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OPTIMAL SEQUENTIAL SELECTION OF A MONOTONE SEQUENCE
FROM A RANDOM SAMPLE'

BY STEPHEN M. SAMUELS AND J. MICHAEL STEELE

Purdue University and Stanford University

The length of the longest monotone increasing subsequence of a random
sample of size n is known to have expected value asymptotic to 2n'/% We
prove that it is possible to make sequential choices which give an increasing
subsequence of expected length asymptotic to (2n)'/2. Moreover, this rate of
increase is proved to be asymptotically best possible.

1. Introduction. A central theme in the theory of optimal stopping is that many
stochastic tasks can be performed almost as well by someone unable to foresee the future
as by a prophet. In one classic example, the “secretary problem”, the task is to stop at the
largest of n sequentially observed independent identically distributed observations X;, X,
..+, X,. Without clairvoyance one attains X, where 7 is some stopping time, but a prophet
is always able to attain max<,<, Xi.

That the prophet’s advantage is rather modest follows from the well-known fact that no
matter how large n is there is a stopping time 7, for which

(L.1) P(X,, = maxi<<, Xi) > e,

(see, e.g., Gilbert and Mosteller (1966)).

The stochastic task we consider here is more complex than the secretary problem and
the central theme is illustrated in a different way from (1.1). To set the problem, let {X,:
1 = i < »}, denote independent random variables with continuous distribution F. The
basic object of interest is

L, =max{k:X, >X,>..->X, with 1=i<i2<-.:<i=n},

the length of the longest monotone decreasing subsequence of the sample {X;, X,, ...,
X..}. (We could equally well have considered increasing subsequences but the notation will
be simpler this way.) The variable L, has been studied extensively and it is now known
that

(1.2) EL, ~ 2n'”

The first result, EL, ~ cn'/?, was obtained by Hammersley (1972) via an ingenious use
of the planar Poisson process. Baer and Brock (1968) had conjectured earlier on the basis
of computer simulations that ¢ = 2. By a delicate variational argument Logan and Shepp
(1977) proved that ¢ is at least 2 and by a similar method VersSik and Kerov (1977)
established that ¢ equals 2.

How well can one sequentially choose a monotone decreasing subsequence using only
stopping times? Formally, we call a sequence of stopping times 71, 72, -- - a policy if (1)
they are adapted to {X;:1=i<o},(2)1=1<72<.--,and (3) X, > X, > --. . The class
of all policies is denoted by & and our main problem is to determine

Un = sup.ev E(max{k:7, < n}).

The quantity u, is the largest expected length of a monotone decreasing subsequence

Received April 23, 1979; revised April 23, 1980.

' The research was supported in part by Grant N0014-76-C-0475 (Office of Naval Research).
AMS 1970 subject classifications. Primary 62L15; secondary 60G40.

Key words and phrases. Monotone subsequence, optimal stopping, subadditive process.

937

F]

S
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁv
The Annals of Probability. STOR

®

Www.jstor.org



938 STEPHEN M. SAMUELS AND J. MICHAEL STEELE

which can be achieved by sequential selection. Although u, would a priori depend on F,
one can easily check that it is the same for all continuous F. Moreover the optimal policy
for a given F can be obtained via the probability integral transform from the policy for the
uniform distribution on [0, 1].

Our main result is the following

THEOREM.
(1.3) u, ~ (2n)V2

The intuitive content of this result is another illustration of the central theme; the
prophet asymptotically outperforms the intelligent (but nonclairvoyant) individual by only
a factor of 2"/% One should also note that the naive individual who too eagerly reports each
successive record low achieves an expected length of only Y 7_; 1/k ~ log n and thus does
much worse than the prophet or intelligent individual.

Our proof that u, ~ (2rn)"/? begins with a simple algorithm for computing u, based on
an integral equation obtained by dynamic programming. Standing alone, the integral
equation seems to be ineffective, so in Section 8 we prove by a subadditivity argument
that u,/n'? has a limit. A sequence of efficient, but suboptimal, policies are then given in
Section 4 which show lim u,/n'/? = 22 The crux of the proof is in Section 5, where the
integral equation is finally used to show lim w./n'? = 2'/ after first establishing an
essential regularity property of the solution by a probabilistic argument.

The proof outlined above yields several results en route. In particular, we obtain results
on optimal selection when the sample size is random. These results as well as comments
on a related problem are collected in Section 6.

In the final section we are fortunate to be able to include a result due to Burgess Davis
on the sequential selection of a decreasing subsequence from a random permutation. This
result teams up with the main theorem of this paper to settle a second conjecture given in
the computational paper of Baer and Brock (1968). We would like to thank Professor
Davis for his kind suggestion that his result be included in the present paper.

2. An algorithm for computing the optimal expected length. First of all, as we
remarked in the introduction, we may assume without loss of generality that the common
distribution of the observations X;, X5, - - - is uniform on (0, 1).

Let us define, for each ¢ € (0, 1],

(2.1) Fi={r=(1, 73, -+ ) ESL X, <t i=12 ...},

the class of policies which only select observations smaller than ¢. We also let

(2.2) un(t) = sup,ey, E{max{k:7, = n}}.
Clearly

(2.3 Un = un(1)

and

(2.4) ut)y=PXi=t)=t

We also record the trivial fact: uo(¢) = 0.

Now fix ¢t and consider n + 1 available observations. Because of the stationarity of the
X/’s, the maximal conditional expected subsequence length, given X;, will be just u.(t) if X;
is not selected and 1 + u,(X;) if X is selected (in which case necessarily X; < ¢). Since the
optimal policy must do whichever maximizes the conditional expectation, we have the
algorithm:

Un+1(8) = u.()P(Xy1 = t) + E max{un,(t), 1 + u.(X1) M (x,<y
(2.5) ,

= (1 — ualt) + f max{un(t), 1 + un(s)} ds.
0
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It follows easily that for each n and ¢, the policy which achieves u,(t) is
m=min{i:X, < tand 1 + u,-(X)) = u,-.(t)}
(2.6) > n(arbitrary) if nosuchi=n
Te+1 = min{i > 7: X, < X, and 1 + up (X)) = un-(X:,)}
> n(arbitrary) if no such i =< n or if 7, > n.

Since (2.4) and (2.5) imply that each u.(-) is strictly increasing on (0, 1), we can implicitly
define the functions ¢ (¢) by the following relations:

Un(t¥()) = un(t) — 1 if w,(t) =1

27 tr(t) =0 if u(t) =1

Equation (2.6) now simplifies to the following:
(2.8a) m=min{i:t}_(¢) = X, <t}
(2.8b) Tewr = min{i > 185 (X,) = X, < X, }.

One would naturally like to show u, ~ (2rn)'/? directly from (2.5), but this does not seem
possible. The integral equation (2.5) becomes effective only after substantial quantitative
information about u,(t) is obtained.

Here we should remark that

(2.9) Un(t) = S A B Yo (;f)uu — &

for all ¢ small enough so that the right side of (2.9) is less than or equal to one. This can be
shown either directly from the integral equation or by noting that when u,.(t) = 1 the
optimal policy is to select all successive minima among those X.’s, i = 1, 2, ..., n, which
are smaller than ¢. The right side of (2.9) is the expected number of such minima.

3. Existence of the limit. To show that u,/n'/? has a limit, we shall first prove that
a limit exists for an analogous planar Poisson process problem and then show that the two
problems are asymptotically similar. The proof is a version of Hammersley’s subadditivity
idea made somewhat simpler because we deal only with expectations rather than with
random variables.

3a. The planar Poisson process problem. Let Z, Z,, -- - , be ii.d., each exponentially
distributed with mean one, and independent of the X,’s which are i.i.d. uniform on (0, 1).
Let % be the class of policies 7 = (1, 72, - - - ) With

(a) each 7; adapted to {(Z;, X,): 1 < i < oo},

b)l=n<n<---and X, >X,> .-+

and let w()) = sup,ey, E {max k: Y74 Z; <A}.

In other words, we observe a Poisson process with arrival rate one, on an interval of
length A. At each arrival time we are allowed to observe a random variable uniform on (0,
1) and independent of its predecessors, and the object is to select a decreasing subsequence
of maximal expected length.

What makes this problem so appealing is the well-known fact that, if we choose p and
t, each in (0, 1), then the following two processes are also Poisson:

(a) those arrival times in (0, pA) for which the corresponding X/’s are = ¢;

(b) those arrival times in (pA, A) for which the corresponding X/’s are < ¢.

Those processes have expected numbers of arrivals p(1 — ¢)A and (1 — p)ZA respectively.
It follows, by considering the subclass of & consisting of those 7’s with

Xzt if ¥ Z,<pA
<t if YLiZ;,>pA,
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that
3.1) w) = w(pl — A +w((1 — p)tr).
If we now define
p(x) = w(x?)
and choose A = (r + s),, p=1—¢t =r/(r + s), (3.1) becomes
3.2) plr+s)=p +p(s).

By the elementary lemma on subadditive sequences (Fekete (1923), or Khinchin (1957)),
this implies the existence of

(3.3) vy = limy, p(¢)/¢t = lim sup p(¢)/t = 1.

The finiteness of y follows from the inequality

A A
wA) = 27:=0F EL,= ME;;:OE kB2 = M N

the second inequality holds for some constant M by (1.2). The last mequahty is just an
application of the familiar inequality E | X | = (EX?)"2
Thus we have shown that there is a finite y > 0 such that

(3.4) y = limg o w(t?)/t
= lim,_... w(t) /¢t

3b. Asymptotic similarity of the two processes. We will now use some elementary
estimates to show that u, ~ w(n). With the usual notation

P(k;A) =Yk oMe™/ 5!
and
PE,N)=1-Pk—-1)N

we will prove the inequalities:

(3.5) u[(l_ep\]P([(l - 6))\]; A =w@)
and
(3.6) W) = ugaronP[(1 + AL A) + AP([(1 + A]; A).

The first inequality holds since the optimal policy for n = [(1 — €)A] observations used
on the Poisson process (paying no heed to the Z;s) would yield an expected length of at
least uj(1-9a) Whenever there are at least [(1 — €)A] arrivals.

For the second inequality let N be the number of arrivals and let L be the subsequence
length obtained when the optimal policy in % is used. We then have

wA) = E(L|N=[(1+eADP((1+ &AL A) + E{E(L|N) nsta+eny)-

We note E(L|N =< [(1 + €)A]) = yja+on and trivially E(L | N) < N. Inequality (3.6) then
follows since

ENInstareny = AP([(1 + €A A).

From the fact (3.4) that w(\) ~ yA'* and elementary bounds on the Poisson distribution
one now easily deduces from (3.5) and (3.6) that u, ~ yn'/%

We remark that it is not hard to extend this result to show that for each ¢ € (0, 1] one
has u,(8)/(nt)** - y.
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4. A lower bound for the limit. For any constant « > 0, and for each n, we consider
the policy 7(n) = 1(n; a), where

mi(n) =min{j: X, = 1 — a/n"?}
Tre1(n) = min{j > me(n): X, € [X,,) — a/n"?, X))}
We shall show that for these policies
4.1) lim inf, . E max{k: 7.(n) < n} = n'? min(a, 2/a).

The right side of (4.1) is maximized for a = 2'/%, which shows that lim inf,_,.u,/n'/? = 2172,
(Of course when we complete the proof of the theorem, (4.1) with « = 22 will imply that
the policies 7(n; 2'/%) are asymptotically optimal.)

What makes the policies 7(n) easy to evaluate is the fact that 1f X, = a/n'? then
Tre1(n) — Tr(n) and X,,») — X,,,,m are conditionally independent and independent of {r(n),

-, (); Xoywys o+ 5 Xeyw}, with geometric (p = a/n'?) and uniform on (0, a/n'?
distributions respectively. Hence we now let {Y,: 2 =1,2, -.-} and {Zx:k=1,2, --- } be
independent sequences of iid. random variables with these geometric and uniform
distributions respectively. Also set S, =Y, + -+ + Y, and S, =Z, + - .- + Z;, and define

M, = max{k: St =nand Sy = 1 — a/n"?}.
We first observe
(4.2) EM, < E max{k: 1x(n) = n}.
Now, for any € > 0, Chebyshev’s inequality gives
PS.,=n)=1+0n""? if k=<1 —e)an'?
=0((n"? if k=1 + e)an'’?
and
PSi=1—-a/m»=1+0n""% if B=(1-e)(2/a)n'?
=0(n? if 2= (1+e(©2/a)n"

The O (n""?) terms are uniformly small in the indicated range, so, by the independence of
the two sequences,

EM, =Y} P(St = n)P (S, = 1 — a/n*?) ~ n** min(a, 2/a).
By (4.2), this shows that (4.1) holds, completing the proof.

5. An upper bound for the limit. Now that we know that lim u,/n'/? exists and is
at least 2"/, to complete the proof of the theorem it will suffice to show that

(5.1) lim inf u,/n'? < 2'72,
Our proof of (5.1) hinges on showing that
(5.2) u.(t)/t/* 1 in t for each n.
The derivative of u,(¢)/t? is
£V un(t) — (207 'un(8)},
so, to prove (5.2), we must show that for each ¢ € (0, 1)
(5.3) un(t + 8) — un(t) > (%)(6/t)un(t) + 0(8) as § | 0.
This inequality will be proved by selecting a suboptimal member of %5 (as defined in
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(2.1)) and showing that this policy improves on the optimal policy in % by an amount
equal to the right side of (5.3).

What we actually do is a bit more complicated than this and involves showing that u,(t)
is also the maximal expected subsequence length in a problem where the number of
available observations is random with a binomial distribution.

5a. Optimal selection with binomially many observations. Since the policy in %
which achieves u,(t), as given by (2.8), ignores the actual values of all X;’s which are greater
than ¢, and since the other X/’s are, conditionally, i.i.d. uniform on (0, ¢), we could just as
well replace the X,’s by a sequence of observable coin tosses with probability ¢ of heads,
letting each toss which gives heads be accompanied by the next in a sequence of i.i.d.
random variables uniform on (0, ¢).

To exploit this observation let Y;, Y5, - - - and X;, X5, - - - be independent sequences of
i.i.d. random variables, the Y’s Bernoulli (¢), and the X’s uniform on (0, 1). Let %, be the
class of policies adapted to the (Y, X;)’s which select a monotone decreasing subsequence
by selecting only X.’s for which Y, = 1 and which totally ignore all X,’s for which Y, = 0.
Then for the u,(t) defined by (2.2) we have the representation

sup.cy, E{max{k:1, = n}} = u,(t).

Since we have made the X,’s uniform on (0, 1) rather than on (0, #)—this is to avoid
confusion in what follows—the policy 7 = (71, 72, - - -) which achieves u,(t) becomes

nn=min{i:Y; =1 and ¢;_.(t) =tX. <t}
w1 =min{i> 7Y, =1 and ¢;-(tX,) =tX:<tX,}.

Now suppose we introduce a second coin toss at each stage—letting Y, Y5, .-+ be i.i.d.
Bernoulli (p’) and independent of the Y.’s and the X,’s—and we allow policies adapted to
the {Y/} as well, but maintain the requirement that all X/’s for which Y, = 0 must be
ignored. Then clearly what we have introduced is external randomization; those policies
which depend in some way on the {Y/} are simply randomized policies, and, of course,
none of these can improve on the best nonrandomized policies. In particular, any policy
which ignores all X;’s for which either Y; = 0 or Y;’ = 0 is really a policy in %, hence the
expected length of the subsequence of X;, - - - , X,, which it selects is no greater than u,(#t’).
Just such a policy will be needed in proving (5.3).

5b. Monotonicity of u,(t)/t'>. We now fix n and let the {Y,} be Bernoulli (¢ + §) and
the {Y/} be Bernoulli (¢/(¢ + 8)). First note that P(Y, = Y/ = 1) = t. We consider two
randomized policies r and 7’ in %, .s. The first is to be equivalent to the optimal policy (for
given n) in %, while the second is to be a slight modification of the first. Specifically, we let
T = (71, T2, - - +) With

nm=min{i:Y; =Y,/ =1 and ¢}_.(t) =tX;}
Teer=min{i > 7:Y; =Y/ =1 and ¢} (tX,)=tX,<tX,}.

We want 7’ to agree with 7 up to the first i < n, if any, at which Y, =1, Y/ = 0, and at
which X; would have been selected by 7 if Y, had been 1. We want 7’ to select this X, but
thereafter to continue to behave like 7. We thus define

I= mln{z Y. = 1, Y," = 0, t:_i(tXa‘) =tx; < th,}
= o if nosuchi =n,
where
o, = max{te:T < i}

=0(andX()E].) if T]Zi.
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We then let 7’/ = (11, 75, - - -) where
Th =Tk if <1
T, =1 if mTe<I<the
Tha=min{i >7,:Y; =Y/ =1 and ¢;_(tX;) =tX;<tX;} if 7h=1L

Now, for convenience, we let L and L’ be the lengths of the subsequences of Xj, -+ - , X,
selected by r and 7’ respectively. Then L = L’ on {I > n},

EL = u,(t),
and
EL' < u,(t + §)
SO
(5.4) Ut +06) —u(t) = E(L’ — L|I=n)P(I=n).

Furthermore, from (2.2) and the definitions of 7 and 7/,
(5.5) EWW—-L|I=iX,=x)=1+E{u,~(tX)|I=10 X, = x} — tri(tx).

(Note: (5.5) is valid even when i = n, since we have set uo(t) = 0.)
From (5.4) and (5.5) we see that to establish (5.3) it suffices to prove

(5.6) P(I=n)= (8/t)u.(t)y +0() as 8]0
and, for each i = n,
(5.7) E{u,—(tX)| I =i, X, = x} = un,—i(tx) — .
To prove (5.6) we first remark that, since ¢/(¢t + §) —> 1 as § | 0, we have
(5.8) PI=n)=%LP(Y.=1,Y/=0,A) + 0(d)

where A; denotes the event {t;_,(tX,) = tX; < tX,}. A;is independent of {Y; =1, Y/ = 0}
)

P(Y;=1,Y'=0,A)=P(Y;=1,Y/=0)P(4)
=0/ P(Y. =Y/ =1A)
= (8/t)P(X; is selected by 7).

Putting this back into (5.8) we have
P(I =n) = (8/t) Y21 P(X;is selected by 7) + 0(8) = (§/t)un(t) + 0(8),

which is (5.6).

To prove (5.7), we first remark that the conditional distribution of ¢X; given X = i and
X,,= x is uniform on (¢3_.(¢x), tx). Also we note that
(5.9) Un—i(t7-i(tx)) = Uup-iltx) — 1

with equality holding unless u,_,(tx) < 1. Hence if u,_;(-) were linear on the interval
(tx-i(tx), tx), (56.7) would hold and would in fact be an equality if u,-(tx) = 1. So the most
natural way to establish (5.7) is to prove the following lemma:

LEMMA 5.2. For each n, u,(-) is concave.

Proor. We proceed by induction and first note the lemma is true for n = 1 because
ui(t) =t ‘
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Using (2.7), we rewrite (2.5) as

t

Un+1(t) =t + (1 — Oun(t) + 5 (8) (un(t) — 1) +f ® Un(s) ds.

it
Formally we have
Une1(t) =1 — w,(t) + (1 — t)un(t) — ' (t) (ua(t) — 1)
+ tr (O un(t) + un(t) — 65 (O un(ts(2)).

Now u,(t¥(t)) = (un(t) — 1)* and ¢.*'(¢) = 0 if u,.(t) < 1. Hence whether or not u,(¢) = 1 we
have

Una(®) =14 {1 — (¢ = X)) }un(®)
and ‘
Un+1(t) = {1 — (¢ — 2 () Yus (t) — (¢t — £t () un(?).

If u.(-) is concave (i.e., u;, < 0), then (¢ — ¢;(¢)) is increasing. Since, ¢ — ¢,(¢) < 1 and
un(-) > 0, we conclude that u,.:(¢) <0, i.e., u,+1(-) is concave.

The validity of the foregoing differentiations are also easily established by induction.
To begin note u;(¢) = ¢ and ¢*(t) = 0. Next the differentiability of u, and u;, implies ¢; ()
is differentiable on {¢:u,(¢) > 1}; in fact, we have ¢;'(¢) = un(t)/u,(tf(t)). By means of
(2.5) one even more easily sees the required differentiability of u.(-).

This completes the proof of the lemma, from which we obtain (5.7).

5c. Completion of the proof. At last we are ready to prove (5.1). We define

(5.10) Cn = Un/n"? = uy(1)/n'?,
and note that it only remains to show lim inf ¢, < 2'/% By (5.2),
(5.11) )= u(0) te (©,1].
Abbreviate
ty =t (1)

and define s analogously by

cn(ns¥)?=c,n'? -1

S0
(5.12) s¥=1=2¢'"n""2 +¢;%n7 L
Now (5.10) and (5.11) imply that

(5.13) sy =t

so, rewriting (2.5), with ¢ = 1, as

1
Un+1 = Un + J’t‘ {un(t) — (u. — 1)} dt,

we conclude from (5.10), (5.11), and (5.13) that

1
(5.14) Un+1 =< can'” + f . {ca(nt)'? — (can'? — 1)} dt.

This is perhaps the central inequality in the proof, and it is made possible by (5.2). The
remainder of the proof demands only straightforward analytical manipulation of the right
side of (5.14).
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Evaluating the right side of (5.14) we get
(5.15) Cos1 = a2 + (BH)ean (1 — 5% — (1 — 83 (ean? — 1).
Substituting (5.12) and the Taylor series expansion

1— 532 = () (1 —s¥) — B)(1 = s+ 0((1 - 5)),
into the right side of (5.15) gives
(5.16) Unr1 = e+ c;'n P+ 07
=@+ )" cn2n+ 1)+ c'n V2 + 1)+ O(n™¥?).
Now direct computation shows that
n2n+1)"V2=1- (% —8,)/n"n + 1)7?

where 8, > 0 and 8, — 0 as n — . Hence (5.16) is
1
Uns1 < (n + D" {co + n7 % + 1) V(e — (5)0,, +0(1))}.
From (5.10), with n + 1 instead of n, we have

1
(5.17) Chi1=cn+n 4+ 1)V - (—2->c,, +0(1)}.

This is exactly what we need to show that lim inf ¢, < 2'/2 and thereby complete the proof.
We use the fact that ¢~ — ¢/2 is decreasing in ¢ and zero for ¢ = 2'/%. Choose € > 0 and
n. large enough so that for all n = n. the o(1) in (5.17) satisfies

o(l) < (%) | 22+ €)' — (%) (2% + €) | = 6.
Then for all n = n.,
€ >2"2 + €= cp1 < € — O A(n + 1)7V2
But
Sn2n+ 1)V =

S0 Cn, > 2% + € for some ny = n. implies ¢, +m < 2'* + € for some m. Since € > 0 is arbitrary
this shows that lim inf ¢, < 2'/2 as required to complete the proof.
We should remark that exactly the same argument can be used to prove that

un(t)/(nt)'? — 22

for every ¢ in (0, 1].

6. Random sample size and an open problem. As an easy consequence of u, ~
(2n)'2 one can obtain several results on subsequence selection when the underlying sample
size N is random. In particular we now define un by

(6.1) un = sup,ey E {max{k : 7. = N}},

where & consists of those strategies adapted to {X;}Z: but not adapted to N. When N is
Poisson or binomial (with fixed p) one can easily show that as EN — o we have

(6.2) un ~ (2EN)'2,

In fact one can check that the same result holds whenever EN — o and Var N = O(EN).
(To compare these results with the asymptotic relations of Sections 3a and 5a one needs
to note that the class of policies applied there were quite different from those used in (6.1)
since they were also adapted to the relevant Poisson or binomial processes.)

We now consider the next most complex case where N has the geometrical distribution
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(P(IN=Fk) =p(1—p)*' E=1,2, .-.). The condition Var N = O(EN) does not hold, so
as before the natural analysis begins with dynamic programming.
Analogously to (2.2) we define

un(t) = sup.cy, E {max{k: 7, = N}}.
One can easily check in this case that
unp(t) = unip(1)
where
p'=p/{p+tl-p}

If we define f(p) = uny)(1) we are led to a single integral equation:
1
f(lp)=Q1Q-p) J’ max{f(p), 1 + f(1/{p + t(1 —p)})} dt.
0

As we similarly noted at the end of Section 2 we can solve the equation for sufficiently
extreme values. In this case we know
f(p) =log(p™') if p>e"

This observation just says that if f(p) =1 the optimal policy is to select all record values
exactly as one does in the fixed sample size problem when u,(¢) < 1.

One would like to determine the asymptotic behavior of f(p) as p — 0. We conjecture,
but have not been able to prove, that asp — 0

f(p) ~ cp™'”

for a constant

c< 22

7. A result of Burgess Davis on selections from permutations. If one considers
a random permutation of the set {1, 2, -.., n}, then the distribution of the length of the
longest decreasing subsequence is the same as that in a random sample of size n from a
uniform distribution. In contrast, the length of the optimal sequentially selected decreasing
subsequence is stochastically larger in the first case.

We let , denote the expected length of the longest decreasing subsequence which can
be chosen sequentially from a random permutation. The main result of this paper
immediately implies that
(7.1) lim inf 2, /n'/* = 2V%

Part of the interest of this observation stems from the fact that the study of the /,’s was
already a primary objective in Baer and Brock (1968), where “natural” is used as a
synonym for “sequential.” On the basis of substantial computation Baer and Brock even
conjectured that J, ~ (2n)'/%. The truth of this conjecture is an immediate consequence of

our main result u, ~ (2n)"/? and the previously unpublished theorem due to Burgess Davis
which is proved below.

THEOREM. (Burgess Davis).
by~ Un.

Proor. First suppose X;, 1 < i < oo, are i.i.d. uniform on [0, 1]. For any € > 0 and 0 <
8 <1, let If” denote the interval ((k — 1)e/n'? ke/n'/*] and let Y{” denote the cardinality
of the set {i : 1 =i =n, X; € I{"}. Consider the events

A, = {(minip<p2, Y = (1 — 8)en'/?)

and note that elementary binomial estimates show P(4,) — 1 as n — .
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Now assign “pretend ranks” as follows: if X, € I{® and X, is one of the first [(1 —
8)en'/?] elements of I” we chose its “pretend rank” at random from those integers between
(k —1)(1 — 8)en'” and k(1 — 8)en"’? which are not already assigned. We then ignore all
X/s in If" after the first [(1 — 8)en'/2]. We note that on A, the sequence of “pretend ranks”
is simply a permutation on the integers {k:1 <k < (1 — §)n}.

Now use the optimal random permutation policy on the set of “pretend ranks” to select
a subsequence with decreasing pretend ranks. Delete from the subsequence all X,’s which
are not smaller than all their predecessors in the subsequence. This gives a decreasing
subsequence.

We now claim that the expected cardinality of the resulting subsequence is at least
P(A,)(ln — en'?) with m = [(1 — 6)n]. First note, on A, the expected length before
deletions is l.. Let J{” denote the interval I” which contains the smallest selected
element from {X;, X, ---, X,}. For X;., to be an observation deleted from the selected
subsequence it is necessary that X;,, € J{”. By Boole’s inequality and the independence
of Xi.; and J{” we have that the expected number of deleted observations is at most

Yoo P(X,41 € J) = nle/n'?) = en'2

This proves I,/n"? = P(A,) 'u,/n'? + €. By (7.1) and the arbitrariness of € and & the
theorem is proved.
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