The Annals of Probability
1982, Vol. 10, No. 1, 220-233

THE PROPORTION OF BROWNIAN SOJOURN OUTSIDE A MOVING
BOUNDARY

By KoHEI UCHIYAMA

Nara Women’s University

Let B; be a d-dimensional Brownian motion starting at zero and A(t) a
positive nondecreasing function of ¢ > 0. It is shown that lim sup;,0(1/s)meas
{t € (0, s1:|B:| > h(t\Wt} = 1 — e™*9"V; where q is defined as a simple
functional of A and, if we take h.(t) = ¢vV(2 log log(1/t)) for hand if 0 < ¢ =
1, ¢ = 1/c% We also investigate X* = lim sup,;o(1/s)meas{t € (0, s]:|B;| <
(Vt)/h(t)} and find upper and lower bounds of X *, which indicate in particular
that if A = h.(c > 0), X* = p. (say) is positive and less than one and tends to
zero (one) as ¢ T » (respectively, ¢ | 0). The problem for the case s —  is also
treated.

0. Introduction and results. Let B, be a standard d-dimensional Brownian motion
starting at zero and £ (¢) be a positive function of ¢ > 0 and consider the proportion

1
X, = 3 .meas{t:0 < t<s, |B.|>h(t)Vt)

where meas{-} denotes Lebesgue measure and | x| Euclidean length in R“. The function
h () is assumed throughout this paper to be nonincreasing in 0 < ¢ < 1 and nondecreasing
in ¢ > 1. It is shown by Strassen [6] that if we take A.(£) =c V(2 log(|log ¢| + 2)) for A(t)
and if 0 < ¢ = 1, then lim sup,.. X, = 1 — exp[—4(c™? — 1)] (a.s.). His proof can be
modified to verify

. 1

lim, o sup X, =1 — exp[—4(? - 1)] a.s.

for the same 4. In the following theorems these are slightly improved. First let

1 2
q=sup{r;0:f exp[— r-h(t) ]it=oo},
b 2 t

THEOREM 1. Ifg=1,lim,sup X, =1— e  (as).

® . 2
q’ = sup{rz 0: f exp[— re () :I it= oo} .
) 2 |7

THEOREM 1’. Ifq’=1,lim,_ sup X,=1— e *@V (as.).

Next let

The proof offered in the present paper is different from Strassen’s; it is based on Motoo’s
proof of Komogorov’s test for Brownian motion (cf. [6]) and strongly depends on the
Markov property of Brownian motion. Just as Motoo’s method can be applied to find a
lower modulus of continuity for d-dimensional Brownian paths, our method is effective in
treating

lim,, inf% -meas{t:O <t<s,|B:| >%} ,
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or, equivalently, in treating lim sup,o X, where
1 Jt
f=—. 0<t<s, |Bi|<——¢.
X 5 meas{t 0<t<s,|B:| 0] }
Let B¢ be the smallest positive root of J42-1(8) = 0 (<J, is a Bessel function).

THEOREM 2. There exist continuous functions 6,(u) and 0*(u) of u = 0 with the
following properties:

(1) 6,0)=6*0)=0

2 0*(u)=0,(u)=2/BHu  foruz=o0

(3) lim supuje 0*(u)/u < o

(4) limgyo 0, (u)/u = ifd=1or2

(4)" lim supujo 0*(u)/u < ifd=3,4,.--,

and with probability one,
(5) 1—e %@ =lim,osupX¥=1-—e??,

A corresponding result for lim sups. X holds, though it is not stated. It should be also
remarked that in the definition of X, or X above we can replace | B;| by a Bessel process
starting at zero with parameter p > 0 (it coincides in law with | B, | if p is an integer and p
= d), with statements of Theorems 1, 1’ and 2 remaining valid, unchanged except that in
(4) and (4)’ of Theorem 2 “d =1 or 2” and “d = 3, 4, - - - ” should be replaced respectively
by “0 < u = 2” and by “p > 2”.

The value of lim supsjo1«) X& is of course a (sure) functional of A (¢). Theorem 2
suggests that the functional differs markedly among different dimensions of Brownian
motions. An explicit form of it should be found; it is still open whether the functional is
reduced to a function of ¢ (or ¢’).

There are a few related works. D. Geman [2a] and [2b] studied a similar problem for a
class of stochastic processes including a wide class of Gaussian processes; he gave sufficient
conditions on A () for lim supsio Xs = 0 or for lim sup,j0 X = 0 (B, is replaced by a
process in the class and Vit by the variance of its value at ¢ in the definitions of X and X ),
by applying a real variable lemma. N. Kono recently obtained the equalities in Theorems
1 and 1’ for Gaussian processes with index a > 0 (with the same interpretation of X as
above), by improving Strassen’s method.

In Section 1 we shall introduce a diffusion process obtained from a d-dimensional
Brownian motion through a well-known transformation, which will be used throughout
the paper. Theorem 1 will be proved in Sections 2 and 3. Theorem 1’ can be proved in an
analogous way. A brief sketch of its proof will be given at the end of Section 3. The proof
of Theorem 2 will be given in Sections 4 to 6. In the Appendix we shall prove several
lemmas which are used in the proof of Theorem 1.

1. Preliminaries. We shall make use of the following facts. Let B, be a d-dimensional
Brownian motion starting at zero; the probability measure is denoted by P and the
associated expectation by E. Then the process defined by

(1.1) N(t) = e”?| B(e™) | t=0

(we write B (¢) for B,) is a diffusion process with initial distribution P{ N(0) > x] = P[| B:|
> x]; the backward equation associated with it is

r ou_1 du 1 d—1_ )
(12) T2 x x x>0

_— =
a 2 ax® 2

with boundary condition
ou

(1.2)’ lim, o x4t 5; =0

(cf. Ito-McKean (1965) pages 162-163). According to the usual way of describing Markov
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processes let us denote by PY the probability measure on W = C ({0, «)) (the space of all
continuous functions of £ = 0) which is induced by the process N (¢) starting at x. Thus for
example PY[w(t) > y] = P[N(¢) > y| N(0) = x]. We shall denote by m the first passage
time to b, i.e.,

my=inf{t = 0:w(t) = b} we Ww.

Then it is a standard exercise to see EN[m;] < o for x > 0 and b > 0.

2. Proof of Theorem 1 (I). Using the process N(t) defined by (1.1), we have

X, = eTj I(N(t) — g(t))e 'dt = —log s
T
(2.1) where I(x)=0o0rl accordingas x=0or> 0,
and g(t) =h(e™).

Let 0 = 70 < 71 < - - be the successive passage times of N () to x = 1 via x = 2. Then
excursions { N (¢): 7,.—1 =t < 7.} are independent and identical in law. Especially 7, — 7r_1,
n=1,2, ... areiid. random variables with finite mean: y = E[7, — 7] < o, and therefore
the strong law of large numbers implies that

(2.2) g Y <Tpa<Th<2ny (n1®) a.s.
(where A, (n 1 ©) means that statements A , are true for all sufficiently large n). Writing
X(s) for X, let
{sup{X(e_T) it < T < 74} if N(t) > g(t) forsome t€E (Tn-1,Tn),
"o otherwise.
'L hen clearly
lim,, sup X = lim,;., sup U..
The rest of this section will be devoted to showing

(2.3) lim, , sup X, = 1 — e @7,

The opposite inequality will be established in the next section.
Givena >0,0< 8 < 1, letting b =a + 8 and ¢ = a + 2§, we set

o™ =inf(t > 7,-1:N(t) = b}
o™ = inf{t > ¢™':N(t) = a or c}

¢ —o™  ifo™<T,
Znla) = {0 otherwise.

Clearly U, = 1 —exp[—Z.(a)] if a > g(7.). Let £; be the event described in (2.2). Since
g(2yn) > g(1,)(n 1 ») for each path belonging to €;, we have for each u > 0

{U.z1—-e™ for infinitely many n}
(2.4) D {1 —exp[—Z.(g2yn))]z1—-¢* for infinitely many n} N Q;
={Z.(g2yn))=u for infinitely many n} N Q.

Let us calculate a lower bound of P[Z,(a) > u]. By the strong Markov property of N (¢)

(2.5) P[Z.(a) > u] = PY[ms < mi1PY[ma A me> ul.
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Since a canonical scale associated with N(¢) is given by

s(x) =J exp[—J (i—_—l—y) dy] dz
(2.6) 1 AN

= J 2z %exp(22/2) dz,
1

s(2) —s(1) -
s(b)

where C = ﬁ 2z exp(2?/2) dz. (F(b) ~ G(b) as b — r means limy_- (F(b)/G(b)) = 1))
The following estimate will be established in the appendix (Lemma Al):

2.7 PY[ms<mi] = C-b%exp(—b%/2) as b—

2 2
(2.8) PYmsAme.>ulz exp(—géﬁ—g—;;+ O(a))
where O(a) is uniform in z and 8 (this uniformity is not needed for the proof of Theorem
1; see Remark 1 which follows). From (2.7), (2.8) and (2.5) it follows that
a’? w’u

2
(2.9) P[Z,(a) >ul=z= expli—? (1 + o(l)) T ]

where 0(1) — 0 as @ — o (uniformly in >0 andin0<d<1).
Now the proof of (2.3) is easy. Let ¢ > 1 and take any u such that ¢ > 1 + u/4. Then,

by (2.9) and by g(¢t) = h(e™),
* g(2yt)? u
exp[— 2 (1 +Z) 1+ o(l))] dt

Y1 P[Z.(g(2yn)) > u] = const. J'

[

! h(t)? u dt
= const. exp[— (1 + —) a+ 0(1))] —-
Jo 2 4 t

= 4o,

Since Z,(g(2yn)), n = 1, are independent, an application of the Borel Cantelli lemma
combined with the relation (2.4) implies lim sups1e U Z 1 — €7 Thus (2.3) has been
proved.

REMARK 1. If we take A.(¢) = ¢v(2 log( |.log t|+ 2)) for h(t), then g2a) — g(a/2) =
0O(1/g(a)) asa— . Letn(z) | 0ast |0 and assume

(2.10) he(t)n(t) »> as t}O.
Then, by setting 8(t) = n(e™), it occurs w.p. 1 that
N, << (8(), 8(t) +8(£)) D (g(2yn), g(2yn) +% 8 (2yn))

for all large enough n. By this relation and the inequality (2.9), the argument made above
shows in fact that under (2.10)

lim,, sup% . meas{t:0<t<s, he(t)Vt < |B:| <‘(hc(t) +n(t))\/_t}

=1- et ’ (g=1/c?.
(The opposite inequality is trivial by what we shall prove in the next section.)
3. Proof of Theorem 1 (I). To complete the proof of Theorem 1 we prove
(3.1 lim, o sup X, =1—-e*™"  as.

Given real numbers b > 2, L > 0 and a positive integer 7, let 6o < mo < 01 <y -+ be
the successive passage times to b and to 1, alternately, after 7,-1; i.e.,
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60 = inf{t > 7n1: N(¢) = b)
o = inf{t > 00: N(¢) = 1}
o1 =inf{t > 7o: N(t) = b}

etc., and let
Y, =meas{t:0; <t <m;, N(t) > b} i=0,1,2...,

v=min{i=0:6;4; — 7 > L}.

, Y Y if oo<Ttn
Zn(b) = {0 otherwise.

Finally let

It is easy to see

3.2) U.=1—-exp[— Z,(b)] +e* if b<g(ra).
Clearly Yo, Yy, - - - are i.i.d. random variables, which are independent of ».
In the Appendix we shall prove the following estimates (Lemmas A.3 and A .4):
(3.3) P[Y, > t] = Cie®%exp(— tb?/8) for 0<t<u
bZ
(3.4) PY[my<L]= Cge"exp<— -+ C3b>

where C; depends on d and u only; C; and C; depends on d only. By (3.3) and by Lemma
3.1 below, we have

(3.5) P[Sko Y: > u] = K(b)**'exp(—ub?/8),

where K(b) = (1 + ub?/8)C1e*?. Since P[v = k] = P[v = k] = (P¥[ms < L])*, it follows
from (3.4) and (3.5) that

P[Zf:o Y.> u] = ngo P[V = k]P[Zf:o Y. > u]

k
= {22‘;0 [K(b)CgeL exp(——l-;—+ C3b):l }K(b) exp(—ub?/8)

2
= exp[—%— 1+ o(l))]

where 0 (1) — 0 as b — o for each u > 0 and L > 0. By the equality P[Z,(d) > u] = PY[m,
< m1)P[Y -0 Yi > u] and by (2.7), we have that

, u b?
P[Z,(b) > u] = exp| — 1 +1 Y (1+0(1)

and then as before that if u/4 + 1> q,
Y1 P[Z3(g(yn/2)) > u] <
which implies, by applying the Borel-Cantelli lemma,
Zi(g(yn/2)) <u (nlew) as.

Consequently, by (2.2) and (3.2), limsup U, =1 —e™ + e L as. if u/4 + 1 > g, so that
(3:1) has been established.

LEmMMA 3.1. Let §,, &3, - - - be independent and strictly positive random variables. If
for positive constants a, u and A

Pl¢>tl=Ae™  for 0<t<u,i=12 ---,

then fori=1,2, ...,

PYLi &> t]= (1 + au)* 'A% o<t<u.
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Proor. For k = 2 the inequality is obtained as follows.
P[£1 + &> 1t] =f P[£1>t— S] d,P[§2§ S]
0

o

t
= —A(e I ADP[£,>5]|  + Aa f e IP[£, > s]ds
0 0

o=
=Ae ™ + A%ate™ = (1 + at)A%e™.

By induction, the same calculation verifies the inequality for all 2 = 1.

A comment on lim sup,;. X,: To treat it we consider the process
N(t) =e*?|B(e")| t>0,

which is a diffusion process with the same law as N (¢). Using this we have
T
X, = e“TJ I(N(t) — g(t))e’ dt + O(1/s) T=1logs,
0

where £(t) = h(e’). The inequality im supsj Xs = 1 — ¢ *@" can be proved in the very
same way as in Section 2. For the proof of the opposite inequality the arguments of Section
3 apply, if we notice the following. For given u > 0 and L > 0 let us define 7,, U, and
2,(b)(b > 2) similarly as 7,, U, and Z,(b). Then the inequality 0 < Z,(b) < u implies
meas{t: 7,1 — (L +u) <t<i,, N@¢) > b} < u, which in turn implies U.<1—-e*+eL,
provided b < g(7,-1 — (L + u)). Therefore, by noting 7,-1 — (L + u) > (1/2)yn(n 1 ») a.s.,
we have the inclusion {U,. =l-e™“+e*(ntw}D {Zﬁ.(g(yn/2)) =u(nt o)} as.

4. Proof of Theorem 2 (Lower bound). For the proof of Theorem 2, we shall follow
arguments similar to those made in preceding sections. Thus we begin with

¥ = eTj I(g*(t) =N(t))e " dt T=-—logs,
T

where g*(t) = 1/h(e™"). Letting 7% < 7% < - - - be the successive passage times of N(¢) to
1 via 1/2 and

(4.1) Ut =sup{X*(e T):ri.<T<r7}},

we see lim sup U*% = lim sup; ;o X%
Let us write for simplicity X* = lim sups;o X*. In this section we prove the part of
Theorem 2 concerning the lower estimate of X*, i.e., the existence of a function 4, (u)

asserted in Theorem 2.
First let us prove X* = 1 — ¢ ¥*, where Ao = 83/2. Let 0 < u < q be given. It suffices

to show
(4.2) X*z=1—e M,

We consider a new process N°(¢) defined by

(4.3) N"(t) = % . N(tb?) t>0
for each b > 0. N°(t) is a diffusion on x = 0 and the generator associated with it is

1/ d? d—-1 d
& = _ | — b2 | —
(4.4) G 2(!2+( bx)!)

with the same boundary condition (1.2)’. We denote by P the probability measure
associated with N°(¢) starting at x (for b > 0) and define P as one corresponding to G .
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ThenforO0<a<bd
Pi[my<u] =PY[mi < u/b?.

Note that u(t, x) = P’ m; > t] is a nonincreasing solution of the following parabolic
equation

ou
45 —=G®
“5) A (t>0,0<x<1)
with boundary conditions
(4.6) lim, o % (du/éx) =0 and  lim,y u(t, x) = 0.

Then by a comparison theorem based on the maximum principle for parabolic equations
we see

4.7) POlm:>t]1= PO[m; > t] 0<x<1

(cf. [7], Lemma 4). It is easy to see that the spectrum of the differential operator G©
restricted on 0 < x < 1 with the boundary condition (4.6) is discrete. The first eigenvalue
is equal to Ao, because the function w(x) = x'~%2J 4/_1(B8x) solves G®w + (8%/2)w = O(x
> 0) and satisfies the first condition in (4.6). Now from the eigenfunction expansion of
solutions of (4.5-6) we deduce lim,_,. P.[m; > t]e™ > 0 (0 < x < 1). This combined with
(4.7) implies that

(4.8) Pllmy>u] = Cexp(—Aou/b?)
for b > 0 small enough. The deduction of (4.2) from (4.8) is the same as that of (2.3) from
(2.9).

What we have in addition to show in this section is that if d = 2, 8, () (in (5)) can be
chosen to satisfy (4). The rest of this section is devoted to its proof.
Let d = 2. Fix an integer n > 0 and two numbers 0 < a < b < 1/2 for a moment and set

e(0) =inf{t>7}:N(t) = a}
and for £ =1, 2, - .., inductively,
f(k) =inf{t >e(k—1):N(¢t) = b}
e(k) =inf{t > f(k):N(t) = a}.
And thensetfork=1,2, -..
Qe=f(k)—e(k—1), Rp=e(k)—[f(k)
and
¢{=min{k = 0:e(k) > 1}}.
Finally set
G=3LQ, H=3LR

(X1 is interpreted as zero if £ = 0). Then U* = exp(e(0)) [{315H e~ dt if g*(r%) > b,
ie, ’

(4.9) Urze ™ 1-e% if g*(r¥)>b.

Since P4[m . < u] lies between P}'[m, < u|m,<m.] and P)[ma < u|m; < m.] and the
latter is less than P{[m, < u] = PY[m. < u], we see

Pi[m.<ul]l = Pi[m.<u|ma.<mi],

and thenfori=1,2, ...,k —1,
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P[R.<u|¢{=k]=Pme<u|m.<mi]
= Pi[ma.<u]
= Pi@[m, < u/a?]

= P[mi<u/a?,

(4.10)

where the first equality follows from the fact that the excursions N (¢) f(j) =t<e())
(j=1,2 ...) are independent and { depends on them only.
In the following we let

b = 2a.

Let {£}2: and {n:}Z: be two sequences of iid. random variables, whose common
distributions are

Plti<u]l=PP[m:<u] and Ply:<u]=PP[mi<ul

It is not difficult to see that the random variables @1, - - -, @:; Ry, « - - , Rx-1 conditioned
on ¢ = k are independent. By noting this it follows from (4.10) and the inequality P[@:

>u|¢{=k]= P®[mz> u/a®] that
J.=Ple# (1 —e %) >e(1-e™)]
=ZP[H<1,G>u]
ZP[{=FkIPRH R <L, T Q> u|t=F]
= P[¢ = k1P n: < 1/a®1P[3TE: & > u/a?]

for each k2 > 1. To estimate the last factor above we set
p1(x) = sup.>o{ xa — log E[e*1]}.

Then, fixing y > 0, we have

limayo a® log P[Tk & > u/a®] |ty/an
= limgye % log P[Z{Ll &> ke ; :’

= —yp1(u/y)
(see Theorem 1 of [1]). Similarly
limayo a® log P[TE n: < 1/@%] | kmry/ary = —y02(1/y)
where
p2(x) = sup.<o{xa — log E[e*™]}.

The condition d = 2 is used for the estimate of P[{ = k] as is done below. Since s(x) =
127" exp(2%/2) dz = log x + const + o (1) (as x | 0), PY,[m. < m1] ~ (log 2a)/log a ~ 1
(a | 0). From the identity .

P[¢ = k] = PYalma < mi]PY[m: < ma](PY[ma < mi])*"
it follows that '
limayo a® log P[{ = k] |k=(yazy = 0.
Consequently for all y > 0
lim, , inf a® log J. = —y[p1(u/y) + p2(1/y)].
Let M («) = log E[e**]. Since 0 < M’(0) = E[£,] < o and p1(M’(0)) = 0, we have, by taking
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y = u/M’(0) in the above,

Jo = exp[—D(u)(1 + o(1))/a?] (al0)
where
_u M'(0)
D(u) —M—,(O')‘ . Pz(T> .

This combined with (4.9) and a = b/2 shows as before that
X*ze™ (1 — exp[—D'(q/4)]).

Since lim;ye p2(x) = 0, we see lim, ;o D~'(u)/u = «. To construct a function 8, (), choose
e>0sothate™(1—e™) =1—e*for 0 <x <e¢ and then § > 0 so that §/A, < ¢ and
D™ (u/4) = 4u/Ao for 0 < u < 6. Clearly there exists a continuous increasing function g ()
on [0, 6] such that

36 . g(u) —

g(6)=—};, lim, o and D-l(u/4);g(u);3—“.

Ao

Since X* = 1 — e"™(a.s.) as has been shown, if we set

fh(u)=% if 0=su=6 and

&=

if u>4,

4, (u) fulfills all the requirements in Theorem 2.

5. Proof of Theorem 2 (Upper bound I). In this section we prove that if d = 3 there
exists a constant A > 0 such that

(56.1) X*=1l-—e"

The proof of the remaining part of Theorem 2 will be given in the next section.
The argument is very similar to that of Section 3. For 0 < a < %, L > 0 and an integer
n >0, let, as in Section 3,

of =inf{t > 1% 1:N(t) = a}

ad = inf{t > o3 :N(t) =1}

Y§ = meas{t:0f§ <t<u§, N(t) <a)
and similarly define Y f for i = 1 and »* (7} is defined in Section 4). Then
(5.2) X*sl—exp[- YL Y] +e™h

Let us compute an upper bound of ¢(a) = E[e**?]. For this purpose we let b = 2a and
make use of the notations G, { and P{"” defined in the previous section. Clearly for a > 0,

#(a) = E[e*®|G > 0]
= Y51 P[{ = k| G > OJ(ENe™])".

Since d = 3, we have lim,;oP3.[m, < 1] = (%)%"% and therefore with (4)?2 < u < 1 (taken
arbitrarily)

P[{=Fk|G> 0] = (PY[m. < m])*?
= const. u*'  (for all ¢ and %).
Let y(a) = E %[e*™] which is finite for & < Ao. Then, noting
Ellexp(ams/a®)] = E{}[e*™] - y(4a) as a0
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and taking A > 0 so small that
pP(4A) < 1,

we obtain for sufficiently small a

Y(4A)
1— pp(dA)

Let D:(A) denote the quantity in the right side above and take a positive & so small that
8D;(\) < 1. Since P[r* = k] = (PY2[ma. < L])* and limgoPY2 [ms: < L] = 0, we have

P[Y2, Y¥ > ul = e E[exp(aYio Y )] (a=MNa?
= Y50 exp(—Au/a®)¢(\/a®) Py = k]
D:(A)
1-8D:i(N)

As before this together with (5.2) implies (5.1) by the use of the Borel-Cantelli lemma.

o(\/a® = const.

(a ] 0).

= exp(—Au/a?)

6. Proof of Theorem 2 (Upper bound IT). To complete the proof of Theorem 2, we
must find a continuous function 8*(«), when d = 1 or 2, such that §*(0) = 0

(6.1) X*=1-e"@
(6.2) and lim,,,, sup 6*(u)/u < o,

Since the assertion for d = 2 follows from that for d = 1, we assume d = 1. The proof is a
refinement of that given in the previous section. We use the notations g*, 77, U etc.

introduced in Section 4.
Given0<a<b<¥% L >0andn >0, Let e(k), f(k), @ and R, be the same as in
Section 4 and let

v=min{j:Y_, Ri>L}; Si=Y'@Q,
n=min{j:3L, ,Ri>L}); S=37',,Q
and in general

v+l

v =min{j: Y, s Ri>LY;,  Se =TI, @

In the definition of S, the additional term @,,+; is added so that the sequence {S;}r-:
becomes independent of the following random variable

¢* = min{k:N(t) = 1 for some ¢ € (f(v. + 1), e(vr + 2))}.
Now let Zx(a) = maxi=i=¢(S; + Si+1).
Then from the inequality
U} = max; ming{1 — exp[-Y%; @] + exp[-Y %, Ri]}, if g*ri)=aq,

where min; and max; are taken under restrictions 2 = j and 1= J = v + 1, respectively, it
follows that

(6.3) Ut=1-exp[-Zi@)] + e, if g*(iy)=a
Clearly
PIZX(a) > u] = S5t P[¢* = kJP[maxiz=s(S: + Sivr) > 1]
= Y51 P[* = E]3k PIS: + Siv1 > u]
= P[S, + S > ulE[¢*].
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Now we let b = 2a. Since d = 1, we have P} [m, > mi] = [s(a) — s(b)]/s(a) ~ a/(—s(0))
and therefore as a | 0,

E[¢*] = PY[mi > ma]/PY[ma > mi] ~ _‘:0) )

On the other hand, by Lemma 6.1 below, there exists a positive constant « (depending on
L/u only) such that

(6.4) P[s1 >g] = O(exp(—xu/a?)) as al0
which implies
P[Si+S:>u]l= 2P[S1 < g] = O(exp(—«u/a?).
Thus P[Z%(a) > u] < const. a " 'exp(—ku/a?), from which together with (6.3) it follows, as
before, that
X*=l—-e*+el if g<«ku

Foreachn=1,2, ---,let &, = 1 — e/ and choose L,, u, > 0 so that exp(—L,) + 1 —
exp(—u,) < &,+1. By denoting by «, the corresponding «’s, let 8, = knu». Then

X* = e if Q§8n~

We can assume that 8, is decreasing. Let 8*(u) be any continuous function on [0, 8], which
is decreasing and takes values 1/n at 8,. Then (6.1) holds for 0 = u = §; and §*(0) = 0. To
obtain the relation (6.2), we let L = 2u in the above. Then « in (6.4) becomes independent
of u and therefore it follows that if ¢ < ku, X* =1 — e ™ + e, or equivalently that X *
=1 — e %" + e~%/~, This guarantees that §* () can be chosen so that lim..0*(w)/u = 1/
k. The proof of Theorem 2 is complete if we prove the following lemma.

LEMMA 6.1, Letb=2a in the definition of Si. Then for each K > 0, there exist positive
constants k, ao and M such that P[S; > u] = M-exp(—«u/a®) if 0 < a < ap and L/u <
KO<u O0<L).

PrOOF. Let

0% a) = E®[e®™] and  y¢%a) = Ef9[e*™~]
where E® is defined in Section 4. Since
Plyi=k]=Plnzk]=P[SE R =L]
= exp[BL/(22)*1(0*(—B))*"  for B>0
and E[e*?'] = $*((2a)’a), we have for a > 0
P[S; > u] = e “E[e*]
(6.5) = e Y1 P[n = k](E[e**])*

, = e e"/%9 (20)%) Tier [V(—F)o*((20) 0T
No;v we set a = A/(2a)? and for a given K > 0 take A > 0 and B > 0 so small that A > K
an
(6.6) MY (—PB) <1 for 0<a<ao/2

with some constant a,. This is possible, because ¢”(0) < o, y”(0—) = « and, as a | 0,
¢%(A) and ¢*(—B) decreasingly approach ¢°(A) and ¢°(—p), respectively (for A > 0, 8 > 0).
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From (6.5) and (6.6) we deduce that if L < Ku,
(A - ,BK)u] . $*(\)
4a’ — ¢* WY (=B) "
Consequently if we put k = (A — BK)/4, we obtain the required estimate.
APPENDIX

P[S;i>u]l= exp[—

Here are given several lemmas which are used in the proof of Theorem 1.
LEMMA Al. Fora>[(d?-1)/2d]"%0<8<1l,b=a+8,c=a+20andt>0

PY[mas Am.>t] = C-exp[— —_—————

where C depends on d only.

Proor. Through the change of dependent variable
ut, x) = v(t, Y)Qx),  Qx) = x""%exp(x*/4)

the equation (1.2) is transformed to
w_ 1 o 1

b _1 1 —@P-1 L
(A1) ~=5 32 "3 [2d (d*=1) - o

Since u(t, x) = P¥[m, A m. > t] is a unique solution of (1.2), in the domain ¢ > 0, a < x
< ¢, with 4(0, x) = 1 and u(¢, @) = u(t, ¢) = 0 and since @’(x) > 0 for x >~ (2(d — 1)), after

a simple comparison argument we see that for a >+ (2(d — 1))

> =250 P "3

where B is a standard one-dimensional Brownian motion starting at 0. Now the lemma
. follows from

2—
PYma A m. Q(b) [_E(cui?_l_w)]mm”xa for 0<s<¢

P[|BP|<8 for 0<s<{]

- sl _(rek+ 1)\ ¢] w2k +Dy)
IR Gt R 2 ) 2% 2 Y

DOl o~

LEMMA A2. Forb>a>0andt>0
Pim.>t] = Cexp[—— (@2—2d) + b;]
whe}'e 8 = b — a and C depends on d only.
ProoF. By the same consideration as in the proof of Lemma A.1 we have

PY[m a>t]_g: 5 expli—é(a"'-—2d)]P[B§“>—8for0<s<t]

which implies the required inequality.
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Let S = meas{t:0 < t < my, w(t) > b} (w € W). Then the distribution of Y, in Section
3 is given by P[Y, > ¢] = P}[S > t].

LEMMA A.3. For each € > 0 and u > 0 there exists a constant C, such that
t
Pi"[S>t]§Clexp[—§b2+sb] for b>20<t<u.

(C, depends on u, € and d only.)

ProOF. Letustake0<d<landa=b—-8 Letege=0andfi<ei<fo<--- be
successive passage times of w € W to a and to b, alternately: f, = inf{¢ > e,—1:w(t) =
a}, e, =inf{t > fr:w(t) = b} (k=1,2, --.), and let

{=min (i=1; e; > mi}.
Clearly
(A.2) S=Tiar (fi — ena).

Since f» — er-1 (R =1, 2, --.,) and { are mutually independent and P} [ fi — ex—1 > t] =
PY[m, > t], from Lemma 3.1 and Lemma A.2 it follows that

ek a® \*! as\ " t
Py (fi—em) > E] = 1+§t Cexp? exp —g(a —2d) |.

Since P5[¢ = k] = (P}[ms < m1])*" and for large a

PY[ms<mi] = % = 2 exp[—(ad + §°/2)]

where s(x) is a canonical scale associated with N(¢) (see (2.6)), we obtain
Pi"[zi-l (fr — er-1) > t]
= Y1 Pt = k]Pf,V[Zf_l (fi — ei-1) > t]

a’ as\ )™ t
=¥ {(l + 5 t)2C exp(— —2—)} Ce““/zexp[— 3 (a® — 2d)]
L S R o o
—l_ﬁexp[ 8(a 2d)+2] (a1 )

where g stands for the quantity enclosed by braces in the third line above and is smaller
than % for large enough a. By (A.2) this completes the proof of the lemma.

LEMMA A4. ForL>0and b>1

2
PYmy<L]= C’eLexp<— % + Cb)
where C and C’ depend on d only.

Proor. First let d =1 and set for a > 0
¢a(x) = EY[exp(—amy)] 0<x<b.

Then, as is well known, ¢,(x) is a unique solution of

1
(A.3) 59" —

3 E-d)’—ot<j>=0

2
with ¢/(0) = 0 and ¢(b) = 1 and expressed as
v(x) + v(—x)

_————_v(b)+v(—b) 0<x<b

alx) =
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where v(x) (x = —b) is an increasing solution of (A.3) with v(—b) > 0. When a = 1, such a

solution is given by
. © t2
v¥(x) = J' exp(xt - —)t dt
R 2

2 b 2
= exp(%) J exp(-— %)(x + u) du,

") = (1 + x2/(2m)exp(x?/2)
v =% (1 + xv(27))exp(x?/2).

for which we see

From these it follows that

di1(x) =2 v _ 4 1 + xv(2m) (_ b — xz).

— = exp
v~ 1+ bva@m 2

Therefore for 0 < x < b, we have,

b2 —- x2
Nms < L] = e"¢1(x) = 4e"exp(— 3 )

as desired.
The general case d > 1 is reduced to the one-dimensional case as follows. Take a

constant C = C(d) = 1 so large that (%) ((d — 1)/x — x) < —(%) (x — C) for x > C, and
consider a diffusion process on x = C associated with the generator G:Gu = (%)u” — (%)
. (x — C)u’ with u/(C) = 0. Then by the usual comparison argument we have

PNmy < L] = PY o[ms—c < L] (C=x<b)

where PY" is PY defined for one dimensional Brownian motion. Thus P} [ms, < L] =
P¥[ms < L] = const. e*exp[—((& — C)* — C?)/2].

Acknowledgment. The author wishes to thank Professor N. K6no for suggesting the
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