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THE INTEGRAL OF THE ABSOLUTE VALUE OF THE PINNED
WIENER PROCESS — CALCULATION OF ITS PROBABILITY
DENSITY BY NUMERICAL INTEGRATION

By S. O. Rice
University of California, San Diego

L. A. Shepp [1] has studied the distribution of the integral of the absolute
value of the pinned Wiener process, and has expressed the moment generating
function in terms of a Laplace transform. Here we apply Shepp’s results to
obtain an integral for the density of the distribution. This integral is then
evaluated by numerical integration along a path in the complex plane.

1. Introduction. Let W,, 0 < ¢ < 1, be the pinned Wiener process, i.e., a standard
Wiener process starting from 0 at ¢ = 0 and conditioned to pass through zero at ¢ = 1. Let

Q) £=f | W|at,
0

(2) (r) = Ee™¥,

1 o
3) pé) = omi f e¥o(r) dr

where p(§) is the probability density of the random variable &.
Shepp [1] has shown that

(4) &(V25%%) s = — é% j du e“Ai(u)/ Al (u)

where Ai(u) is the Airy function [2] and Ai’(u) is its derivative, and he has pointed out
that p(¢) can be calculated from (3) and (4).

Here we shall use (4) and the first five moments of p(£) to calculate ¢(r), and then
determine p(£) by numerically integrating (3) along a suitable path in the complex r-plane.

2. Statement of Results. The following table of £ p(¢) lists some values of p(§) that
have been calculated from (3) by numerical integration:

.100  0:089 25 3.732 .6 03785 1.0 0.00725
125 0.757 .30 3.008 .7 0.1649 1.1  0.00204
150  2.001 40 1.614 .8 0.0650 1.2 0.00051
200 3.753 .50  0.803 9 0.0230 1.3 0.00011

The largest value of p(£) that occurred in our calculations was p(.225) = 3.8993, and the
smallest was p(1.5) = 3.7-107%,

. Fig. 1 shows p(£) plotted as a function of £ From results in [1], the mean value of £ is
0.3133 and its standard deviation is 0.1382.
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Fig. 1. Probability density p(£) as a function of &
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When £ tends to zero, p(£) is given by the saddle point approximation (see Section 5
below)

5 p(§) = .2285¢ exp(—.07833¢£7%), ¢ small.

This approximation is in error by about two percent at £ = 0.1.
When the calculated values of In p(£) are plotted against £2 for the range 1 < £ < 1.5,
they are found to lie close to a straight line, and the results suggest the approximations

p() = 4.1 exp(—6.38%), § large,
&(r) = O[2.8 exp(r?/27.2)], r— —o.

3. Calculation of ¢(r). The power series
(6) ¢(r) = Y50 (=)"m.r"/n!

can be obtained by expanding expression (2) for ¢(r) and setting m, = E(£"). Shepp [1] has
given a recurrence relation for m, and shows that

@ mo=1 ma=17/60 ma = 19/720
mi= (1/V7/2  ms=21mi/128  ms = 101 m;/2048.

A second expression for ¢(r) can be obtained from the integral (4) by noting that (i)
Ai(u) and Ai’(u) are integral functions of u, (ii) the zeros of Ai'(u) are simple and lie on the
negative real u-axis, and (iii) from [2], as |u| — «

Ai(u) /AT () ~—u2+ 0™, |argu|<w.

Therefore when Re(s) > 0 the path of inpegration in the integral (4) can be displaced to the
left. The contributions of the residues of the poles of 1/A#'(x) then give

o(v25%2) [ms = — Yoy Ai(ay)

m exp(a,,s)

(8)
= Y1 expl(ans)/(—ar), Re(s)>0

where u = a}, is the nth zero of Ai’(u). In going from the first to the second equation in (8),
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we have used
Ai”(u) — uAi(u) = 0.

The values of a;, for n = 1 to 10 are listed on page 478 of [2]. For n > 10 we can use the
approximation

) 7 35
an = '—y2/3(1 - W + W))

which follows from equations (10.4.95) and (10.4.105) of [2].
The expression we seek for ¢(r) can now be obtained by setting

©) V2s¥i=r, 8= (r/V2)*?
in (8). It is
(10) o(r) = Va(r/2)2 T2, explai(r/v2)%)/(—ak), |arg r| < 3n/4.

In our calculations we obtain ¢(r) for | 7| < 1/2 from the first six terms in the power
series (6) and the moments (7). For || > 1/2 and | arg r| < 37/4, we used the series (10).
It turned out that we never had to use more than 40 terms in (10) if the series was
truncated when the terms became less than 1075,

4. Numerical Integration of the Integral (3) for p(¢§). The symmetry of ¢(r) about
the real r-axis allows us to write (3) as

(11 p(§) = Real lf e“e(r) dr.
mi ),

We seek a path of integration in the complex r-plane such that (i) the integrand in (11)
will decrease rapidly, and (ii) ¢(r) can be calculated by one or the other of the two methods
described in Section 3.

Some experimentation suggests the path

(12) r=vA—v+iv

where v is real and runs from 0 to o. This path starts out along the positive r-axis and then
curves upwards and to the left. It crosses the imaginary r-axis at v = 1 and then tends to
run parallel to the ray arg r = 37/4 (so that we can still use the series (10) for ¢(r)). When
v is large the absolute value of exp({r) decreases as exp(—£&v) while the individual terms in
the series (10) remain at O(1).

The further change of variable [3, Sec. VI]

(13) v = (1/é)exp[x — 3e*]

increases the rate of convergence, and (11) becomes

, reat L [ ety 2
(14) (£ = Real — f_ °“e $(r) o - dx

where dr/dv and dv/dx can be obtained from (12) and (13), respectively.

The trapezoidal rule with truncation at x = +3.5 was used to evaluate (14). It was found
that, as £ decreased, more points were required in the numerical integration to achieve the
desired accuracy. In our calculations, several trials led us to use Ax = 0.075 (94 points) for
£=04 and Ax = 0.025 (280 points) for 0.1 < £ < 04.
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5. Behavior of p(¢) when ¢ is small. When r tends to +o, the leading term in (10)
shows that

&(r) > Cr'/%exp[—ar??®]
where
a=—ai/2"% C=(1/a)Vr/2.
The integrand in the integral (3) for p(§) tends to
(15) Cr'/3exp[tr — ar??].

Setting the derivative of the exponent equal to zero and solving for r shows that the
exponential term in (15) has a saddle point at
ro = (2a/3)%%.

When £ is small, r, is large and the leading term in the asymptotic series for p(£) given by
the method of steepest descent (from ro) leads to

(16) p() ~ C@nfa) ™ 2ri%eh = £~*VB/3 exp(— Bt ™)
where

fo=tro— arf®=—(a/3)r3?

fo = (2a/9)ra*?,

B = (2a/3)°.

From a} = —1.0188 we get a = 0.8086, 8 = 0.1567, and finally, from (16), the approximation
(5) for p(§).
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