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CHANNEL ENTROPY AND PRIMITIVE APPROXIMATION!

Davip L. NEUHOFF AND PAuL C. SHIELDS

University of Michigan and University of Toledo

For stationary channels, channel entropy is defined as the supremum of
the conditional output entropy over all stationary input sources. If the channel
is d-continuous and conditionally almost block independent, channel entropy
gives an upper bound to the output rate of the channel. Furthermore, the
channel can be approximated arbitrarily well in the d-metric by any primitive
channel whose noise source entropy exceeds channel entropy and cannot be
so approximated if the noise source entropy is less than channel entropy.

I. Introduction. In this paper we strengthen our results on simulation by primitive
channels [5]. Our earlier proof required that the noise source be continuously distributed.
Here we remove this restriction and obtain exact bounds on how much noise entropy is
needed for accurate simulation.

A primitive channel operates as follows. An independent, identically distributed (i.i.d.)
noise sequence is generated which is independent of the input sequence. The output is
obtained by passing the noise sequence together with the input sequence through a finite
sliding-block encoder (that is, a nonlinear time-invariant filter). The channels which can
be simulated arbitrarily well by primitive channels are precisely those channels which
satisfy conditions for input and output memory decay called d-continuity and conditional
almost block independence (CABI).

Our earlier results required that the noise source be continuously distributed. This
allowed us to construct partitions with arbitrary distribution, a necessary technique in our
proofs. We show in this paper how we can build sufficiently good approximations of the
desired distributions if the atoms of the noise source space are sufficiently small.

Our technique raises the question of exactly how much entropy is needed in the noise
source for accurate simulation. Our answer to this question uses a concept we call channel
entropy. This is the supremum of the conditional output entropies attainable from
stationary input sources. We show that if the noise entropy exceeds channel entropy, then
accurate simulation is possible, while accurate simulation is not possible if the noise
entropy is less than channel entropy.

2. Notation and terminology. We make use of the notation and terminology of our
earlier paper [5] which we summarize here for ease of reference. A process with alphabet
X is a Borel probability measure p on the doubly infinite sequence space XZ.. The
symbol X or the sequence of coordinate functions {X,} may also be used to denote this
process. A process is stationary if u T = uT~" = u where T'is the shift on X% ,,. We will use
xm to denote the sequence {Xm, Xm+1, * -+, Xn }, Xm to denote the set of all such sequences
and 7, to denote the measure on X7, induced by u. If m = 1 we will write " rather than
w1, while if n is understood we will write u instead of p".

If u and p are processes with the same alphabet X then uy, \/ i, denotes the collection
of all measures A on (X X X);, which have u;, and ;. as respective marginals. If x and ¥
are two alphabet symbols we define d(x, X) to be 1 if x # X and 0 if x = X. We then define

1
dn(x1, X7) = "y Y d(x, X;).

Received August 1980.

! Work supported in part by AFOSR grant AFOSR-80-0054 and NSF grant MCS7807739-A02.
AMS 1970 subject classifications. Primary 94A20, secondary 28A70.

Key words and phrases. Channel, entropy, d-distance.

188

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Probability. BEN®RY ;

WWW_jstor.org



CHANNEL ENTROPY AND PRIMITIVE APPROXIMATION 189

The d-distance is defined by
dn(p, ) = infre,n, 7 Ex(dn (X3, X7))

and d(g, ) = lim sup d,(p, ).
We will also write d,(X, X) for d,(p, ji).
Entropy is defined by
H(X) = lim sup H,(X)
1
where H,(X)=- " 2 #(xT)log p(X7).
The process u is called an independent N-blocking of  if for each integer ¢
@) dn(uT™, gTN) = 0
(ii) X&AY is independent of X,

A channel with input alphabet X and output alphabet Y is a measurable family v,, x
€ X3, of Borel probability measures on Y. If x is an input sequence we denote the output
process by Y/x, while if u is an input process we denote the input/output process by u» or
(X, Y) and the conditional output process by »/u or Y/X. We assume throughout this
paper that a channel is stationary, that is

vr<(TE) = v.(E)

for all Borel sets E.
A channel is d-continuous if for each & > 0 there is an integer N such that

du(Y/x, Y/%)<e if n=N and x? =%l

A channel is conditionally almost block independent (CABI) if, given £ > 0, there is an N
such that, if n = N, then there is an M, such that if x is an input sequence and Y is the
independent n-blocking of Y/x then

dn(Y/x, V) <e if m=M,.

The d-distance between two channels » and 7 with the same input and output alphabets
is defined by

d(v, 7) = lim sup,sup,d,(vx, 7).

A channel is primitive with noise source Z if there is an i.i.d. process {Z,}, a nonnegative
integer w and a function f: (X XZ)%, — Y such that for all n

Y, = (2328, Z353).
3. Statements of Results. In our earlier paper [5], we proved the following result.

THEOREM 1. A channel v is d-continuous and CABI if and only if it is the d-limit of
a sequence of primitive channels with an independent uniformly distributed noise source
{Z,}.

In this paper we show that {Z,} can be any i.i.d. process with sufficiently large entropy
and we obtain a precise bound for the allowable noise entropy, which we call the channel
entropy. If v is a channel, we define its channel entropy H (v) by

H(») = sup, H(v/u)

where the supremum is over all stationary input processes u and H (v/u) is the conditional
output entropy H(ur) — H(p).
Our principle results are the following
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THEOREM 2. Given ¢ > 0 and finite input and output alphabets there is a 8 > 0 such
that if

H(Z)<H@) -9
then dv,v)=¢
for any primitive channel v with noise source Z.

THEOREM 3. If v is d-continuous and CABI and H(Z) > H(v), then v is the d-limit of
primitive channels with noise source {Z,}.

These two theorems will be proved in Section 5 after we show in Section 4 how entropy
is related to information rate.

4. Channel entropy and rate. Our goal in this section is to show how channel
entropy is related to the rate at which a d-continuous, CABI channel produces output
information. If {Y,} is a process, we defined its e-N rate by

1
Ry(Y,¢) = loginf(| G|: GC YV,  Prob(Y!eG)>1-¢)

where | G| denotes cardinality. Our principle result is

THEOREM 4. If v is d-continuous and CABI and H(v) < v, then for each ¢ > 0 there
is an integer N such that for all input sequences x

R.(Y/x,e) =7y if n=N.

This theorem will be a consequence of a series of lemmas which connect rate to the d-
distance (Lemma 1), entropy to the d-distance (Lemma 2), rate and entropy for indepen-
dent processes (Lemma 3), then connect rate and entropy for the conditional output Y/x
(Lemma 4), and finally connect entropy for Y/x to channel entropy (Lemma 5). Theorem
4 then follows immediately from lemmas 4 and 5.

LemMa 1. If K is the alphabet size and ¢ > 0, there is a 8 > 0 and an N'such that if
n=Nand d.(Y, Y) < 8% where 0 < § <4, then
then

R.(Y,28) = R.(Y,8) +=.

Proor. We first choose § > 0 so that

(i) Slog(k —1) + () <¢/2
where ~(§) = — §log § — (1 — §) log (1 — 5), then choose N so that if n = N then
o s (1) s 0,

Now we suppose n = N and d,(Y, ¥) < 6% where 0 < § < § and choose A £ u” \/ &" such
that

Ex(da(y, 7)) < &°.
Next we let A, be the set of all pairs (y7, 1) such that d.(y7, 1) < é and note that
(iii) AMAR) =1-6.
Finally we let G, be a set of sequences 77 such that
log| G»|
n

(iv) 2(G,) >1— & and =R.(Y,§)
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then set
G, = {y?: 35T € G, for which d.(y%, ¥yT) < 8}.
Conditions (iii) and (iv) guarantee that
w(Gr)=1-248
so that

(v) R.(Y,208) = %;"—l.

Note, however, that a sequence in G, is obtained by changing a sequence in G, in no more
than 8n places and there are £ — 1 choices for each change.

Therefore, |G| <|Ga| - (k — 1)°"-F 4sn (2)

We take logarithms, divide by n and use (i) and (ii) and the assumption that § = S to
obtain

log| Gul _ log|Gul
n = n ’

The lemma follows from this and (v).
_ LemMma 2. If K is the alphabet size and e > 0, there is a § > 0 so that foralln =1, if
d.(Y,Y)<8then | H(Y) — Hi(Y)|<e
Proor. We choose 8 > 0 so that
(i) Slog(K — 1) + h(d) <e/2

where h(8) = — dlog 6 — (1 —4) log (1 — 8). If d(Y, Y) < 6 we choose A € u} \/if so
that

Ex(dn(y1, ¥1)) <&

then let (Y, Y) denote some process with measure X such that A" = A. As shown in
Gallager [2, page 79], we then have

%H(Y”l Y*) =h() +8log(K—1) <e.
Since H(Y") + H(Y"|Y") = H(Y") + H(Y"|Y")
we have %[H(Y")—H(Y")]S%H(Y”|Y")<e.
Reversing the roles of Y” and Y” completes the proof of this lemma.

LEMMA 3. Let A be a finite set of distributions defined on the finite set Y. Given ¢ >
0 there is an N such that, if { Y.} is a sequence of independent random variables each
with distribution in A, then

R.(Y,e)=H,(Y)+¢ for n=N.

Proor. Without loss of generality, we can suppose that A is the collection of probability
vectors 7(i), 1 < i = D. Let a be the least positive number contained in the set {#“(d): 1
=i=D,bEY}.

We first use the asymptotic equipartion property to choose N, so large that if, for some
i, {Z"} is an ii.d. sequence with distribution =, then for n = N,
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@) Prob(Z{" = zj,i<j=n)= Q-n(H(ZW) +¢/2)

(&)
n

except for a set B’ of sequences z7 of total probability at most ¢/D.
If { Y.} is a sequence of independent random variables each with distribution in A, then
for each integer N we can rearrange the sequence Y? into blocks

1 1 1 2 2 D D D
Zg);Zé), "'5Z§V:,Z{), "',Z}Vz), "°5Z{ );Z% ), "'7Z§VD)

so that Z/” has distribution 7. Thus there is a nonnegative integer K and a labeling of
A so that

N:;=N, if i=K
N;<N, if i>K.
Let By be the set of all sequences y? such that
(Z0,Z8, ..., ZN) € B
for some i < K. We then have
Prob (YY € By) = Y.<k Prob (Bf)) <.
Furthermore if yY & By then (i) gives
(ii) log Prob (YY = y7) = — $i<x N:i(H(Z?) + ¢/2) + log a $i>x N

while the independence of the Y process gives
1 ; 1 ;
Hy(Y) = N Yi=k N:H(Z{) + N Yisk N:H(Z?).

Note that the definition of K gives
Yi>k N: = DN,
so that, if N is large enough, then for yY ¢ By we must have
Prob(Y{ = y{) = 2 NEHN+e),
Since Prob(Bx) =< ¢ it then follows that
Rn(Y,e) = Hv(Y) + ¢

which proves the lemma.

LeEmMa 4. If v is a d-continuous, CABI channel and e > 0 then there is a 6 > 0 and
an N such that for all x

Rn(Y/x,8) = H,(Y/x) +eif n= N.

ProoF. We will show that a small d change in Y/x will produce a process ¥ whose

rate is close to its entropy. This, together with Lemmas 1 and 2 will prove Lemma 4.

Towards this end, we fix & > 0 and use the d-continuity and CABI properties to choose N
and M so that the following hold

) d(Y/x, Y/%) <—‘;‘- if N =z

(i) d.(Y/x,Y)<a/2 if m=M and Y isanindependent N-blocking of Y/x.

Next we choose one sequence ¥ = & (al) for each al¥ € XV so that ¥ = a and let A
be the resulting family of output distributions »(Y"|X(al)). We then fix x and let ¥ be
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the process defined by the two properties
(i) YHNAY has the distribution of YV/%(ad) if xY = af.
(iv) Vi1 is dependent of Y:¥.
Conditions (i) and (ii) then guarantee that
du(Y/x, ¥)<a if m=M.
Finally we apply Lemma 3 to choose N, = M so that if n = N; then
RV, 0) <H.(¥)+a.

In summary, we have shown that, given a >0, there is an NV, such that for every x there
is a process Y such that for n = N, the following hold.

) d,(Y/x, ¥) < a.
(vi) R.(Y,a) = H,(Y) + a.
Suitable choice of a combined with Lemmas 1 and 2 then imply Lemma 4.
LEMMA 5. Let v be d-continuous and CABL Given ¢ > 0, there is an N such that for
all x
H,(Y|x)<sH(@)+¢ if n=N.
Proor. We first use Lemma 2 to choose § > 0 so that if c?,,(Y, Y) < 8 then H,(Y) =

H,(Y) + /2. We then use the d-continuity and CABI properties to choose N so that if
n = N, then

@) d.(Y/x, Y/Z) <6 if xP=x"
and there is an M, so that if m = M,,, then
(ii) dn(Y/x, ¥) <8/2 if ¥ is an independent n-blocking of Y/x.

Next we fix n = N and an input sequence x and define ¥ by
Xin+j=% for 1=sj=n forall i
Our choice of § and the d-continuity property (i) guarantee that
H,(Y/x) = H.(Y/%) + ¢/2.
Our goal now is to show that
(iii) H,(Y/x) = H(v) + ¢/2

which combines with the preceding inequality to establish the lemma. Towards this end,
we let ¥ be the independent n-blocking of Y/, and for 1 < i < n put Y¥ = Y/T'% and
Y@ = TY. If m = M, + 2n we can fit Y’ and ¥{"' for 1 < j < m by first using the CABI
property (ii) to fit for n — i = j = m — i. Thus we must have

dm(Y(i)’ Y(i)) <§ + 2_n
2 m

so that if m also satisfies m = 4n/8 we then have
Jm(Y(i)’ Y'(i)) <é
and hence our choice of § gives
(iv) | Ho (YY) — H, (YY) = ¢/2.

Let u be the measure which gives mass 1/7 to each of the sequences Tx, T%%, - - - , T"%
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and let X be the process defined by u. We then have

Ha(Y | X) =% Sy Ho(Y)

so that (iv) gives

1 .
| Ho(Y | X) — ;z;;l H.(Y?)<e/2

for m sufficiently large. Note, however, that block independence gives
limp, e Hn(Y¥) = H,(Y) = H.(Y | X)
so that
H(Y|x)sH(Y|X) +¢/2
which proves (iii) and completes our proof of the lemma.
5. Approximation by primitive channels. In this section we shall prove the two
basic theorems (Theorems 2 and 3) about approximation by primitive channels. We first

discuss the simpler result, which is the fact that accurate simulation is not possible if the
noise source entropy is too low (Theorem 2). We will need the following lemma.

LEMMA 6. Given ¢ > 0 and the input and output alphabet sizes, there is a 8 > 0 such

that
ifd(r, 5) <6 then |H(v) — H()| <e.

Proor. Let K be the product of the input and output alphabet sizes, then use Lemma
2 to choose § > 0 so that for all n and all proceses Y, Y of alphabet size K
() | H.(Y) — Ho(Y)| =¢/2 if do(Y,¥) =06
If d(», 7) < 8 we can choose N so that for all input sequences x

d,(ve, %) <8 if n=N.

If u is any stationary input process we can apply Proposition A.1 of our earlier paper
[4] to obtain

do(uv, p7) < sup, d,(v,, 5,) =8 if n=N.
This combines with (i) to give
| Ho(pv) — Ho(u?)| < /2
if n = N. We then let n — o« to obtain
| H(pr) — H(pv)| < /2
and hence | Hv/p) — H(/p)| < /2

since H(v/p) = H(uv) — H(u). Finally we take the supremum over u to obtain the desired

result.
We now prove Theorem 2, which for ease of reference we restate here.

THEOREM 2. Given ¢ > 0 and the input and output alphabet sizes, there is a § > 0
such that if

H(Z)<H®@)—-§
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then dv,7) = ¢
for any primitive channel v with noise source Z.

Proor. If 7 is a primitive channel with noise source Z let X be a stationary input
source. The output Y is then a coding of the pair process (X, Z) so we must have

HX,Y)<H(X, Z)
and hence, since Z is independent of X, we have
HY|X)=HX,Y)-HX)=<HX,Z) - HX) =H(2).
We then take the supremum over all X to obtain
H()=H(Z).

Theorem 2 now follows easily from Lemma 6.
Now we turn to the proof of Theorem 3 which we restate here.

THEOREM 3. Ifvis d-continuous and CABI and H (Z) > H(v) then v is the d-limit of
primitive channels with noise source {Z,}.

The basic idea in the proof of this theorem is as follows. Theorem 4 guarantees that the
rate R,(Y/x, ¢) will be dominated by H(Z) for sufficiently large m and hence there will be
many more ZT sequences than (Y/x)? sequences. We can therefore partition Z7 to
approximate the distribution of (Y/x){ (Lemma 8). This provides a block coding of (x, Z)
which approximates Y/x and we can then apply the technique of our earlier paper to make
this code stationary. We first discuss two lemmas.

The distribution distance dist, (Y, Y) is defined as follows

dist, (Y, Y) = ¥,,» | Prob(Y} = y) — Prob(¥Y} = »7)|.
The following was proved by Gray and Ornstein [3].
LEMMA 7. du(Y, ¥) < % dist.(Y, ¥).
Our next lemma provides our basic block code.

LEmMMA 8. Suppose {Z,)} isiid., a < H(Z) and ¢ > 0. There is an integer N such that
ifn = N and R.(Y, €) < a then there is a mapping ¢:Z" — Y" such that

d (Y, ¥) <2
where Y =¢(YD).

Proor. The theorem is trivial if e = % if @ < 0 or if the Y alphabet size K is less than
2. Thus we can assume that 0 <e < %, a >0and K = 2.
Letusput H4(Z),8 = (H — a)/2 and

G.(Z) = {2 :Prob(Z} = 2p) < 27H-8)},

We use the Shannon-McMillan-Breiman theorem to choose N so large that if n = N then

) Prob(Zf ¢ G.(Z)) = 1 —¢.
We also require that
(ii) 2 < and 2P <e

Let us 1ix n = N and suppose R = R, (Y, ¢) = a. We can then find a set G, (Y) of sequences
7 such that
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(iii) | G.(Y)| =2 and Prob(YeG.(Y))=1—¢.

To define our block code ¢ we first list the members of G,.(Y) in some order, say y®,
@ ... y™ where M = 2"F. We also choose a sequence y7 which is not in G, (Y) and call
it y©@. The existence of y® is guaranteed since K = 2 and 27'< ¢.

We now assign as many sequences of G, (Z) to y as we possibly can without exceeding
the probability of y”, then assign as many as possible to y® without exceeding the
probability of y®, etc. In this manner we obtain disjoint subsets Cy, Cs, - - - , Cys of G, (Z)
suchthatforl1=i=M

(a) Prob(Z} € C;) < Prob(Y} = y©)

and the inequality is violated if we add to C; any member of G,(Z) — U, C..
We also let Co = Z* — U, C; and define ¢ by

oz =y if 2reC;

then define Y7 = ¢(Z7).

Let us put

pi=Prob(Z} € C;), gqi=Prob(Y? =y?)

so that (a) now reads as
(a) pisq, 1l=is=M.

If G.(Z) = UM, C;, then we must have

2ea=3¥pi=l-¢
and Y pi—qi|=Yq-Yipi=s1-(1-¢=¢
Since at most ¢ of the Z space and ¢ of the Y space are left over, we must therefore have
dist.(Y, Y) < 3e.

If G (z) # UM, C;, then since we have filled each C;: as much as possible and each Z7 in
G, (Z) has probability less than 27" #+9 we must have

pi=qi— 9-n(H+8)
Thus M pi—qi| = M27MHYD < ¢,
Furthermore
M pi= M qi— M2 HY) = 1 — 9,
so at most ¢ of the Y-space and 2e of the z-space are left over, hence
dist,(Y, ¥) = 4e.
This proves the lemma, for in any case we have dist,(Y, ¥) < 4¢ so that Lemma 7 gives
d.(Y, Y) < 2
Our next lemma shows how to construct: primitive approximations when the noise

source Z is a direct product (Z, R) of two i.i.d. sources.

LemMA 9. Suppose Z, = (Z, R,) is an ii.d. process with {Z,} independent of R, and
vis a d-continuous, CABI channel for which H(v) <H (Z). Given € > 0 there is a primitive
channel v with noise source Z such that d(v, 7) < «.

Proor. Our proof is essen/tia]]y the same as the proof in our earlier paper for the case
when Z, is uniformly distributed on [0, 1], except that here we use Lemma 8 to provide the
desired block coding. We sketch the ideas here and refer to [4] for the details.
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The steps in our proof are as follows.

Step 1. For each x{ € X7, choose an infinite sequence # such that £ = x{’ and put Vo
= p¥. If a > 0 and N is sufficiently large we can use d-continuity to guarantee that

dn(vs, vy <a if & =af
Step 2. Put 8 = (H(Z) = H(v))/2. If B is a positive number and N is sufficiently large, then
we can use Theorem 4 to guarantee that for all x{’
Rn(v, B)=H(Z) - §,
then use Lemma 8 to guarantee that there is a block code ¢,y of Z" into Y such that
JN(V,:,N’ ;x,”) = 2B

where 7, in the distribution of ¢,(Z1).

Step 3. Construct a finite sliding block coding {R,} of {R,} for which
Prob(R¥=0,1,1,1, --- 1)

is very close to 1/N. The sequence 0, 1, 1, ---, 1 of length N is called an N-cell. The
random blocking process {R&,} will tell us when to apply the N-block coding of {Z,}. {R.}
can be constructed by taking an event A of very small probability, then inserting 0’s every
Nth place in the long blocks of 1’s which occur in {1 — X4 (7T"x)}.

Step 4. For a given input sequence x, the channel 7 constructs the output process Y as
follows. If~ R, is not contained in an N-cell, we put ¥, = b, where b is some fixed output
letter. If R, is the zero of an N-cell we put

Y;H-N_l = ¢x'r:§N-l(Z—,': +N_1).

We are then guaranteed that if n is the first letter of an N-cell, then
du()2™ RV ) = o+ 28,

If « and B are small enough and N is sufficiently large the CABI property guarantees that
for all m sufficiently large and all x

Jm(v,,, V) <¢

which proves Lemma 9.

‘We are now ready to complete the proof of our fundamental result, Theorem 3. Let » be
a d-continuous, CABI channel and let {Z.} be an i.i.d. process for which H(Z) > H(v). We
can use the Friedman-Ornstein isomorphism theorem [1] to find i.i.d. processes {Z,} and
(R} such that H(Z) > H(v) and {Z,} is isomorphic to the direct product {(Z., R.)}. This
isomorphism is implemented by an infinite sliding block code F:Z%..— (Z, R).

To construct our channel 7, we first use Lemma 9 to construct a primitive channel »
with noise source (Z, R) such that

@) C o d, ) < e/2.

Let us suppose that the sliding block codes for » has width 2w + 1, that is, there is a
function f: (X X Z X R)“, — Y such that for each x, the output ¥/x of 7 is given by

(Y/x)o = f(x%0, Z%,, R2.).

As shown in [3, Theorem 3.1], we can approximate F arbitrarily well by a finite code,
hence we can find an integer M and a function F:Z*, — (Z, R) such that

(i)  Prob(F({Z®}) = F{Z"}):~w=i=w)>1—¢/2 where Z% =Z,..
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Our primitive channel 7 uses the noise source {Z,} and the encoder

f(x23s,, ZMi<,) = f(x=., Z2,, Re,
where (Zi, R)) = F({Z")).

Property (ii) guarantees that d (7, ?) < &/2 so that property (i) gives the desired result
d»,v) <e.

This completes our proof of Theorem 3. We note in closing that it is possible to modify
the above arguments to nest the encodings so as to create an infinite sliding code from
(X X Z)2 to Y, which produces a channel 7 such that d(v, 7) = 0.
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