, x) and is biconvex if both {(-,y)
and {(x, -) are convex on B for all x, y € B. One of our main results is that B € UMD if
and only if there is a symmetric biconvex function { on B X B satisfying (0, 0) > 0 and
$(x,y) =|x+y|if|x] =<1=|y|. Here | x| denotes the norm of x.

It is possible to replace the €:’s by suitable random coefficients and this is important for
stochastic integration and many other applications. We do this now and at the same time
recall some definitions.

Let (2, &, P) be a probability space and 2%, «, --- a nondecreasing sequence of sub-
o-fields of &. Let f = (f1, f2, - - -) be a B-valued martingale with difference sequence d = (d;,
ds, -+ +): fn = Y %=1 di where di: © — B is strongly measurable relative to .7 (the pointwise
limit of a sequence of simple .2-measurable functions) with | d:||: = E|d:| finite and
E (di+1| &) =0, k= 1. (For background on B-valued martingales, see [12].) Let v = (v, vs,
-++) be a real-valued predictable sequence, that is, vi: & — R is .,_;-measurable, & = 1.
Then g = (g1, &, - - +), defined by g, = Y k-1 Urdp, is the transform of the martingale f by
v. We write || ||, = sup.. || f» || » and define the maximal function of g by g*(w) = sup, | £.(w) |.
(There should be no confusion here with linear functionals on B.)
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998 D. L. BURKHOLDER

Recall that if B = R and f and g are as above with v uniformly bounded in absolute
value by 1, then [4], for 1 < p < oo,

0.1) [flli < = g converges a.e.,
0.2) AP(g*>A)=c|fll,A>0,
(0.3) lgll» = 6|l fle-

These are analogous to the classical theorems of Privalov, Kolmogorov, and M. Riesz,
respectively, that show how harmonic functions control their conjugates.

For what Banach spaces B does (0.1) hold for all such B-valued fand g? (The probability
space may vary as well as fand g.) Or for what Banach spaces B does there exist a positive
real number ¢ such that (0.2) holds in the same sense? A similar question can be raised
with respect to (0.3). In the next section, we shall show that all three of these questions
lead to the same class of Banach spaces. For convenience, we shall write B € MT (for B,
martingale transforms are well-behaved) if B does enjoy at least one of these properties,
hence all three.

The equivalence of (0.1) and (0.2) in a Banach space setting contrasts with the
nonequivalence of two results of Doob [13]: For B = R,

(0.1)’ I fll: < o = f converges a.e.,
0.2y AP(f* >N =< |fll, A>0.

Chatterji [10] proved that (0.1)" holds for all martingales with values in B if and only if B
has the Radon-Nikodym property. On the other hand, (0.2)" holds for every Banach space
since (|fi], |fz], ---) is a real-valued submartingale. Therefore, (0.1) and (0.2)" are not
equivalent conditions on a Banach space.

In Section 2, we shall show that B € MT if and only if B€ UMD. Hence the {-condition,
described above, characterizes MT-spaces also.

Section 4 contains further information about the {-condition. For example, if it exists,
¢ determines the norm of B up to equivalence.

There are other ways that martingales f and g may be related and other kinds of
transforms. Section 5 contains a brief discussion of some of the possibilities.

The {-condition and other results of this paper throw new light on B-valued singular
integrals as we hope to show elsewhere.

The Banach space B may be either real or complex. The letter ¢, with or without
subscripts, is used to denote a positive real number, not necessarily the same number from
one use to the next. The optimum value of ¢ in inequality (1.2), say, is denoted by ¢(1.2)
when it is necessary to be more specific.

1. Equivalent probability conditions on a Banach space: Random coefficients.
In this section, g is the transform of a B-valued martingale f by a real-valued predictable
sequence v uniformly bounded in absolute value by 1.

THEOREM 1.1. Let 1 <p < . For a Banach space B, the following statements, each
to hold for all such f and g, are equivalent:

(1.1) [l fll: < o0 = g converges a.e.,
(1.2) AP(g* >N =c|fll,A>0,
(1.3) gl = co I fllo-

There are many other statements about martingale transforms, some presented below,
that are equivalent to these, but these are basic and illustrate the possibilities. Note that
(1.2), for example, is an abbreviation of the lengthier statement: There is a positive real
number ¢ = ¢(B) such that - . . . We emphasize that the underlying probability space is to
vary as well as f and g. Or if a fixed probability space is preferred, it must be nonatomic
and, as above, the sequence %%, <7, - - - is to vary.
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REMARK 1.1 In several of the proofs, it will be helpful to assume that E (d; | %) = 0 or,
even more, that f starts at the origin: fi = di = 0. This can be assumed, for example, in the
proof of Theorem 1.1. To see this, let £, v, g, and o/ C &/, C .. C o/ be as above. We may
always assume that there is a sub-o-field % of .«7, independent of each .«,, on which P is
nonatomic. Let r be a #-measurable random variable taking each of the values + 1 with
probability % and let d° = (0, rd;, rdz, ---), 1° = (1, v3, Ug, + - +), Z = {¢, U}, & = o, and
A = oA, 1 \y B for n = 2. Then, relative to this new sequence of sub-o-fields, v° is
predictable and f° is a martingale starting at the origin. Also, since f = rf,_; and g% =
rgn-1 for n = 2, we see that | f°||: = || fll1, (9* = g*, &° converges a.e. if and only if g does,
and so forth.

Proor. (1.1) = (1.2). This is a straightforward application of the B-space version of
Theorem 2 of [3] in the case p = 1. However, it will be useful for the work of Section 3 to
take a slightly different approach. We show first that (1.1) implies

(1.4) g*>lae.=|fl.=c

Suppose, on the contrary, that no such positive number ¢ = ¢(B) exists. Then, for each
positive integer j, there is a martingale f; = (f, fj, ---), starting at the origin, with
associated v, g;, and )0 C /;; C --- such that (g)* > 1 a.e. but |||, = 2. We may
assume the underlying probability space is the same for all j and the sequence .%71c, 2,

- is independent. Here &/, denotes the smallest o-field containing every .«Z;,, n = 0.
There is a positive integer n; such that the event

A;={|gn|>1 forsomen =<n;}
has probability greater than %. Let
Ao = o, +++ , Hn-1 = A1in-1,
A, = Hn, \/ Ho0, o1 = Ain, \/ S, +++
Lnytny = Fin, \ Hang ) A30, + ¢
Then, relative to this sequence of sub-o-fields,
D=(du, -+, dwn, da1, +++ , dony, +++)
is a martingale difference sequence and
V= (11, **+  Vtngy sty *++ , Vgnyy *++)
is a predictable sequence. The martingale F determined by D satisfies
Fov..ovn, = Ef-l fjnj
with a similar formula for the transform G of F by V. Therefore,
IFl = Zlfinlh =T 27 =1
and, by the Borel-Cantelli lemma,
P (G diverges) = P(lim supmnw | Gr — G| > 1) = P(lim sup~. 4;) = 1,

where we have used the independence of A;, A, - - - and the divergence of the series ¥ 2,
P(A)). This contradicts (1.1); therefore, (1.1) implies (1.4).

To show that (1.4) implies (1.2), we shall use a method similar to one used by Bollobas
[2] in his proof of the weak-L' inequality for the martingale square function. Fix (f, v, g)
where fstarts at the origin. If n is a positive integer and g*%(w) = supi<r<» | gx(w) |, then, as
we shall show,
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(1.5) cP(gt>2) < |fl:

where ¢ = c(1.4), the optimum constant of (1.4). This implies, by taking limits and scaling,
that (1.2) holds with ¢(1.2) < 2/¢(1.4). To prove (1.5), we may assume that the probability
on the left-hand side is positive. For each positive integer j, let g, = (g,1, &5, - - +) be the
transform of a martingale f; by a predictable sequence v, such that (f, v,, g,) has the same
distribution as (f, v, g). We may assume, as above, that the underlying probability space
is the same for all j and that {</;», j = 1} is independent. Let

D= (du, +++, din, 1da1, -+ + , Usdan, Uilds1, -+ ‘)
and
V= (v, +++, Utn, Va1, *++, Uzn, U, =+ +)

where u, is the indicator function of the set {g*, < 2}. The corresponding sequence of sub-
o-fields is as above with n; = n. Then the martingale F determined by D satisfies

Frn=fin+ wifon+ oo +uts -+« Up—1fin
with a similar formula for the transform G of F by V. Therefore,
IFI:=1fl: EQ+ wi+wwe + --2) = |If|:/P(gr >2)
and G* > 1 a.e. so that, by (1.4), ¢ < || F|:. This gives (1.5) and completes the proof of (1.1)
= (1.2).

(1.2) = (1.3): Suppose that @ is a convex function from [0, ®) onto [0, ») satisfying the
growth condition

(1.6) ®(2N) = c®(N\), A >0,

and set ®(») = o. Then (1.2) implies

(1.7) E®(g*) < cED(f*)

where ¢(1.7) depends only on ¢(1.2) and ¢(1.6). In particular, ®(A\) = A” gives

g™l =< coll £l

Inview of | g, < || &* ||, and || /* ||, < ¢ || || » (Doob’s inequality with 1/p + 1/q = 1), we see
that (1.3) follows.

In the real case, (1.7) is an immediate consequence of the two-sided ®-inequality
between the square function S(f) and the maximal function f* obtained in [9] and the fact
that S(g) = S(f). Here the square function inequality is no longer generally valid; however,
a direct approach to g* is possible. One may use the Banach-space version of Theorem 2.1
of [9] or proceed more concretely as follows.

As above, we may assume that f starts at the origin. Let w; be an /,_; measurable
majorant of |d,|. Let §>0,8>68 + 1,

p(w) = inf(n: | g.(w) | > A},
»(w) = inf{n: | ga(w) | > BA},
0(w) = inf{n: | fu(w) | > OX OF Whei(w) > A},

and u; be the indicator function of {4 < k=< » A ¢}. Then u = (uy, us, - --) is a predictable
sequence and F, the transform of f by u, is a martingale satisfying F* < 38\ on {u < o}
= {g* > A} and F* = 0 elsewhere. It follows that || F|; = 36\ P(g* > A). If G is the
transform of F by v, hence also the transform of g by u, then

P(g*> B\ f v w*=8\) = P(G*> (8- 8- DA = c(1.2) | F|l./(B — 8 — DA.
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Therefore, (1.2) implies that

(1.8) P(g*>B\f*vyuw*=00\)=<eP(g*>\)
where € = 3¢(1.2)8/(8 — 8 — 1). This gives, by Lemma 7.1 of [5], that
(1.9) E®(g*) = cE®(f* \/ w*).

This inequality can now be applied to the good part of Davis’s decomposition [11] of f.
The bad part can be handled separately. Inequality (1.7) then follows. For an illustration
of the details of the method, see page 34 of [5]. This completes the proof of (1.2) = (1.3).

REMARK 1.2. With a slight change, the above proof of (1.2) = (1.7) also gives (1.3) =
(1.7): Use the fact that {| G.|, n = 1} is a nonnegative submartingale to obtain

PG*>(B=6-DN =|GF/(B—-86—-1)"N

and notice that (1.8) must then hold with € = [3¢(1.3)8/(8 — 8 — 1)F. Similar reasoning
shows that (1.7) holding for one ® implies that it holds for all ® satisfying the required
conditions.

(1.3) = (1.1): The special case of (1.3) in which the coefficients are constant and of
modulus one (the UMD property) implies that B is superreflexive [16], [1]. Therefore, B
has the Radon-Nikodym property (for example, see [12]). Accordingly, if G is a B-valued
martingale with | G ||, finite, then G converges a.e. (Chatterji [10]).

Consider f, v, g with || f||; finite and let % be the nonnegative submartingale defined by
hn = |f.|. Let p = inf{n:h, > A} and F be the transform of f by the predictable sequence
u where u, is the indicator function of {p = 2} = {f}-1 = A}. Then F} =<\ + h,r, where

Ehyn = Eh, = ||k = ||l

so EF* = X\ + || f| is finite. By Remark 1.2 and (1.7), with ®(\) = A, it follows that G, the
transform of g by u hence also the transform of F by v, satisfies | G|, = EG* = cEF* <
oo, Therefore, by Chatterji’s result mentioned above, G converges a.e. Since g = G on {u
= oo} = {f* = A}, it follows that g converges a.e. on {f* =< \}. In view of the inequality
AP(f* > A) =||f|:, we conclude that g converges a.e. This completes the proof of Theorem
1.1.

2. Equivalent probability conditions on a Banach space: Nonrandom coeffi-
cients. In the following theorem, g is the transform of a B-valued martingale f by a
sequence of numbers in {—1, 1}.

THEOREM 2.1. Let 1 < p < . For a Banach space B, the following statements, each
to hold for all such f and g, are equivalent:

(2.1) [l < o => g converges a.e.,
(2.2) AP(g* > A) =c|flh, A>0,
(2.3) l&ll> = coll Fllo-

The + 1-version of (1.7) is also equivalent to each of the above statements as is
(2.4) g*>lae=|fli=c

The proof of Theorem 1.1 carries over to the present setting.
How are the two theorems related? First note that if B € UMD, then (2.3) holds and,
since ||fillo < - -+ = |/ fz|l», the converse is also true.

THEOREM 2.2. If B is a Banach space, then

(2.5) BEMT < Be€ UMD.
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ProoF. We shall show a little more: ¢,(1.3) = ¢,(2.3). Let f be a martingale with
difference sequence d and g a transform of f by v as in Theorem 1.1. It is enough to show
that if || f||,, is finite, then

(2.6) gl = cr23) | full

and further reductions are possible:
(i) It is enough to show that (2.6) holds in the special case

(2‘7) vk:Hk(ﬁh"':fk—l)y ]-Sksny

where fo = 0 and H;: B X -.. X B — [—1, 1] is continuous. This may be seen by slightly
modifying the proof of the comparable step in [6].

(i) To prove (2.6), we may assume that f;, -- -, f, are simple functions: Let d, be a
simple .«/;-measurable function such that ||d,x — di ||, <27"". Let D,, = d,; and D, = d
— E(dx| ) k1), k> 1, where o/, is the field generated by d,,, - - -, d,x. Then, for 2 > 1,

1Dy = dellp = | dx — di — E(djx — di| )01 |l = 27

Therefore, the martingale F, corresponding to D, = (D,1, Dz, - - -) satisfies || F ), — fu ||, <
k27 and F,, — f, a.e. as j — . Accordingly, by (i), Vie=Hp(Fp, +++, Fp_1) > v, ae.
Also, by Lebesgue’s dominated convergence theorem,

lvrdi = VieDorllp < | 0k = Vi)dillp + || di — Dy
converges to 0, which implies that || G, — g, ||, converges to 0, as j — . So (2.6) must hold
if
| Ginlls < €5 (2.3) || Fu ||

and this gives the desired reduction to simple functions.

(iii) To prove (2.6), we may assume that g is the transform of f by a sequence of
numbers in [—1, 1]: If the map w — (fi(w), - - -, f,(w)) has finite range, as in (ii), and (2.7)
holds, then there is a martingale difference sequence D, numbers a1, as, - - - in [-1, 1], and
a positive integer N such that

(2.8) fo=3k1 Dy,
(2.9) 8. =Y arD,.

(In addition, f,, = Fy and &gn=Gy.) First let D, = d, and a; = vy = H,(0). At the second
stage, let m; denote the number of points in the range of f; and define the next m,
differences D, and coefficients a; in any order by

D,=I(fi=x)d and a;= H, (0, x1)

where I(A) is the indicator function of the set A and x; varies over the range of f;. At the
third stage, m; is the number of points in the range of w — (f; (), f2(w)) and the formulas
become

Dy=I(fi = xi, fo = x2)ds,
ar = H3(0, x1, x2),

and so forth. Lete N =1+ m; + -+ + mp_1; set D, = 0 and a; = 0 for 2 > N. Relative to
a suitable sequence of sub-o-fields (e.g., the smallest possible), D = (D1, Dy, --+) is a
martingale difference sequence and both (2.8) and (2.9) hold.

So we can complete the proof of Theorem 2.2 by showing that if d is a martingale
difference sequence and ai, as, -- - are numbers in [—1, 1], then

| 251 ard|lp = ¢,(2.3) | Z3=1 dlp-

(Since this holds for ax, = =1, this is an example of the contraction principle; cf. Kahane
[14].) Write a, = Y ;21 €,x27 where €,, = +1. Then
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| 251 ardllp = 1 X521 27 Tkt €dillp = X521 27 (| Xha1 €l llp = €5(2.3) | D=1 i [lo-
3. A geometrical characterization.

THEOREM 3.1. A Banach space B is an MT-space (equivalently, B € UMD) if and
only if there is a symmetric biconvex function {: B X B — R such that {(0, 0) > 0 and

(3.1) $y)=lx+y| if |x|=1=]y|.

To gain some feeling for this condition, note that {(x, y) = |x + y| is symmetric,
biconvex, and satisfies (3.1) but does not satisfy (0, 0) > 0. In fact, any function ¢ satisfying
(3.1) must also satisfy {(x, —x) < |x — x| = 0 for all x on the boundary of the unit ball, so
if {(0, 0) is to be positive, { cannot be convex.

Here is an example in the positive direction: If B is a space with an inner product, let

3.2) S, y) =1+ (x,y)

(1 + Re(x, y) in the complex case). Then ¢{ is symmetric, biconvex, ¢(0, 0) = 1, and (3.1)
follows from

B3 D+ @ENF=1+2xy) +|2fyf=lx+yF + Q- [xP)A - |yf)

Actually, the converse holds, although we shall not prove it here: If the {-condition is
satisfied with {(0, 0) = 1 (the extreme case), then B is an inner product space. See [7].
Sometimes it is convenient to replace (3.1) by the condition

(3.4) (e, y)=lx+y| if |y|=1,

and we shall do this without loss of generality in the proof of Theorem 3.1: Suppose that
¢ satisfies the conditions of Theorem 3.1 and let

S,y =Sxy)vix+y| if [y]<1,
=|lx+y| it |yl=1,

Lo, y) ={xy)vIx+y| if |x[v]y|<L,
=|lx+y| if |x|v|yl=1l

Then, {i = {»: By definition, there is equality on the set where |x| \/ |y| <1or|y|= 1.
Equality also holds on the complementary set, where |y| < 1 < | x|, because {(x, y) <
| x + y| by (3.1) and the symmetry of {. Now notice that ¢i(x, y) = L(x, y) = &(y, x) =
$1(y, x), and {i(-, y) is convex. Therefore, ¢; is symmetric, biconvex, ¢,(0, 0) = ¢(0, 0) > 0,
and ¢{; satisfies (3.4).

ProoF oF THEOREM 3.1. Let M (x, y) be the class of all B-valued martingales f starting
at x such that, for some sequence (1, €, €, ---) in {—1, 1}, the transform g of f by this
sequence satisfies

(3.5) P(g.—y|=1 forsome n=1)=1.
Let Y(x, y) = inf{|| f|::f € M(x, ¥)}. Then, as we shall show,

(3.6) Y(x, y) =¢(x, 2x — y),
(3.7) Y(-, ¥) is convex,
(3.8) Y, y)=|x| if |y|=1,

and B € UMD if and only if
(3.9) ¥(0, 0) > 0.
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These properties of y imply that {, defined by
x +
(3.10) $x,9) = 2¢(Ty ) y>,

is symmetric, biconvex, and satisfies (3.4), hence (3.1). Furthermore, if B € UMD, then
¢(0, 0) > 0.

By considering the transforms of f in pairs, relative to both (1, €, €3, ---) and (1, —ez,
—e;, -+ +), we see that M (x, y) = M(x, 2x — y). This gives (3.6).

To prove (3.7), let x, x1, x2 € B and a; > 0, az > 0 satisfy a; + a2 = 1 and x = a1x1 + aaxz.
Let 8 > 0 and, for j € {1, 2}, let f; = (f;1, f;2 - --) be a martingale in M (x;, y), relative to
oty C ofjp C -+, such that || | = ¢(x;, y) + 8. Let (1, €3, €3, ---) be a sequence of
coefficients giving (3.5). We may assume that the underlying probability space is the same
for both values of j and that 1w = \/» s, Fex, and & are independent where £ is a sub-o-
field on which P is nonatomic. Let u; = 1 — u; be a #-measurable random variable with
P(u, = 1) = a1, P(u1 = 0) = ag. Then, with s; = x; — x,

D = (x, uis; + uzS2, U1 dia, Uz doo, w1 dia, Uz dog, - -)
is a martingale difference sequence relative to
({p, R}, B, 12 \/ B, 12 \) Foa \/ B, -+ +).
Consider F and G determined by D and the coefficient sequence
(1, 1, €12, €22, €13, €23, =+ -).
Then, F; = x, Fop, = u1fin + Usfon, and Gan = U181, + U282:. Thus, F € M (x, y) and
| Fonlln < o || fin e + a2 || fon It = o (1, y) + o (22, ¥) + &

giving Y (x, y) = ar(x1, ¥) + azy (x2, ¥) and the convexity of (-, y).

To prove (3.8), let | y| = 1 and consider first the special case |x —y|= 1. Iffi=g.=x
for all n, then f € M(x, y) and || f|: = | x|. So (3.8) holds in this case. In particular, ¢ (0, y)
= 0. Now let x ¢ 0. Then, for A > 1 large enough, we have that |[Ax — y| = 1 so, by
convexity and the above special case,

Y, )= A =AW0O0,5) + A WAxY) =AXWAx, y) =X Ax | =] x|

Now suppose that B € UMD. Let f € M (0, 0) and g be as in the definition of M(0, 0) so
that g satisfies (3.5) with y = 0. Then, g* =1 a.e.so (Ag)* > 1 a.e. and | f|: = c(2.4)/A, for
all A > 1, giving ¢¥/(0, 0) = ¢(2.4) and (3.9).

To go in the other direction, suppose that f and g are as in Theorem 2.1. Then, by
Remark 1.1 and the definition of y,

(3.11) g*>1lae=|fl=v,0).

Therefore, B € UMD if (0, 0) > 0.

We shall complete the proof of the theorem by showing that if there is a symmetric
biconvex function { satisfying (3.4) and (0, 0) > 0, then ¢/(0, 0) > 0. This will be
accomplished by showing that

(3.12) Yix,y) = @lx,y)
where @(x, y) = % {(2x — y, y). Note that

(3.13) ox,y) =p(x, 2x — y),
(3.14) @(+, y) is convex,

(3.15) p,y)=[x| if |y|=1

(Since these are the only properties of ¢ that will be used in the proof of (3.12), ¢ is the
greatest function ¢ with these three properties.)
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Let M, (x, y) be the class of all f € M(x, y) such that, for some sequence (1, 1, €3,
€, -+ +) in {—1, 1}, the transform g of f by this sequence satisfies

P(lgr—y|=1 forsome k=n)=1

If n = 2, as we shall assume, this class is nonempty. Let y, (x, y) = inf{|| f |l: : f € M (x, ¥)}
and define M,; (x, y) and ¥, (x, ¥) similarly using coefficient sequences of the form (1, —1,
€3, €, -+ +). If there is no restriction on e, € {—1, 1}, write M,(x, y) and yx(x, y). Note that
Un(x, ¥) = ¥a (x, ) A ¥a (%, ¥) and M, (x, y) = M (x, 2x — y) so

(3.16) Yn(X, y) = ¥ (2, ) ANl (x, 22 — ).
The main step in proving (3.12) is to show that

(3.17) ¥n(x, y) = o (x, ¥).

But this follows, by (3.13) and (3.16), from the simpler inequality
(3.18) ¥a (x,¥) = @ (x, ¥).

To prove this inequality for n = 2, let f € M5 (x, y). Then g; = f; and either |x — y| =
1or|f: —y| =1 ae. We may assume the latter. An immediate consequence of (3.13) and
(3.15) is that @(x, ¥) < | x| if |x — y| = 1. Therefore, @(fo, y) = | f2| a.e. and, by Jensen’s
inequality,

o(x, ) < Ep(f, y) = | £l

Accordingly, both (3.18) and (3.17) hold for n = 2.

We now use induction (cf. [2] where induction is used to obtain a new proof of the
weak-L' inequality for the martingale square function in the real case). Suppose (3.17)
holds for some n = 2 and f € M, ,.(x, y). We may assume that f; has finite range {x,,
+++, Xm} and that @, = P(f, = x,) >0 forj =1, ---, m. (See step (ii) in the proof of
Theorem 2.2.) We may also assume that the g associated with fin the definition of M., (x,
y) satisfies

(3.19) P(lgr—y|=1 forsome k=2 ---,n+1)=1
Consider
||fn+1||1=21""-1j |xj+ds+ -+ + dni | dP
(fz“lj)

and the martingale difference sequence D, = (x;, ds, ds, - - -) relative to (2, &, P,) and (<%,
43, +++) where P; is the conditional probability P(-| f = x,). By (3.19), the corresponding
martingale F, belongs to M, (x,, y) and, by the induction hypothesis,

" fn+1 "1 = Z;n=l oy I an | de = Z;n=1 aﬂ[/n(xj) }') = Z;n=l a;p (xj’ y) = <P(x, y)‘
Q

Therefore, (3.18) and (3.17) hold for n + 1.
The final step in the proof is to show that (3.17) implies (3.12). Let f and g be as in the
definition of M (x, y) and let § > 0. Then there is a positive integer n such that the event

A={lgr—y|=1 forsome k=n}

has probability greater than 1 — 8. Let u be the indicator function of the complement of A.
We may assume there is a sub-o-field 4 independent of <7, on which P is nonatomic. Let
r be #-measurable with P(r = £1) = % and let z € B satisfy | 2| = 2. Then

D=(dy -+, dnurz0,0,---)
is a martingale difference sequence relative to

(A, oo ey Ay A\ B,y -+ ).



1006 D. L. BURKHOLDER

The corresponding martingale F belongs to M,.(x, y): If G, the transform of F by the
same sequence giving g from f, has not visited the complement of the open ball with center
y and radius 1 by n, then G will visit it at n + 1. Therefore, by (3.17),

P& =Vnr@& V) <[ Favi k=l fulh + | 2| Eus | f|s + 25.

This implies (3.12) and completes the proof of the theorem.
Additional information can be obtained by modifying the above proof. The next two
theorems illustrate some of the possibilities.

THEOREM 3.2. If B is a Banach space, A:B X B X [0, 1] — R satisfies
(3.20) Alx, 3, 8) = Ay, x, t),
(3.21) the mapping (s, t) — A(x + as, y + Bs, t) is convex on B X [0, 1] for all a, B = O,
(3.22) Ax,y, ) =|x+y| if |x|s1=|y]|,
(3.23) Ax,y,0)=|x+y| if |x|=s|y|l=1,

and g is the transform of a B-valued martingale f by a real predictable sequence v
uniformly bounded in absolute value by 1, then

(3.24) AA0,0, P(g*>N) =2 fl, A >0.
For example, if B is an inner product space, then
(3.25) Alx,y,t) =t + (x,5)

(t + Re(x, y) in the complex case) satisfies (3.20), the convexity property (3.21) follows
from

Alx+as,y+Bs,t) =t+ (x,y) +als,y) + B(x,s) + af | s |,
inequality (3.22) is implied by (3.3), and (3.23) follows from
2 x+y| -2, y)=2|x+y|—|x+yff=1-(1—-|x+y|>2
Here A(0, 0, t) = t so (3.24) becomes
(3.26) AP(g*>N=2]fl, A>0,

and 2 is the best constant as in the real case [6]. Conversely, if B is a Banach space such
that 2 is the best constant in (1.2) or (2.2), then the {-condition is satisfied with {(0, 0) =
1 (in the proof of Theorem 3.1, the function y must satisfy (0, 0) = %) and, consequently
[7], B is an inner product space.

Proor. We may replace (3.22) and (3.23) by
(3.27) Ax,y, )< |x+y]| if |y|=1,
(3.28) Alx,y,00=|x+y|.
To show this, consider A, defined by
No(x, 3, t) =Alx, y, ) v | x+y | if |x|viyli<i,
=|lx+y| if [x|v]yl=L

Clearly, Ao(0, 0, t) = A(0, 0, t) and A, satisfies (3.20), (3.22), and (3.23). To show that A,
satisfies (3.21), we shall use, among other things, that

(3.29) Ax,y,t)s|x+y| if |x|vi|yl=1,

which follows from the convexity, symmetry, and other properties of A. Let
Hi(s,t) = A(x + as,y + Bs, t),
Hy(s, t) =|x+ as+y+ Bs|.
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Then both H; and H; are convex on the line segment joining any two points (sy, ¢1), (Sz, £2)
inBXx[0,1]. Let0=d<1,

K, (t) = H((1 = t)s1 + tso, (1 — b}ty + tta),
and
Ki(t) = (Ki(t) — 8) v Ka(t)  if te T,
= Ka(¢) if teTu T,
where
T ={te€[0,1]:| x4+ a[(1 = &)s; + ts2] | v |y + BL(1 — t)s1 + tso]| < 1},

T is the set where equality holds, and T is the set where the inequality sign is reversed.
To show that A, satisfies (3.21), it is enough to show that K, is convex on [0, 1] and this
follows from the fact that K; is convex on [0, 1] for 0 < § < 1: Clearly, K; is convex on each
component of 7~ and on each component of 7. Suppose ¢, € T°. Then K, (t,) < Ka(to) by
(3.29). Therefore, there is a relatively open subinterval I of [0, 1] containing £, such that

Ki(t) — 8§ < Ki(to) — 8/2 < Ka(2), tel,

implying that K;(¢) = K(t), ¢t € I. Thus, K is locally convex on [0, 1] and, hence, is convex.
We may also assume in the proof that A = 1, that v is a sequence (a,, as, - --) of real
numbers (see the proof of Theorem 2.2), and that A(x, y, £) is nondecreasing in ¢ (otherwise,
replace A by sup,<.A(x, y, u)).
Let M (x, y, t) be the class of all B-valued martingales f starting at x such that, for some
sequence (1, a,, as, ---) in [—1, 1], the transform g of f by this sequence satisfies

(3.30) P(g.—y|=1 forsome n=1)=¢t

Let ¢(x, y, t) = inf{|| f|l::f € M(x, y, t)}. Then, the desired inequality (3.24) follows, for A
= 1, from Remark 1.1 and

(3.31) Y(x,y, ) = @lx, )

where @(x, y, t) = %A(2x — y, y, t). The proof of (3.31) is nearly the same as the proof of
(3.12) and we shall only sketch it. Here @ satisfies

(3.32) X,y t) =@x 2x —y,10),

(3.33) the mapping (s, t) — @(x + s, ¥y + 0s, t) is convex on B X [0, 1] for all § € [0, 2],
(3.34) plx,y,1)<|x| if |y|l=1,

(3.35) P(x, 50 =|x|,

(3.36) @ (x, y, t) is nondecreasing in ¢.

(The function ¢ is the greatest function ¢ with these five properties.)
Consider the analogue of (3.17):

(3.37) Unlx, ¥, t) = @(x, 3, £).
Let f € Ma(x, y, t) so that, for some a; € [-1, 1], either | x —y| =1 or
P(|lx+a:da—y|=1) =t

We may suppose the latter inequality holds. Let u be the indicator function of the event
on the left-hand side and 8 = 1 — a,. By (3.32) and (3.34),

ey, D=|x| if |x—y|=1
implying, by (3.34) and (3.35), that
tp(x;l-dz,y+0d2,u)s|x+d2|.
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Therefore, by (3.33),
o,y ) =@y Eu) SEp(x+dyy+0de,u) <| 2|1

which implies that (3.37) holds for n = 2.
In the induction step, suppose that (3.37) holds for some n =2 and f€ M, +1(x, y, t). Let
f> have finite range {x;, - -+, x} as in the proof of Theorem 3.1 and write x; = x + s,. Let

Pi(lgr—y|=1 forsome k=2 ---,n+1)=¢.
Then F, € M,.(x + s;, ¥y + 0s;, ;) so that

[l fosrllh =27 "‘Jf | Fjn | dP;= 37 ajp(x + 55,y + 05, )
Q
= tp(x, Y Elm=1 ajtf) = q)(x, ¥, t).

THEOREM 3.3 If B is a Banach space,1 <p < o, I': B X B X [0, ©)— R satisfies

(3.38) (x5 8 =T(,x 1),

(3.39) the mapping (x, t) — I'(x, y, t) is convex on B X [0, x),
x+y|” . |x-y]|"

(3.40) Py )= |—= if 5 =t

and g is the transform of a B-valued martingale f by a real predictable sequence v
uniformly bounded in absolute value by 1, then

(3.41) ro,olgls=IfI5-

So, if I'(0, 0, 1) > 0, then B € MT. Furthermore, if B € MT and T" is the greatest
function satisfying (3.38), (3.39), and (3.40), then I"(0, 0, 1) > 0 and the best constant in
(1.3) is given by

c,(1.3) = [1/T'(0, 0, 1)]"~.
For example, if B is an inner product space and p = 2, consider
Fx,y,t)=t+ (x,)

(or the real part of this expression in the complex case). Clearly, (3.38) and (3.39) are
satisfied and (3.40) follows from

x+y|
2

2
x—y‘

t+ (x,y) =t +
(x, y) 5

PrRooF. We may assume that I'(x, y, ¢) is nondecreasing in ¢ and, by the proof of
Theorem 2.2, that v is a sequence of numbers in {—1, 1}.

Here let M (x, y, t) be the class of all B-valued martingales f starting at x such that, for
some sequence (1, €, €3, - -+) in {—1, 1}, the transform g of f by this sequence satisfies

sups [ g —y [F = ¢.

Let Y(x, y, t) = inf{|| f|5:f € M (x, y, t)}. The inequality (3.41) then follows, with the aid of
a scaling argument and Remark 1.1, from

(3.42) Vx5, t) Z@x 0
where @(x, y, t) = I'(2x — y, 5, t). This function ¢ satisfies
(3.43) x5 t) =@x, 2x —y,0),

(3.44) the mapping (x, t) — @(x, y, t) is convex on B X [0, ),
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(3.45) plx,y, ) <|x|? if |x—y|P=¢

(3.46) @(x, y, t) is nondecreasing in ¢.

(As before, ¢ is the greatest function with these properties so the mapping (x, y, t) —
tll(x ; 24 A t) is the greatest function satisfying (3.38), (3.39), and (3.40). This implies the

remark, following the statement of Theorem 3.3, about best constants.)

Now define M, (x, y, t), yu(x, ¥, t), and so forth, in analogy with the corresponding
objects of the proof of Theorem 3.1. Let o € M5 (x, y,t). Then g, =foand | o —y |5 =t
By (3.45),

oy l—yP)=|LIP
Therefore, by (3.44) and (3.46),

ey t)=exylt—-yID=IfI5

Accordingly, @(x, ¥, t) = Y5 (x, ¥, t) and, as in the proof of Theorem 3.1, this implies
@(x, 5, t) < yo(x, v, t). The remainder of the proof is a straightforward modification of the
corresponding parts of the proofs of Theorems 3.1 and 3.2.

4. Some further properties of {. Any function ¢ satisfying the COl’ldlthIlS of Theorem
3.1 determines the norm of B up to equivalence.

THEOREM 4.1. Suppose that {:B X B — R, with {(0, 0) > 0, is a symmetric biconvex
function satisfying (3.1). If | - || is @ norm on B such that { also satisfies (3.1) with respect
to| -], then

(4.1) 0,0/ x| =[x =]x/¢0,0).

In particular, {(0, 0) = 1 implies uniqueness. T'o prove the theorem, we shall need the
following lemma.

LeEMMA 4.1. Under the conditions of the above theorem,
(4.2) [$xy) =S,y =|x—x"|+|y—y"|
iflx'|viyl=lor|x|v|y|=1
ProOF. Suppose that |x’| v/ |y| = 1 and x # x’. Then, for all large A > 1, |x + A(x’ —
x) | > 1 so, by the convexity and other assumptions,
Sy y) = S, y) S AT (x + A" = x), y) — $(x,¥)]
sA x|+ ]y +A] 2 —x| = ¢x )]

and the last expression converges to | x’ — x| as A — . The desired inequality (4.2) easily
follows.
Note that if { satisfies (3.4), then (4.2) holds for all choices of the arguments.

PRrOOF oF THEOREM 4.1. It is enough to prove the left-hand side of (4.1). Furthermore,
we may assume that

(4.3) $(x, y) = {(=x, —y)
(otherwise, replace { by the average of these two expressions). Then, by convexity,

(4.4) §(0,0) = {(xx, 0).
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If |x| = 1, as we may suppose, and || x| < 1, then {(x, —x) < |x — x| = 0, by (3.1), so
Lemma 4.1 applied to || - || gives

$00,0) = {(x, 0) = {(x, 0) — §(x, —x) =< || x|,

which is the left-hand side of (4.1). If | x| = 1 < | x|}, the left-hand side is trivial because
$(0,0) =¢(x,0) =|x| =1

REMARK 4.1. Suppose that { satisfies the conditions of Theorem 3.1 relative to some
unknown norm | - | on B. How can { be used to construct an equivalent norm? Simply let
V be the smallest convex set containing all x in B satisfying ¢ (ax, —ax) > 0 for all scalars
a such that |a| = 1. Clearly, a V = Vif || = 1. Also, it is easy to check, using Lemma 4.1,
that {(0, 0)U C V C U where U = {x € B:| x| < 1}. Therefore, || x| = inf(A > 0:x €AV}
defines a norm on B satisfying | x| < | x| = | x|/¢(0, 0).

REMARK 4.2. Suppose that | - | and || - || are norms on B satisfying a [ x| < || x|| < 8| x|
where a and B are positive numbers. Suppose that ¢ is symmetric, biconvex, ¢(0, 0) > 0,
and (3.4) is satisfied by { and | - |. What is an appropriate {-function for (B, || - ||)? If

a

{O(x, y) = B {(Bx) By))
then {, has the desired properties. In particular, if |y || = 1, then | 8y| = 1 so that

:o<x,y>s§|ﬁx+ﬁy|=a|x+y|sux+y||.

5. Concluding remarks.

(i) The equivalent probability conditions of Sections 1 and 2 determine a rather large
class of Banach spaces. For example, the Lebesgue spaces I” and L'(0, 1) belong to this
class for all r € (1, «). (See the Introduction.) Here we describe a condition that looks
similar but which, in fact, gives rise to a much smaller class of spaces, albeit an important
one.

Let fand g be B-valued martingales, relative to the same sequence of sub-o-fields, such
that their respective difference sequences d and e satisfy | ex(w)| < |di(w)|. Let 1 < p <
. For what Banach spaces B does there exist a positive real number c, such that

(5.1) lglr=coll fll»

for all such fand g?

Before answering this question, we note that the analogue of Theorem 1.1 holds and,
except for obvious minor changes, has the same proof. One simple consequence is that if
(5.1) holds for some p € (1, ®) then it holds for all such p. Therefore, in the following, we
may assume that p = 2.

Let x1, x, - - - and 2z be elements of B, with | z| = 1, and define d and e by d;, = ryx; and
er = Iy | xx| 2 where ry, r --. is an independent sequence of random variables satisfying
P(ry = x1) = %. Then d and e are B-valued martingale difference sequences satisfying
| dr(w)| = | ex(w)]. If (5.1) holds for p = 2, then

(DY SR/ el DY SR A EA RS Pl DY R AN )Y S E

Therefore, by a result of Kwapien [15], B is isomorphic to an inner product space.

Now suppose that B is isomorphic to an inner product space. In fact, to prove (5.1), we
may suppose that B = [°. Then, it is elementary that || f|} = E (351 | dx |) = E (351 | ex [?)
= | g |3, which implies (5.1).

(ii) There are other kinds of martingale transforms that may be studied for their
intrinsic interest and their role in applications. For example, consider f and g, with f, =
Yk=1dr and g, = Y%-1 vx di, where v is a B-valued predictable sequence and d is a real-
valued martingale difference sequence. Here, also, the analogue of Theorem 1.1 holds and
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has the same proof. It is not hard to show that /" is well-behaved for transforms of this
type (for example, the analogue of (1.3) holds for /") if and only if 2 < r < . (To prove the
“if” part, one may assume that p = r and the proof of || g|- = ¢, || f|- reduces to an
application of the square function inequality to real-valued martingales.) In fact, Pisier has
shown (personal communication) that a Banach space B is well-behaved for transforms of
this type if and only if B is isomorphic to a 2-smooth space. The “only if” part is an easy
consequence of Corollary 3.1 of [18]. In the other direction, Proposition 2.4 of [18] gives
gl = cE Y%-i |vx dr|* and, since |vi(w)| = 1 and f is a real-valued martingale, the
inequality || g2 = || |- follows.
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