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ALMOST SURE APPROXIMATIONS TO THE ROBBINS-MONRO AND
KIEFER-WOLFOWITZ PROCESSES WITH DEPENDENT NOISE!

By DAvip RUPPERT

University of North Carolina at Chapel Hill

We study a recursive algorithm which includes the multidimensional
Robbins-Monro and Kiefer-Wolfowitz processes. The assumptions on the
disturbances are weaker than the usual assumption that they be a martingale
difference sequence. It is shown that the algorithm can be represented as a
weighted average of the disturbances. This representation can be used to
prove asymptotic results for stochastic approximation procedures. As an
example, we approximate the one-dimensional Kiefer-Wolfowitz process al-
most surely by Brownian motion and as a byproduct obtain a law of the
iterated logarithm.

1. Introduction. The recursive algorithm
(1.1) Xn+1 =Xn_an(f(Xn) +en+Bn)) s n= 1: 2) M)

where e, and B, are random vectors in R*, 8, converges to 0 almost surely, fis a measurable
function (possibly unknown) from R* to R*, and a, is a positive random variable, has been
studied by Kushner (1977) and Ljung (1978). They have shown that (1.1) includes the
Robbins-Monro (RM) (1951) and Kiefer-Wolfowitz (KW) (1952) stochastic approximation
processes, which are methods for locating roots of

(1.2) f(x) =0.

With the KW process, our goal is to locate a point in R* where the unknown, real-
valued function V attains a local maximum. It is assumed that for each x in R* we can
observe not V(x) but rather V(x) plus additive noise. To locate such a point, we look for
a solution to (1.2) with f equal to the gradient of V. The KW algorithm is given by (1.1),
with B, equal to the error which results from approximating fby finite differences of values
of V, and e, equal to a function of the random errors added to the observations of V used
to estimate these differences.

With the RM process, for any x in R* we can observe f(x) plus additive noise, and the
goal is to find a solution to (1.2). The RM algorithm is of the form (1.1), with 8, equal to
0, and e, equal to the noise added to the observation of f(x).

Most of the classical results for the RM and KW processes require the assumption

(1.3) E(e.| X1, €1, -+-, en-1) =0.

Wasan (1969) discusses many of these results and has an extensive bibliography. We
mention several of the major results. Blum (1954) gives sufficient conditions for X, to
converge almost surely to a solution 8 of (1.2). Chung (1954) studies the asymptotic
behavior of the moments of (X, — ) and uses the method of moments to prove that
(X — 0), suitably normalized, converges weakly to a normal distribution. Sacks (1958)
proves asymptotic normality by other methods and under weaker conditions. Fabian
(1968) proves a theorem which subsumes much of the earlier work on asymptotic normality.
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More recently, the asymptotic behavior of X, has been further elucidated. McLeish
(1976), Nevel’son and Has’'minskii (1976, page 153), and Walk (1977) prove weak invariance
principles for RM processes; the latter treats RM processes taking values in a separable
real Hilbert space. Also, laws of the iterated logarithm have appeared; e.g., see Gaposkin
and Krasulina (1974) and Major (1973).

Kersting (1977) approximates the one-dimensional RM process almost surely by a
weighted sum of i.i.d. random variables. This approximation allows results for i.i.d. random
variables to be applied in a straightforward manner to the RM process, and many of the
results mentioned above are simple corollaries of Kersting’s representation.

It should be mentioned again that the above results all assume (1.3). Ljung (1978) states
that in many applications, assumption (1.3) is violated because the disturbances e, are
correlated. He, Kushner (1977), and Kushner and Clark (1978) have weakened (1.3)
considerably. Ljung establishes only almost sure convergence, not the speed of convergence.
Kushner and Clark do prove rates for weak convergence. They define a continuous time
process by piecewise constant interpolation of n¥(X,, — 8), where y depends upon a., 8.,
and f. They show that with a suitable translation of the time variable, with the translation
depending upon =, this process converges weakly in (D[0, ©))* to the stationary solution
of a stochastic differential equation.

In this paper, (1.3) is not assumed. Using techniques of Kersting (1977), we approximate
X, almost surely as a weighted average of ¢, - - -, e,,. Results for X,, then follow immediately
as corollaries of theorems for sums of dependent random variables. We work with a form
of (1.1) which is sufficiently general to include the multidimensional RM and KW processes.
Kersting’s work is confined to the one-dimensional RM process.

The methods of this paper are different than those of Kushner and Clark. They deal
with certain measures induced by X, and prove weak convergence of these measures. We
examine the sample paths of X,, and prove strong limit theorems.

In Section 2 we introduce the basic model. Section 3 presents general results. These
results and the work of Philipp and Stout (1975) are used in Section 4 to show that the
RW and KW processes can be redefined on richer probability spaces, without changing
their distributions, so that they are approximated almost surely by Brownian motion.
Because the approximation is almost sure and is sufficiently close, it is easy to show that
results about the asymptotic fluctuation behavior of Brownian motion hold also for the
RM and KW processes. For example, Corollary 4.1 is the law of the iterated logarithm for
the KW process; it follows directly from the law of the iterated logarithm for Brownian
motion.

2. Notation and assumptions. If x is a vector in R*, let x® be its ith coordinate,
and || x| = (%1 (x?)?). If A is a matrix, let A“ be its i, jth entry and A’ be its transpose.
Let I be the X % identity matrix. For a square matrix M, let exp(M) = ¥ M'/i!, and for
t > 0, define t" = exp((log t)M). Let Amin (M) be the minimum of the real parts of the
eigenvalues of M. Define | M| = (32-1 Y51 [M?T)"/2 whenever M is a p X p matrix. All
relations between random variables are meant to hold almost surely.

The following assumptions define our basic model, which is a special case of algorithm
(1.1).

Al. Suppose 0 = 7 < Y%, X; is in R*, and

Xor1 =X, —nN(fX,) + n B, + n'e,)

for n = 1 where e, and 8, are random vectors in R*
A2. Suppose B is a vector in R* and 8, — 8.
A3. Let D be a k X & matrix and n > 0. Suppose

f(x) =Dx+ O(|x|'*") as x—0.

Define y = min(27, % — 7) or % — 7 according as P (B, # 0 infinitely often) > 0 or not.
Suppose Amin(D) > 7.
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A4. Suppose that for each £ X & matrix such that A (M) > %
Yr-1nMe,  converges.

A5. Assume X, — 0.

A6. Let p > 0 and assume 8, =8 + O(n™").

REMARKS. Assumption A4 holds, for example, when e, is a martingale difference
sequence with uniformly bounded second moments, and McLeish (1975) has theorems
which imply A4 under a variety of mixing plus moment conditions. See, especially, his
Theorem 2.10.

If (1.2) has a unique solution, then for convenience we take it to be 0, and under
conditions given by Ljung (1978), Assumption A5 holds.

3. General results.
LemMma 3.1. Assume Al to A5. Then n®X,, — 0 for all § < v.

Proor. Select 8§ < y and define Y, = (n — 1)? x,.. Since
Rn-1)")Y=1+6n""+0(n?),
it follows from A1, A3, and A5 that
Yor1=Yo—n"' (D=8l + B,)Y, —n "*(n"e, + n™B,)

where the matrix B, satisfies B, = O(n™" + || X||") = o(1). Since 8, = O(1) and § < y <
27 if P(B. # 0 i.0.) > 0,

Sr-1nT*TR, converges.
By A4 andsinced<y=% — 1,

Yr=1n""**"e,  converges.
Therefore, if we set A = D — 81, then
(3.1) Yor1 =Y. —n""(A+ B, Y, + d,

where Y 71 d, converges. Let ©* be the subset of the probability space on which B, — 0
and Y7~ d, converges. Thus PQ* = 1. Fix « in ©*, and until the end of the proof write X
instead of X (w) for any random variable X.

Abbreviate Amin(A) and || A || by A and H. Since § < y < Amin(D), we have A > 0. Choose
$oin (0, A). By Hirsch and Smale (1974, page 146), there exists a norm |||, on R” such that
[| [exp(At)]x |, < exp(&t) || x ||, for all ¢ in R and x in R”. Therefore, we can find £, > 0 and
£ € (0, &) such that

I —Abt)x], = Q- é)|xll.  for t€E [0, t].

We will find ¢, € > 0, a non-negative sequence {A(k)}, and a sequence of integers
{n (k + 1)} such that A(k) — 0,

3.2) | Yee+n I+ < max((1 — &)|| Y |+, Ax (1 + &71)),
and
3.3) [ Yelle = Q + &) Yo |l

for /€ {n(k), ---, n(k + 1) — 1}. Inequality (3.2) and Lemma 1 of Derman and Sacks
(1959), applied with a, = A(R)(1 + ¢7"), 8 = b = 0, and ¢, = ¢, imply that Y, — 0, and
then Y, — 0 follows from (3.3) . Choose & > 0 such that

(3.4) Ji=¢(—1+e+ H)e>0
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and define
(3.5) Jo=H + &(1 + &) + Heo.
Choose ¢ > 0 such that
(3.6) J1 min{to/2, (e — €)J37'} = 2e.
We now define {n(k)} inductively. For each k& we define

A(k) = sup{|| Y i=na di|:n (k) < ¢}.

First choose n(1) such that A(n(1)) < ¢, n(1) = 2/t, and sup{||B.||: 2 = n(1)} < &.
Suppose we have chosen n(1), ..., n(k). Then let

my, = inf{i > nk):|| Y = Yaw ||« > o Yo I+ 3,
mh = inf(i > n(k):Yicha j7' = 0/2),

and n(k + 1) = min{my, m}}. Define S; = {n(k), ---, n(k + 1) — 1} and t, = Yiesm i
Since (n(k + 1) — 1)™' < t,/2, we have . < t,. By (3.1),

Y.x+y =Ri+ R:+ Rs + R,
where Ri=(I - Yies, i"A) Y,
Ry = —Yies, i7'BiY,,
Ry =—Yics, iT"A(Yi — Yom)
Ri = Yies, di.
Then [Rifls = (1 = &) || Yam |l
I Rellx =< treo(1 + €0} || Yuiy lls»
| Ra ll« = txHeoll Yawe ll«,

and [| R4l < A(R).
Therefore,
3.7 | Yo+ I« = (1 = Jite) || Ve ||« + A(R).

If n(k+1) = m}, then & = £ /2. On the other hand, if n(k + 1) = m; and || Yo [lx =
A(R)e™?, then

| Yoy = Yo s = | Dies, i "AYnw + Rz + Rs + Ruly = (oo + &)|| Yo |ls
and therefore by the definition of m;,
&0 < tpeds + € so that # = (e — €)J2 .
Therefore, if || Yo ||« = A(k)e™", then
t = min{t /2, (e — €)Jz'},
and by (3.6) and (3.7),
| Yo+l = [1 = (J1 min{to/2, (g0 — €)J5'} — &)1|| Yaew [l = (1 = &) || Yaew |lx -
If | Yo Il =< A(k)e™", then by (3.7),
| Yogesn e < AR)(A + 7).
Therefore, (3.2) holds. Finally, (3.3) holds by definition of m,. 0

Define 8(x, y) to equal 0 or 1 accofding to whether x # y or x = y.
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THEOREM 3.1 Assume Al to A6. Then there exists ¢ > 0 such that n'X,.1 =
—(D — 21I)7'B8 (v, 27) — n 2 (X %=1 (B/n)PHVe,)8(y, % — 1) + O(n7F).

ProorF. By Al and A3,

(3:8) Xnr1=Xn = 07D + bn)Xn — n7 (nen + 077 B,)
where b, = O(|| X,|"). By Lemma 3.1,
(3.9 b.=0m™) forall §<y.

We now assume that D has only one eigenvalue, A. This involves no loss of generality since
we can, by a change of basis, put D in real canonical form (Hirsch and Smale, 1974, page
130) so that

D=diag(Dl, M ’Dq): qSP:

where each of Dy, ..., D, is a square matrix with exactly one eigenvalue. Then we
can partition X, in an analogous fashion, and our proof can be applied separately to
each element of the partition. Since log(n — 1) =logn — n™' + O(n™?, (n — 1)? =
exp((logn —n~'+ 0(n™?)D) = n® — Dn”' — v, where v, = O(n"?||n”||). By Hirsch and
Smale (1974, page 146), | n”|| = O(n***) for all ¢ > 0, so .

(3.10) vn = O(n 2% forall &> 0.
Then from (3.8)
nPXpi=(n = 12X, + 0. — n?70,) X, — nP(ne, + n7B,),
and upon iteration we obtain
B11)  nPXpn=Xo+ Xk (v; =) X; = T2 Ve = £ 32" VB
Since A > v, it follows from (3.9), (3.10), and Lemma 3.1 that
M@ = n70,) X, || = O(n717)
for some a > 0. We can and will assume that « < 2(A — y). Therefore,
T R (g, — T B,) X || < o0,

and it follows from Kronecker’s lemma that

RS |y = 78 ,) X = 0 (1),
Since |n x| = K(n™**/*|| x||) for some K and all x € R?,
(3.12) In=P Bz (v = J 70 )X || = O™,
Using A6 and an argument similar to the one which established (3.12), we can prove that

|22 B jP7VUB, = B) || = O (0.
Foralle >0,

n n
n—D+yI 2;;=2j—1+D—yI = n—D+yI <J' x—I+D—yIdx + O(J x)\—y—2+sdx))
1 1

=(D—yI)7'+ O(n7"*).
Thus, for some ¢ > 0,

(3.13) nDH g Dt — (D — yI)TI88(2r, v) + O(n™°).
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By (3.11) to (3.13), for some £ > 0,
(3.14) n' X1 = —n"Cn? Y2 e, — (D — yI) B8 (21, v) + O(n7°).
If y # % — 7, then y = %4 — 7 — A for some A > 0. Thus by A4

Zjo';l (ij—l+r)ejJ'—)\+y+A/2 converges,
and therefore by Kronecker’s lemma
n—)\+y+A/2 Z.;;l jD—I+‘rIej =0 (1).

Since n™n = O(n™*7*) for all ¢ > 0,

n—Dny Z;‘=1 jD—I+rIej =0 (n—A/3)‘

Thus we have shown that for some ¢ > 0,

. . 1
(3.15) n—D+yI er_z=ljD—I+1Iej = n(l/Z—T)I—D 27=11D—I+1Iej8<y’ 5 _ 'T) + O(n—e).
Substituting (3.15) into (3.14) completes the proof. 0

Since in some applications D will be symmetric, and therefore upon a change of basis
diagonal, we state the following special case of Theorem 3.1.

COROLLARY 3.1 Suppose Al to A6 hold and D = diag(A,, - - - , A;). Then there exists
€ >0 such that, fori=1, ..., k,

X% == —27) B9 (y, 27) — 72 Sr=1 (k/n)}"+’_le(i)8(y,-21- - 'r) + O0(n™*).

4. The one-dimensional RM and KW processes. Theorem 3.1 enables us to use
theorems for sums of dependent random variables to prove theorems for stochastic
approximation processes with dependent noise. In this section we apply the work of Philipp
and Stout (1975) to the RM and KW processes in R'. Their monograph gives sufficient
conditions so that a sequence of random variables e, can be redefined on a richer
probability space without changing its distribution, together with a Brownian motion B (¢)
on [0, ) such that, for some ¢ > 0,

4.1) i<t €x = B(t) + O(¢*™).

For example, suppose e, is a strictly stationary ¢-mixing process such that Y5 _;
(¢(n)"? < o, (See Philipp and Stout, page 26, for the definition of ¢-mixing.) If Ee; = 0
and E | e;|**® < o for some & > 0, then lim, ... n'E (3% e;)? exists (Philipp and Stout,
page 26). Call this limit o2. Suppose that 6> > 0. Then without loss of generality 6> = 1 can
be assumed. Then by their Theorem 4.1, Equation (4.1) holds. We will be interested in the
asymptotic behavior of Y .<: k%e, where e, satisfies (4.1), so the following lemma is useful.

LEMMA 4.1. Let e, be a sequence of random variables. For any number o, define S,
on [0, ©) by
Su(t) = Yr=t ker.

Suppose there exists a standard Brownian motion B,(t) on [0, ©) and a positive number
€ such that

So(t) = Bo(t) + O(t/*™).
Then for a < — 4,
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4.2) lim; . S, (%) exists and is finite,

and for a > —'%, there exists a standard Brownian motion B, and a positive number ¢’
such that

4.3) Su(t) = Bo (> @a + 1)) + O(£+4/27),

PrRoOF. Define N(0, a) = 0 and N(k, a) = ¥ % j*. Then define for N(k — 1, a) < ¢
= N(k, a)

B.(t) = Y7 j4(Bo(j) — Bo(j — 1))+ E*(Bo(k™*(t — N(k — 1, @)) + & — 1) — Bo(k — 1)).
Since B, is a standard Brownian motion, so also is B,. Now
Sa(n) =n%e, + TiZi TFw (J*— (j+ D) +n%)es
=n*Yhaer+ 3 Y1 U — G+ Der
=nSo(n) + 375 (= (J + 1*)So())
=n°Bo(n) + X2 (j* — ( + 1)%)Bo(j) + O(n+/?~ + Y55 jo1/2)
=Y 71J%Bo(j) = Bo(j = 1) + O(m/27 + F 1y jo 27,

Thus,
(4.4) S.(n) = B,(N(n, a)) + O(n*+/>™).

(If « — e = —1, then the remainder is O (log n), not O (n**/?7*)). Therefore, if a < —%, then
(4.2) must hold.
One can easily show that for a > —%

(4.5) N(&, a) = 2a + 1) 712 + O(t™).

In the proof of their Lemma 3.5.3, Philipp and Stout (1975) show that if 1 > > 0 and B
is a Brownian motion on [0, =), then for each p > 0

(4.6) B(t+ O('™) = B(t) + O(/*7**).
By (4.4) to (4.6), (4.3) holds whenever a > — 1. 0

LEMMA 4.2. Suppose ay, are real numbers and ¥ 5-1 a, converges. Let b%, k=1, .- -,
n and n = 1, be positive numbers. Suppose sup, b < M < o, and for each n suppose
b% < b%.1. Assume that, for each k, b’ decreases to 0 as n — . Then lim, .« Y k=1 arb%
= 0.

ProoF. Fix e > 0. Choose N such thatif n =m = N, then | Y% @z | < &. Then choose
N’ = N such that 8% Q¥:|aj|) =efork=1, ..., Nand n = N'. For k < n, define ¢} =
bi — bi1ifk=2and c? = b7. Thenif n = N,

|27§=N akaI = |E;;=N ak(E,";l c}) | = |E,"‘=1 cj (Ez=max(j,N) ax) | =bhe=< M.
Therefore if n = N’,
| ko1 arbi| = | XA anbi| + | Thaner arbi| = e(1 + M). 0

Now we apply our results to the one-dimensional KW process. Let M be a differentiable
function from R’ to R’. Suppose that 4 is the unique solution to

inf, M(x) = M(6)

and that M’(x) = 0 implies that x = 6. We will assume that M"” exists and is continuous
in a neighborhood of 6. For convenience, we also assume that § = 0. The KW process is
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defined by the recursion
Xn+1 = Xn - an—IY,,,

where Y, is an estimate of M’(X,). Since we assume only that, for each x, an estimate of
M (x), but not of M’(x), can be directly observed, Y, is defined as follows. Let ¢ and 7 be
positive constants and, for i = 1, 2, let M(X, + (=1)‘cn™") be estimated by Y,; = M (X,
+ (=1)’cn™) + fin. Then set

Yn = (Yn,z - Yn,l)/(zcn—f)'

If we define B, by
a'n"B, = (M(X, + cn”") — M(X, — cn™"))/(2cn”") — M'(Xa),
then
(ac®/12)(M"” (n) + M" (p.))
where |Xn—pnl=cn” and |X,—nn|=cn™".

Therefore, if we assume that 0 < 7 < % and define p, = p,2 — p.1, then Al holds with
f(x) = aM'(x), and e, = (ap.)/(2¢). Since P(B, # 0 infinitely often) > 0-unless very
restrictive assumptions are made, y = min(27, % — 7), and therefore y is equal to its
maximum, %3, when 7 = %. By Theorem 2.5 of Fabian (1971), the rate n~/® cannot
be improved for the KW process. Therefore, we can set 7 = %. (If M has a contin-
uous derivative of order s + 1 in a neighborhood of 0 for s an even integer, then the rate
n ™21 jg obtainable by the procedure given in Fabian’s (1971) Theorem 2.6.

REMARK. A referee has pointed out that Theorem 3.1 implies that if + > %, then n?"X,
— —(6aM”(0) — 127) 'ac®M " (0). I do not know if this result has been published.

We will also make several additional assumptions.

A7. M has two continuous derivatives, sup, M” (x) | < o, {x:| M’(x) | < 8} is compact
for some 8 > 0, and {x: M (x) < c} is compact for all ¢ > M (0).

A8. M (x) =M"(0) + O(|x|?) as x — 0 for some d > 0.

A9. aM”(0) > .

A10. Define S(t) = Y 4=t pr. Suppose o > 0, B(¢) is a standard Brownian motion on
[0, =), and for some § > 0

S(¢) = oB(¢t) + O(tV*?).

THEOREM 4.1. Suppose A7 to A10 hold. Let A = aM"(0) — (%) and B = —ac*M " (0)/
(6aM”(0) — 2). Then for some ¢ > 0,

4.7 n'*X, =B —n""2 Y5, (k/n)%e:r + O(n™).

Define X(t), t = 0, by X(t) = n'*X, if n < t < n + 1. Then there exists a standard
Brownian motion Z(t) on [0, ©) and € > 0 such that

(4.8) X (¢) = B + (a0)(2¢) '(24 + 1) TVARATV2Z($24%Y) 4 O(¢7°).

Proor. We first note that A5 holds by Lemma 1 of Ljung (1978). To apply this lemma,
his X(n), e(n), B(n), y(n), and f(x) are set equal to our X ,.+1, — (£.n"%/(2c)), —=B.n"/* =
M (X,) — (M(X,+ cen™%) — M(X, — cn” %) /(2cn™"%)), an™, and —M’(x), respectively.
Ljung’s Condition B1 is verified by using (4.2) of Lemma 4.1, Lemma 4.2, and his Equation
(15). After using his Lemma 3 to verify his Condition B2, it is clear that all conditions of
his Lemma 1 are satisfied.

A4 holds because of A10 and (4.2). A3 holds with D = A\, = aM”(0) because A8 implies
that f(x) = Dx + O(x?) as x — 0.Let 8 = (ac?/6)M" (0). By Lemma 3.1, X,, = O(n ™) for



186 DAVID RUPPERT
an ¢ > 0; this and A8 imply that 8, = 8+ O(]| X.|? + n~%%) = B + O(n™*) for some & > 0,
and so A6 holds. We now invoke Theorem 3.1 to prove that (4.7) holds. By A10
i<t €x = ac/(2¢)B(t) + O(t/*7?).
Therefore, by Lemma 4.1, there exists a Brownian motion Z(¢) and an & > 0 such that
Si<e ke = ac (2¢)71(24 + 1)7V2Z (™) + O (A7),
This and (4.7) imply (4.8). ’ 0

Theorem 4.1 yields results on the asymptotic fluctuation behavior of X,. Here is a
simple example. '

COROLLARY 4.1. Suppose A7 to A10 hold. Then
n'?X, ac

W= (2¢)(24 + 1)V%°

lim sup .«

ProOOF. Straightforward. Use the law of the iterated logarithm for Brownian mo-
tion. O '

Now we state, without proof, an analogue of Theorem 4.1 for the RM process.
All. Assume fis a function from R' to R' and the 0 is the unique solution of

f(x) =0.

A12. Let u, be a sequence of random variables. Suppose B (t) is a standard Brownian
motion on [0, ©), ¢ > 0, ¢ < 0, and

Shee ur = 0B (t) + O(£%™).

Al13. X1 =X, — an ' (f(X,) + un).

Al4. fhas a continuous derivative and f(x) = f'(0)x + O(|x|'**) as x — 0 for ¢ > 0.
A15. Define V(x) = [§ f(y) dy. Suppose {x: V(x) = C} is compact for all C < sup V(x).
A16. Suppose sup |f'(x) | < o and {x:|f(x)| = 8} is compact for some & > 0.

THEOREM 4.2 Suppose All to A16 hold and af’(0) > %. Define D = af’(0) — 1. Then
for some ¢ > 0
n'?X, = —n""2a Y7, (k/n)ur + O(n7*).

Define X(t), t =0, by X(t) = n"?X, on n <t < n + 1. Then there exists a standard
Brownian motion Z(t) and an ¢ > 0 such that

act D172 _
X(¢) =(2—D+—1)1—/2Z(t2D+1) + O(t™).
PROOF. Similar to the proof of Theorem 4.1. 0

Acknowledgement. I wish to thank the referees for their careful reading of the
original manuscript, for detecting several errors, and for suggestions which improved the
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