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THE MAXIMUM TERM AND FIRST PASSAGE TIMES FOR
AUTOREGRESSIONS!

BY MARK FINSTER

Cornell University

The limiting distribution of the maximum term of the non-normal sta-
tionary sequence - - - X_, Xo, X; - - - satisfying the autoregressive equation X,
=¢en + a1 Xn-1 + @2 X, 2 + - is investigated when Y | ax| <1 and --- &, &,
& --- are integrable real valued i.i.d. random variables having distributions
with tails that are either Pareto or exponential in nature. Asymptotic results
for the joint distribution of the first passage time ¢ = inf{n: X, = ¢} and the
excess R, = X; — c are also given as ¢ — .

1. Introduction and summary. The limiting distribution of the maximum term of
the non-normal stationary sequence ... X_;, X, X; --- satisfying the autoregression
equation

(11) Xn =& + aan—l + aZXn—Z + ..

is determined when Y’ | ax| < 1and - -- e_y, &, €1, - - - are real valued i.i.d. random variables

having distributions that are either Pareto or exponential in nature. The distribution of

€, i1s Pareto if there exists an a > 1 and a function L (x) varying slowly at infinity (Feller: -
1966, page 276) such that P(|e.| > x) = x“L(x) and the distribution of &, is exponential

if there exists @ > 0 such that P(|e,| > x) ~ e™** as x — oo, Utilizing the asymptotic

distribution of the extremes, the joint normalized limiting distribution of the first passage

time

Ct=t.=inf(n=1:X,=¢) = inf(n=1:max[Xy, - -+, Xx] = ¢}

and the remainder R, = X, — c is calculated as ¢ — «. An application to optimal stopping
is found in Finster (1982).

Extensive research has been directed at the determination of the asymptotic distribution
of the properly normalized maximum term of a sequence of random variables. Gnedenko
(1943) has completely characterized the possible nondegenerate limiting distributions and
their respective domains of attraction of i.i.d. sequences. If the marginal distribution of one
random variable is Pareto, the normalized maximum term converges in distribution to the
law

(1.2) Hi(x) = exp(—x ") (0,0)(x)
where I is the indicator function, and if exponential, the limiting distribution is of the type
(1.3) H;(x) = exp(—e™).

Many have given conditions under which the asymptotic distribution of the extreme
value is identical to that of an ii.d. sequence having the same marginal distribution.
Frequently the dependence requirement of the stochastic sequence {X,} is weakened by
assuming that {X,} is strictly stationary and that the dependence between X, and X;
decreases in some fasion as | — j | increases. Watson (1954) generalized Gnedenko’s results
by the simplest such restriction, that of m dependence, which requires that X; and X,
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actually be independent if |i — j| > m. Watson also required an assumption similar to
Leadbetter’s D’ condition (Leadbetter: 1974b). Loynes (1965) relaxes the m-dependency
restriction by assuming strong (or uniform) mixing and O’Brien (1974a, 1974b) adds to
Loynes’ results. Specifically, {X,.} satisfies a strong mixing assumption if there exists a
“mixing” function g(%k) = o(1) such that for all j and %

| P(AB) — P(A)P(B)| < g(k)

wherever A € #(X,:n=1,2, ..., j)and BE F(X,:n=j+ k + 1, --.), & being the
sigma field generated by the corresponding variables. Berman (1964) shows that for
stationary normal sequences the classic theorems hold providing the correlation p, = p(Xj,
X, +1) decreases according to

(1.4) palogn=o0(1) or Y pi<o.

Berman (1964) also uses a “comparison technique” introduced by Lévy (1937) and extended
by Loeve (1960) to obtain still different conditions for non-normal stationary sequences.
Leadbetter (1974a, 1974b, 1975, 1979) assumes condition D, a weaker type of mixing that
involves only sets of the form {X; < ¢, ---, X, =< ¢} and that generalizes the mixing
function to a mixing sequence. His results extend Loynes’ and both correlation restrictions
of Berman.

Berman (1962) also investigates the case of exchangeable random variables and the
case where the number N, of random variables considered in the determination of the
maximum is itself a random variable and N, —p © as n — «. Galambos (1972) applies
combinatorial concepts and a generalization of the inclusion-exclusion principle (a grapl
sieve theorem) to obtain results for arbitrary and possible nonstationary sequences, results
that encompass those for uniform mixing sequences. In addition, Galambos (1978) has
aptly compiled the fundamentals of the asymptotic theory of extremes.

Rootzén (1978) has also studied the extremes of moving averages of stable processes in
both discrete and continuous time. Chernick (1978, 1981) has given counter examples with
first order autoregressive sequences—one with Cauchy marginals and hence of Pareto type
for which the classical limit theorem does not apply, and one with uniform marginals for
which the limit theorems of Loynes and Leadbetter do not apply.

Using Lévy’s comparison technique we show that the limiting distribution of the
modulus M, = max{|Xi|, -+, | X.|} of the maximum term of the autoregression (1.1)
coincides with that of the corresponding i.i.d. case. Furthermore, for a Pareto distribution
this result holds even after conditioning on the past {Xz, £ < 0}. If the right tails of {e,}
dominate, that is if P(e, < — x)/P(e, > x) = 0(1) as x — «, then Gnedenko’s theorem
holds for the maximum term M, = max{Xj, ---, X,}.

Employing these results, the first passage time

t=t.=inf{n=1:M, = c}

and the remainder R, = X, — ¢ properly normalized are shown to be asymptotically
independent and their joint limiting distribution is calculated as ¢ — . The normalized
stopping time converges in distribution to the exponential law [1 — e "]/« (x). In the
exponential case R, also converges in distribution to this exponential law and in the
Paretian case the distribution of R,c ™' converges to the Pareto law [1 — (x + 1) ™[0, (x).
Under certain restrictions the limits of Et and ER, are determined asymptotically via
uniform integrability.

Of course if ¢, has dominant left tails which are either Pareto or exponential, analogous
results hold for the minimum.

2. The maximum term—Pareto Case. Let a = (aj, a, ---)’ € R* and define {b,}
inductively by b, = 1 and

b,,=a1b,,‘1+---+a,,b0 for n>0

so that b = (bo, b1, ---) = Y%=0 S*(a**) where the * product is convolution, S(a) =
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(0, @y, - -+)" is the shift right operator, and ’ denotes transpose. In other words, a and b are
column vectors in ¢, the absolutely summable sequences, the ith coordinate of a+b is
Y5 a;bijs, and | b] < (1 — | a[)™" < oo since we always assume | a | = Y |ar| <1.If e is the
standard kth basis vector for R”, b can be alternatively defined by b+(e; — S(a)) = ei.

(2.1) X, = Y5 bren—r

is then the unique stationary time series satisfying (1.1).
Define the transpose matrix A’ = (a, e, e;, ---) and symbolize the past by Z, =
(X, Xn-1, +++) so that

(2.2) Zn=A"Zo+ 357" Aen_ten-i

Let P, represent the probability measure on {Z,} or {X,} when the past values (X, k=
0} are given by Zo = z € R™ in (2.2). The values of Z, are restricted to the set A = A(a).
To define A set n. = (en, €51, +++) so that X, = &y, and Z, = Bn, where the upper
triangular matrix B = (b,;) has entries b;, = b;_, (j = i). Set

A= {Bn:mE€R” and lim,sup T"(@+b)'5 < }.

Here w = (|w: |, |wz], - - -) for w = (w1, w2, - --) € R* and T(w) = (ws, ws, - --)’ is the left
shift operator. Since (a * b)no = a’Z_; + & = X,, it is easy to see P(Z, € A) = 1.

LEmMMA 2.1.  If z € A, there exists a constant K = K(a, z) so that on {Z = z}
|a’Z,| =367 @js1Xn—y| + K Vn.

PROOF. Let 7y = (eo, &1, - - +)’ satisfy z = By and set S, = | Y6 'a;41X,—, | so
|Q'Z0| < S + |55 sy Xoy| = S + | Ta)'Bn|
=S, +[T@) » b]'7=< S, + T"(a@ * b)'7.
For z € A, K(a, 2) = sup, T™(a@ * b)'n is finite. 0

Let F be the distribution function (d.f.) of ¢, and G the d.f. of | &, |. Call a d.f. H Pareto
with exponent « > 1 if there exists a function L (x) varying slowing at infinity such that 1
— H(x) = x7°L(x). Throughout this paper L will represent the slowly varying function
corresponding to the particular Pareto d.f. under discussion.

Define M, = max{X;, ---, X,} and M, = max{| X, |, - -+, | X.|}. We now show that the
classical results remain valid for M, and, under an additional assumption for M, even
after conditioning on Z,. The notation E[Y; A] = [4 YdP will be used throughout this
article.

THEOREM 2.1.  If the distribution function G of | e, | is Pareto and {c,} are constants
satisfying 1 — G(c,) = O(n™") then Yz € A, P.(M,, < ¢,) — G™(c,) = o(1).

PrOOF. On R” X R” define coordinates (X, U) = (X1, Xz, -++) X (U3, Us, ---) and a
probability P’ so that the marginal distribution of X coincides with that of our autore-
gression sequence (1.1) under P. and so that U is independent of X with i.i.d. coordinates
U; having IParginal d.f. G(x) =1 — x7°L(x). Let A, and B, be probability one events and
set A)={M,-1=<c,},B,={Ui=cp,i=j,---,n} and & = F (X;:i < j). Writing P for P/,
E for expectation under P?, ¢ for ¢, and utilizing {|X;| = ¢} = {(-c—ad'Z 1=¢=c-
a’'Z,-1} we have

| P(M, < c¢) = G"(c) | = | P(An+1) — P(B)) |
(2.3) =Xt P(Aj+1B,+1) — P(A,B)) |
= |21 P(B))E[P(|X)|= ¢| #,-1) — P(U;< ¢); A)]
=Y E[|F(c—a'Zi ) — F(—c — a'Z-1) — G(c) |; A/]

(2.4) =[1 - G@IE[Y €] +&;)]
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where
QF=|1-[1-GlcxaZ_)][1-G()]! |La,.

By the choice of c it suffices to show n ™' times the integrand in (2.4) is dominated and
converges to zero. Writing u; for ¢ 'a’Z;_; we have

25)  TEQF=T[1-[1-u] "Ly + 3|11 - w111 = Lic — o) /L(c))La,-
For K satisfying Lemma 2.1 the third summation in (2.5) is bounded uniformily by
n(l—|a|—c'K) *sup{|1— L(cy)/L(c)|:1 —|a| —c'K=y=1+|a|+c 'K}

which is o(n) by Feller (1966, page 276). Since | u;| is bounded away from one on A, for
sufficiently large n, the mean value theorem gives a constant JJ = JJ(a) such that for all j

|1 —=[1—p,]7% = J|pl
Hence, if z = By then the middle summation in (2.5) is bounded by J/c times
Yi<nl il = Ty<n | (@ * BYnj-1| < Trsjcn (@ * bY ex|ej—k| + ¥,<n TV(@ * b)0.
The last quantity is o(nc) for z € A and
E[Yi<j<n (@*b)ex|e,-1|] = n(a+b)E|e1| = o(nc).
That E[Y 2, ] = o(n) in (2.4) may be established similarly. O
REMARK 2.1. We have actually proved more. If {c.(¢)} is any class of sequences

tending uniformly in ¢ to infinity as n — o and if sup,,, n{1 — G[c.(¢)]} < = then the .
convergence in Theorem 2.1 is uniform in ¢.

Theorem 2.1 can be paraphrased in distributional terms to yield a version of Gnedenko’s
Theorem. Let H; be the limiting d.f. of Gnedenko defined in (1.2).

CoROLLARY 2.1. If G is Pareto with exponent « > 1 and z € A then the distribution
function of (M, — v,)/u, under P, converges to H,(x) provided nu, *L(u,) — 1 and v, =
o(un).

The right tail of a d.f. F dominates if F(—x) = o[1 — F'(x)] as x — . Although Theorem
2.1 is concerned only with the magnitude of the maximum term, the following corollary
extends this result to M,, = max{Xj, ..., X,,} itself.

COROLLARY 2.2. If the distribution function F of ¢, has dominating Paretian right
tails and if {c,} are constants satisfying 1 — F(c,) = O(n™"), then
P.(M,<cw) — P.(M.<c,) =0(l) Vz€A.
Hence, Theorem 2.1 and Corollary 2.1 hold with M, and G replaced by M, and F
respectively.
Proor. If K is chosen to satisfy Lemma 2.1, then for P =P, and ¢ = ¢,
PM,<c¢)—PM,<c)=PM,>c, M,=<c)
=Y PM, 1 =c¢X;<—c)
=3 E[F(=c — a’Z-1); M1 = ]
=nF(—c[l1—-|a|]+K)=0(1) O

All the results in this section remain valid under P, of course, by dominated convergence.
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3. The maximum term-exponential case. If -.. ey, &, €, -- - are i.i.d. normally
distributed with mean p and variance ¢ then by (2.1) {X,} is a stationary Gaussian
sequence with X, having mean Y, bxp and variance ¥ d}0° Hence, Berman’s correlation
condition (1.4) gives P(M, < ¢,) — e~ provided P(e, < c,) ~ x/n.

This section investigates a non-Gaussian exponential case using the structure on the
autoregression (1.1) introduced in Section 2. The d.f. F of ¢, is exponential if the right tail
of F dominates and is asymptotically exponential; that is, if there exists a« > 0 and 8 (x) =
o(e™) as | x| — oo such that

(3.1) F(x) =[1- e o (x) +8(x).
Define
(3.2) H(x) =[1 — Be™"]Ia(x)

where A = (a"'log B, ) and B = E[exp(aa’Zy)] = E[exp a(a+b)'no]. Note that exp(aa’Z)
is integrable, for if £, = (a*b)’e; then an integration by parts yields

o

Elexp(ater)] =1+ aé}ef [1—F(y) + F(—y)lexp(aty) dy
‘ 0

Since each coordinate of b has magnitude bounded by one, | 4| < |a| <1, and the last
integral is uniformly bounded. As a*b = S(b) € ¢*

B = TI%=1 E[exp(aties)]
converges.

THEOREM 3.1. Suppose the distribution function F of e, has exponential form (3.1)
and {c,} are constants satisfying 1 — F(c,) = O(n™"); then P(M, < ¢,) — H"(c,) = o(1).

ProoF. On R® X R* define coordinates (X, U) = (--- X1, Xo, X1 -+-) X (Uy,
Us, --+) and a probability P’ so that the marginal distribution of X coincides with the
distribution of the autoregression, and so that U is independent of X with i.i.d. coordinates
U: having marginal d.f. H. Set A, = {M;_; < ¢} and let ¢ = q(m, n) represent the greatest
integer in n/m. Writing P for P’, p, for exp(aa’Z;_;) and proceeding as in the proof of
Theorem 2.1

| P(M, =< c) — H"c)| = | $1 H"/()E[{1 - H(c)} = {1 = F(c — a’Z ) }; 4]
(3.3) =ne*(gm)™" | X{" H"/(c)E[B — w; A/]| + R(n, m)
where
R(n,m) =|Yin H/()E[H(c) = F(c — a’Zi1); Al + nE |1 = F(c — a'Z) — e *po |.

The first summation in R (n, m) is clearly o(1) for fixed m. The integrability of to and the
assumption 1 — F(c) ~ e™*° = O(n"") imply the remaining expectation of R (n, m) is o(n ")
by dominated convergence since e*® times the integrand is bounded on {c = a’Z) by

e““8(c — a’Zy) = o(1) =< psup.=o[e**8 (x)]
and on {c < a’Zy} by 8. Forr =0, 1, ... q define
H,=m ' Y30 H*(c).
Let N, = min[m, inf{j = 0: M, .1 > c}] so that the first part of (3.3) is dominated by
ne *°q”' Y923 {H.D, + m~' ¥ 420" 28B;}
where

Bj=H""(c) — H.(c) = H™"'(c)[1 — H™(c)] = 0(1)
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uniformly in j for fixed m and
D, = E[m™" | 3720 (B — w) xiscrme1sks)y |; Arm1]
<E|m™ Y (B =)l |
<E[| B~ Nu' X3 pj[; Nm > 0].
As n — «, N,, » m with probability one. Hence
lim,sup | P(A,+1) — H ()| = OWE | B—m™' 37 i |.

Since any linear combination X, = Y, bse.—(b € ¢) is mixing (Rosenblatt, 1962, pages 105-
112) and hence ergodic, the last quantity tends to zero as m — « by the ergdoic theorem.
Remark 2.1 also applies to Theorem 3.1.
Let H:(x) be the limiting d.f. of Gnedenko defined in (1.3).

COROLLARY 3.1. Suppose the distribution function F of e, has exponential form (3.1);
then

(a) the distribution function of a M, — log(nB) converges to Hy(x) and

(b) P(M, < c,) — e™ provided c, = a log n — a'log (y/B) + o(1).

4. First passage times-Pareto Case. Let¢ =t = inf{n=1:|X,|= c} be the first
passage of | X,,| over the boundary ¢ and set f = f, = inf{n = 1:X, =c}. Forr=tor¢
define R, = | X,| — c and R, = X, — c to be the respective overshoots. In this section we
calculate the asymptotic normalized joint distribution of the first passage time with its
overshoot as the barrier ¢ — . Denote convergence in distribution by — 4.

THEOREM 4.1. Let X and Y be mutually independent random variables with distri-
bution functions 1 — e ™ and 1 — (y + 1)™* respectively. If the distribution function G of
| & | is Pareto, then as ¢ — ©

([1 = G(A)]t, c'R) =0 (X, Y).
Proor. The notation in Ehe proof of Theorem 2.1 is used. If 1 — G(x) = x"“L(x) set
d=d.=c"L(c) and Aj = {M;_; < c}. For positive x, y, and v
Px=std=v, R >yc) =Y P(|X;|> (y + 1)c, 4))
(4.1) =Y {P( X;|>c+yc,4;) — G Hc)[1 — Glc + yc)]}
+(y+ 1) 1 —d) 'd{L(c + yc)/L(c)}

where the summation is over x < jd < v. The last summation converges as a Riemann sum
to (y + 1)7™(e™ — e7"). A summand in the first summation of (4.1) is bounded by

42) | P(X|>c+ye, A) — P(U;>c+yc, )| + {1 — Glc + ye)} {(P(A) — G/ (c)).
We can apply Remark 2.1 to obtain
| P(4;) — G'"Y(c)| = o(1)

uniformly in j, for xd ™' =j < vd ™. Since 1 — G(c + yc) = O(d), we need only consider the
summation over the absolute difference in (4.2) which equals (2.3) with ¢ replaced by
(y + 1)c and hence tends to zero as the proof there indicates. 0

The following corollary extends the above results to £..
COROLLARY 4.1. If the distribution function F of e, is Pareto with dominant right tails

then Yz € A, ([1 — F(c)]t, ¢'Ry) and ([1 — G(c)]t, ¢c'R:) have the same limiting
distribution under P..
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ProOF. If1 — F(c) = ¢™L(c) ~ 1 — G(c), let A be the symmetric difference of {tc “L(c)
= x, Rie™' >y} with {tc™°L(c) < x, R,c”' > y}. Set m, = min{X, - -+, X,,} and choose K
to satisfy Lemma 2.1 so that

P.(A) = P.(tc™“L(c) = x,t<t)=P.(mi= —c, M, < ¢, tc™“L(c) < x)
=Y E[F(—c— a'Zi1); M;-1 < c]
=[xc*/L(c)]F(=c+c|a|+ K)=0(1)

where the summation is over 1 = j < xc*/L(c). O

REMARK 4.1. In the above corollary one can interchange ¢ and ¢ or insert any of R,, R;;
R,, or Rifor R, or Rrwithout changing the limiting distribution.
The next corollary extends Theorem 4.1 to convergence in expectation.

COROLLARY 4.2. If|e,| has a Pareto distribution function G with exponent a > 1 then
forz€ A

a. E.(t) =1-G(c) +o[1 - G(c)]
b. E.(R) =c¢/(a—1) +‘o(c) and hence E.(X;) = ca/(a — 1) + o(c).

PRrRoOF. In the light of Theorem 4.1 it suffices to show uniform integrability (u.i.). To
see [1 — G(c)]tis u.. let K satisfy Lemma 3.1,y=0andsetd=d.=1— G(c + | a| ¢ + K).
Since 1 — G(c) = o(d), it suffices to show td is u.i. If A; = {M,; < c} and P = P,,

P(t>j)=PA) =E[G(c+|a'Zi|);A]l=(1-d)P4,-)
so that P(t > j) < (1 — d)’. Hence, if y =y ', dE(¢; td > y) < yP(td > y) + (1 + d)" >
e?(y + 1) uniformly in y as ¢ — oo.
To show ¢ 'R, is u.i. it suffices to show the u.i. of ¢'M,. Fory = 2
E[M; M, > yc] = Y7 E[E(| Xa | I, 5yey | Z2); t>n = 1].
After integration by parts, the integrand on {¢ > n — 1} is bounded by

=

yc[l—G(yc—2|a|c)]+f 1-G(x)dx

ye—2|alc
for sufficiently large c. Hence
¢ 'E(M; M, > ye) <[1 - G(c)]E(t)o(1)

where the representation theorem for slowly varying functions (Feller, 1966, page 282)
indicates 0(1) — 0 as y — o uniformly in ¢. 0

REMARK 4.2. Of course if P.(e; < 0) = 0 and each a; = 0 then Corollary 4.2 holds with
t, R, and G replaced by t, R;; and the d.f. F of ¢,. The author conjectures the validity of
this replacement when the right tail of F dominates. This conjecture follows if, after
normalization, the variables ¢ and Rrare u.i.

5. First passage times—Exponential Case. In this section the asymptotic joint
distribution of the first passage time ¢ = ¢, = inf {n = 1: X,, = ¢} and the remainder R, =
X, — c is calculated when ¢, has the dominant right tail exponential d.f. (3.1). Note the
change in ¢ and R, from the Paretian case. Conditions implying u.i. and hence convergence
in mean are also given. Replacing d. by e™*, G by the d.f. H defined in (3.2), M, by M,
and adhering to the proof of Theorem 4.1 creates the following.

THEOREM 5.1. If e, has the distribution function of (3.1) then (Be *t,aR)) —p (X, Y)

X

where X and Y are i.i.d. with distribution function 1 — e™™.
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The analogue of Corollary 4.2 is the following.

COROLLARY 5.1. Suppose a, = 0V k and ¢, has distribution function (3.1) with F(0)
= 0; then e *°Et — 1/B. If, in addition, there exists N such that a, =0V k> N then aER,
—land EX,=c+ a '+ o(1).

The proof entails showing the u.i. of e *“¢ and R, and is similar to the proof of Corollary
4.2.

REMARK 5.1. The author conjectures the validity of the corollary for arbitrary {a:}
and F(0). It would also be valuable to know that the results obtained for exponential
distributions in Sections 3 and 5 hold under each P,.
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