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ON STRONGLY UNIMODAL INFINITELY DIVISIBLE
DISTRIBUTIONS

By MAKOTO YAMAZATO

Nagoya Institute of Technology

There are many results as to unimodality of infinitely divisible distribu-
tions. But few are known about strong unimodality of infinitely divisible
distributions. In this paper, we consider two subclasses of infinitely divisible
distributions and give necessary and sufficient conditions for strong unimo-
dality of distributions belonging to such classes.

1. Introduction and results. Let ube a probability distribution on R' and let F, (x)
be its distribution function. The measure p (or F,(x)) is said to be unimodal with mode m
if F.(x) is convex for x < m and concave for x > m. The measure p (or F, (x)) is said to be
unimodal if, for some m, it is unimodal with mode m.

Lapin asserted that the unimodality of distributions is closed under convolution (i.e., let
F(x) and G(x) be unimodal distribution functions. Then FxG(x) = [F(x — y) dG(y) is
unimodal.). But K. L. Chung in [2] pointed out that Lapin’s assertion is incorrect. After
this, Ibragimov [4] (c.f. [14]) studied under which condition the convolution of two
unimodal distributions is unimodal. He called a distribution (function) strongly unimodal
if its convolution with every unimodal distribution (function) is unimodal and gave a
necessary and sufficient condition for strong unimodality.

Let g be a function on R'. If g is positive on an interval I and log g is concave on I, then
we say that g is log concave on I. We call g log concave if I = {x; g > 0} is an interval and
g is log concave on I.

THEOREM (Ibragimov). A unimodal distribution p is strongly unimodal if and only if p
is degenerate (i.e., there is some a such that p({a}) = 1) or p is absolutely continuous (with
respect to Lebesgue measure) and its density has a log concave version.

Note that the above version of a density of nondegenerate strongly unimodal distribution
is PF; function (Pélya frequency function of order 2; see Karlin [6]). Many interesting
properties of PF functions including a fact essentially equivalent to Ibragimov’s Theorem
are investigated by Schoenberg, Karlin, and others.

It is obvious from Ibragimov’s Theorem that I'- distributions with exponent A = 1 (i.e.,
the density is of the form I'(A\) "'a*x*"'e™** for x > 0, where A = 1 and « > 0) and normal
distributions are strongly unimodal. These are examples of strongly unimodal infinitely
divisible distributions (which we abbreviate i.d.d.). We do not know other strongly
unimodal i.d.d. although many unimodal i.d.d. are obtained ([7], [9], [12] and [14]).

In this paper, we have an interest in finding’ other strongly unimodal i.d.d. and in
characterizing the class of such distributions. We restrict our consideration to i.d.d. on
[0, «) with absolutely continuous Lévy measure. We denote the class of all such distribu-
tions by I;.. Absolutely continuous means absolutely continuous with respect to Lebesgue
measure in this paper. A characteristic function fi (¢) of such a distribution  is represented
as follows ([1]).

1) A(t) =exp J (e™ — u"'k,(u) du
0+
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where k,(u) = 0 and & (1 + u) 'k, (v) du < «. Also, by the same k,(u), the Laplace
transform [i(¢) = [§ e “u(dx) of u is represented as

2) iL(t) = exp f (e ™™ — 1u""k, (1) du.

0+

We denote all quantities related to p by the subscript u as above.
Let us introduce the following two subclasses I; and I, of I5.,

I, = {u € I;; k, is log concave}

and
I, = {p € I; k, is represented as (3) with some a, and m, }.
For u > 0,
(3) k(u)=e "+ uJ e “m(x) dx
0

where a >0and 0 = m(x) = 1a.e. x>0 and

1
j xIm(x) dx < .
0

+

Note that if a function g is log concave on an interval (0, p), then g is non-decreasing on
some interval (0, ¢) and non-increasing on (g, p), and g is absolutely continuous on (0, p).
Our main results are the following two theorems.

THEOREM 1. Let p. € I,. Then p. is strongly unimodal if and only if k,(0+) = 1.

THEOREM 2. Let p € L.
() If a, < b, = inf{x; [§ m,(u) du > 0}, then y is strongly unimodal.
(i) If b, < a, and [3: m,(u) du < a, — b,, then p is not strongly unimodal.

It should be noted that Theorem 2 completely determines whether a distribution of
class I, is strongly unimodal. In Section 6, we construct an example of & of the form (3)
which is not log concave. Thus the log concavity of &, does not follow from that of f,. This
example also shows that Theorem 1 does not include Theorem 2. As a by-product of
Theorems 1 and 2, we can get many new unimodal i.d.d. combining Theorem 1 or 2 with
known results as to unimodal i.d.d.

In order to prove Theorem 1, we show that the condition of Ibragimov’s Theorem is
satisfied using an integro-differential equation satisfied by one-sided i.d.d. We also show
that the condition of Ibragimov’s Theorem is satisfied in order to prove Theorem 2 by
using an integral representation of a density of i.d.d. with &, of the form (3).

In Sections 2 and 3, we prove Theorem 1. In Section 4, we prepare two lemmas for the
proof of Theorem 2. We will prove Theorem 2 in Section 5.

2. Proof of the “if”” part of Theorem 1. If a function g is absolutely continuous,
then we denote its Radon-Nikodym derivative by g*. If g is differentiable, then we denote
its derivative by g’. Let u € I,. Since k, is log concave, k, is absolutely continuous on
(0, p,) where p, = sup{u; k,(u) > 0} and we can choose £}, so that k}k," is non-decreasing
on (0, p,). We always take such a version of 2. Let A = &, (0+). If A > 0, then 25(0+) exists
including infinity.

The following two lemmas are essential tools for the proof of the “if”” part of Theorem
1. Similar results are obtained for L distributions [8].
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LEmMA 2.1.  Let p € I,. Assume that A > 1 and k, is continuous on (0, ). Then p has
a continuous density f,(x). The density f, is positive on (0, ©) and

0

(4) xfu(x) = | fulx —u)k.(u) du = AF,(x) +f F.(x — u) k}(u) du
0

0

for all x. Here, F, denotes the distribution function of p.

PrROOF. As in the case of L distributions (see [8], Lemma 2.4), we can easily show that
for each a < A
[2@) | =o0(]t]™) as |t|— oo.

Thus /i(¢) is integrable and Lévy’s inversion formula
F.(x) — F,(0) = 2m) " f (e™ — 1)(it) () dt

implies that F,(x) is continuously differentiable. Now, Steutel’s results on one-sided i.d.d.
(Corollary 4.2.2 and Theorem 4.2.5 of [9]) are applicable and hence f, satisfies the first
equality of (4) and f, > 0 on (0, ). The second equality is obvious by the continuity of &,
on (0, «).

LEMMA 22. Let p € I. Assume that A > 1, k, is continuous on (0, ©) and k*(0+) <
. In the case that p, < », assume that k*(p, —) exists. Then f, is C* on (0, ») and the
following equations hold:

(5) afulx) = N = Dfu(x) + fﬂ(x —u)k’(u) du
and

(6) 7 (x) = 2)fu(x) +J filx — w)k}(u) du
for x > 0.

For brevity, let us denote f, = f, k. = k and p, = p in this section.

ProoF oF LEMMA 2.2. Since k* is bounded on every finite interval and integrable and
F € C'(R) the right-hand side of (4) is continuously differentiable on (0, ) and we have
(5). Let g1 = min{u; k(u) = k(v) for all v = 0} and g. = max{u; k(u) = 1}. Then 0 < ¢
< @z.If g1 >0, then f' > 0 on (0, ¢1] by (5). If ¢, = 0, then y belongs to class L and f' > 0
on (0, g2] by Theorem 5.1 of [8]. Combining these facts with the continuity of f, we have
that f” is integrable. Let

flx) = x_l{O\ = 2)f"(x) + j f'(x — u)k*(u) du} “
0

Slnce f’ is continuous on (0, ) and integrable and &* is bounded on every finite interval,
f is well defined and continuous on (0, ). For 0 < x; < xp < o0,

f (&F(x) + () dx = A = D(f(x) — flar)) +f dxf f'x = wk*(u) du
x, Xy 0

1
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= A = D(f(x2) — f(x1)) +J fx: — wk*(w) du
0

+ j flx1 — w)k*(u) du
0

= x2f (x2) — x1 (1)

by Fubini’s theorem. Therefore f” is continuously differentiable on (0, ) and we have (6).

PROOF OF “IF” PART OF THEOREM 1. FIRST STEP. Let A > 1 and % be continuous on
(0, ). Let £*(0+) be finite. Assume that 2*( p—) exists when p < . Then the assumption
of Lemma 2.2 is fulfilled. Since f” is integrable, integration by parts applied to (5) yields

(7) xf'(x) = —f(x) + J f(x = yk(y) dy.
0

By (5) and (7), we have

X

0] = N — Daf(x)f (x) — f(x) J flx — y)k*(y) dy
8) ’

+ J' J flx — E*(Y)f (x — 2)k(2) dy dz.
o Jo

By (4) and (6), we have

9) )7 (%) = N\ — 2)xf () (x) + J J flx = NEk(Y)f (x — 2)k*(2) dy dz.
0 0

Let A(x) = [ f(x)]> — f(x)f”(x). The function A (x) is continuous on (0, ©) by Lemma 2.2.
By (8) and (9),

(10) x*A(x) = N = Df(x)* + J' dZJ' dy G(x,y, 2)H(y, 2)
0 0

where G(x, y, 2) = f(x — Y)f'(x — 2) — f(x — 2)f'(x — y) and H(y, 2) = k*(y)k(2) —
k*(2)k(y). Since k(x) is log concave, H(y, z) is nonnegative if 0 < y < z < p. Now we prove
that (*) there is some § > 0 such that A(x) > 0 on (0, §). This statement is proved for L
distributions ([8] Theorem 1.3 (iii)). Thus we assume that g; > 0 where ¢ is as in the proof
of Lemma 2.2. Then f > 0 on (0, ¢:]. Moreover, for 0 < x < g,

(11) xf (x) =2 A — Df(x)

by (5). We have by (6),

(12) xf”(x) = N — 2)f () + Mf(x), 0<x<aq
where M = sup|£*(u) |. By (11) and (12), we have

(13) xA(x) = f()(f'(x) — Mf(x)).

(11) shows that the right-hand side of (13) is positive for sufficiently small x > 0. Thus we
have (*). Now, let us assume that y is not strongly unimodal. That is, there is some x, such
that A (x9) < 0. Then by (*) and the continuity of A (x), there exists some 0 < x; < xo such
that A(x,) =0 and A(x) > 0 on (0, x;). By (10), we have

(14) A= Df(x,)? + J dz J dy G(x1,y, 2)H(y, z) = 0.
0 0
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Since A > 1 and G(x1, y, 2) H(y, z2) = 0 for 0 <y < z < x1, (14) shows that f(x;) = 0. This
contradicts Lemma 2.1. Thus p is strongly unimodal.

SECOND STEP. We consider the general case. If p < «, then let
Zu(x) =min{nx + A1 + 1/n),n(p —1/n—x)} for0O<x=p 1/n
=0 forx>p—1/n
and if p = in, then we let
t(x) =nx + A(1+ 1/n) forx>0.
Let
kn(x) = min{(1 + 1/n)k(x), £.(x)}

for x > 0. Then k,(x) is continuous on (0, ®), k,(0+) = (1 + 1/n)A > 1, kX (0+) =< n < .
If p < o, then &.¥(p — 1/n) — = —n > —o. The distribution function F, (x) corresponding
to kn(x) converges weakly to F'(x) since for all n = 1, k,(x) is bounded by 2k(x) and &, (x)
approaches k(x) as n — o except at p. Note that %, (x) is log concave. For, let &,(x) =
(1 + 1/n)k(x). Then for sufficiently small 2 > 0,

En(x)? = Bu(x + R)n(x — B) = (1 + 1/n) {k(x)? — k(x + h)k(x — h)} = 0.
If k. (x) = 4 (x), then we have for sufficiently small A > 0,
En(x)? = ko (x + B)Bn(x — B) = £,(x)% — Lu(x + B) 4 (x — B) = 0.

Therefore F,(x) is strongly unimodal by the first step. It is easy to see that the strong
unimodality is closed under weak convergence. Thus F(x) is strongly unimodal. This
completes the proof.

3. Proof of the “only if” part of Theorem 1. We prove the “only if” part of the
theorem by a method analogous to that of Wolfe which is used to analyze the continuity
properties of L distributions ([13]). Suppose that p is strongly unimodal and A < 1. Then
p is absolutely continuous and the density f, has a bounded version. We can assume
J6 w7k, (u) du = o so that p is absolutely continuous ([10]). If &, is non-increasing, then
f. is unbounded since p belongs to the class L (c.f. [8], Theorem 1.6). If i does not belong
to the class L, then there is g; such that %, is non-decreasing on [0, ¢;] and non-increasing
on [g1, ®). Choose « so that A < a < min{1, k,(qg:)} and fix it. Let

ki(u) =k, (u) on [0,8:]U [8z, »),
=a on [éi,8:]
where 8, = min{u; k,(v) = a} and 8: = max{u; k,(u) = a}. Let
ko(u) = a — ky(uw) on [0, 6],
=0 on [8;, »)
and let
ks(u) =0 on [0,8;]U [82, x)
=k, (uw) —a on [&,6:]
Let ky(u) = ki(u) + ko(u). Let F.(x) (i = 1, 2, 3, 4) be distribution functions with
characteristic functions

o

Fi(t) = exp J ™ — Du"'k(v) du, i=1,23,4).

0

The distribution functions F»(x) and Fy(x) are L distribution functions. Since a < 1, Fs(x)
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and F4(x) have unbounded densities f2(x) and fi(x) respectively. Assume that Fi(x) has a
bounded density fi(x), then since

fa(x) =j filx =) fo(y) dy,
0

fi1(x) must be bounded. This is absurd, and thus fi(x) must be unbounded. Since F3(0+)
> 0, we have

fu(x) = fi(x)F5(0+)
and thus f,(x) is unbounded. This completes the proof.
4. Two lemmas. Let G be a proper or defective distribution function (i.e., G(%) < 1.

See [3] page 127.) on (0, ). We say that G is a distribution function on (0, ©]. We define
an integral of a function f(x) with respect to G by

f(x) dG(x) =J f(x) dG(x) + lim, .. f(x)(1 — G(e0))
0

(0,%]

if the right hand side exists. We say that a real valued function y(¢) on [0, 00) is a Stieltjes
transform of G if it satisfies

(15) Y(t) = j x(x + 8)7" dG(x)
0,00]

for 0 < t < . This definition of Stieltjes transform is slightly different from the original
one (see [11]).

LEMMA 4.1. (Steutel) (i) A function Y(t) on [0, ») is a Stieltjes transform of some
distribution function G(x) on (0, «] if and only if | is represented as

Tt
(16) Y(t) = exp{—J; mm(}\) d)\}
for 0 =t < o, where 0 = m(\) =1 a.e. and

1
j mAA dA < oo,
0

(ii) Let M(\) = [3 m(u) du. Then G and M uniquely determine each other.
Proor. See Steutel [9] page 44.
REMARK ON LEMMA 4.1. (i) y(2) is a Stieltjes transform of a distribution function G(x)

on (0, o] if and only if y(¢) is a Laplace transform of a distribution which is absolutely
continuous except at the origin with density

J ue “* dG(u) for x>0
)

and has a mass 1 — G() at the origin.
(ii) Since

tMA+ )} =2 - A+ = J (1—e™e™dx
0
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for A, t > 0, we can rewrite (16) as
expf (e™™ — u""k(u) du
0+

with u 'k(u) = [§ e “m(x) dx.

Let y(t) be the Stieltjes transform of a distribution function G(x) on (0, ]. If G(b—) =
0 and G(b) = G(a—) > 0 for 0 < b < a, then we can extend the domain of ¥ to (—a, —b)
U (—=b, o) and Y(¢) is strictly decreasing on (—a, —b). Thus, Y((—a)+) exists if we allow
infinity.

LEmmMmA 4.2. Let Y, G, and M be quantities defined in Lemma 4.1. Let b = inf {x; G(x)
> 0} and c = inf {A\; M(A) > 0}. Then the following hold:
i db=c
(i) Let G(b) > 0. Then, for a > b, G(a) = G(b) and Y((—a)+) = 0 if and only if M(a) =
a—b.

PrOOF. First step. Let x,, = b + kn2"forn=1,2, ---and k=0,1, --., 2" and let
Xn,2e1 = . For each n, we define a distribution function G, on (0, ©] by

a7 Gn(x) =0 if 0<x<b,
= G(xnr) If X2 =X<Xnrrnn O0=k=2".

Then, G, converges weakly to G and b, = inf{x; G.(x) > 0} approaches b as n — «
respectively. The Stieltjes transform vy, of G, is of the form

)\nk
Ane + 8

where p.. (k=1,2, ---, £(n)) is the magnitude G.(A.x) — G(Az—) of the kth jump of G,
and pno = 1 — Gu() is the jump of G, at infinity. Assume that y,(—) = 0 if lim,_, .y, (¢)
= 0 and note that y,((—Aux)+) = o and Y,((—Am)—) = —0 for £ = 1, 2, ..., 4n). Then,
differentiating both sides of (18) with respect to ¢, we get that ,,(¢) has £(n) zeros at —o
= iy < o0 0 < a1 <Osuch that Any < g <Az <z < + v+ < Aprn) < Py = . This
implies the representation

(18) Yn(t) = Pno + 21§(="1) Dnk

}\nk ,U-nk+t
W(t) = [ ——— 2 —.
Yn(?) Hkl}\nk+t "

Since A(A + ¢)7' is the Laplace transform of an exponential distribution, we have that
AN op+t *
AT e L exp j e ™ —1(e™—e™™u'du
m o
for 0 < A < p. This equality with (ii) of the remark on Lemma 4.1 implies that

* ¢
(19) Yn(t) = eXp{—J ma(A) d)\}
L AN+ 0)

where

m,AN) =1 if Ap=A=pw (k=12 --.,4(n),
=( otherwise.

Note that in the above representation, m, and G, uniquely determine each other (see [9]
page 44 Lemma 2.12.1). Let M,(A) = [ m,.(u) du and let ¢, = inf {A\; M,(A) > 0}. It is
obvious that b, = A1 = ¢,. The representation (19) shows that M,(a) = a — b, if and only
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if Api < @ = pa1. Since Y, is strictly decreasing on (—An2, — An1), Yu((—An1)—) = —o0 and
Yn(— pn1) = 0, it is easy to see that G, (a) = G.(b,) and Y,((—a)+) < 0 if and only if A,
< @ = pn1. Thus we have shown that the lemma is true if G is a step function.

Second step. Let us prove (i). It is shown in [9] page 46-47 that M,(\) converges
weakly to M(A). Note that, in general, if {F,},-12,... is a sequence of non-negative and non-
decreasing functions converging to a function F at the continuity points of F' as n — oo,
then lim inf,_,.inf, {x; F,(x) > 0} < inf{x; F(x) > 0}. It follows that & < ¢ from the first
step. Now, let us show that b = ¢. For A = ¢, let

1tn(N) = m(A) if 0<m(MN<1,
=1-1/n if m@\) =1,
=1/n if m(A) =0.
Let
Ame=c+kn2™" (k=12,...,2")
and

)‘n,lc+|
Uno = C, Mnk = Ak + j 'ﬁn(u) du
A

nk
fork=1,2,---,2" — 1. Then A < phar < Apps1 for k=1,2, ... 2" — 1. Define m,(A) by
m,(A) =1 if A <A=pu (k=12 ...,2"-1)
=0 if pp<A=Appn (*k=0,1,-...,2"—1),
=1 if A>c+n.

It is shown in [9] pages 48-49 that M,(\) = [§ m.(u) du and G,(x), corresponding to M,(}),
converge weakly to M(\) and G(x) as n — o respectively. Since inf {A; M,(\) >0} = ¢ +
n2™" converges to ¢ as n — o, we have b = ¢ and thus b = c.

Third step. We prove (ii). Suppose that G(a) = G(b) > 0 and Y((—a)+) = 0. Then,
noting that y(¢) is strictly decreasing on (—a, —b), we have that y(¢) < 0 on (—a, —b).
Noting that x(x + ¢)™' is a decreasing function of x > —¢ if ¢ < 0, we have, for —a < t <
—b,

b n
W) = 57— G(B) + T, ﬁj—t (Gnr) — Gnsr)}

X
= —_— dGn(x) = tl/n(t)
j[b‘w] X+t

where {x..}, G, and ¥, are quantities defined in the first step. Note that b, = b and G,(a)
= Gn(b). The above inequality shows that {,,(¢) < 0 on (—a — b). Thus Y,.((—a)+) = 0 and
then, by the first step, M,.(a) = a — b. Since M,(a) converges to M(a) as n — o, we have
that M(a) = a — b. Conversely, assume that M(a) = a — b. Since

expf t pobatd
b

AMA+8 " ab+d)’

we can rewrite Y(t) by (i) as

_bla+t) x o~
(20) v =26+ o X dGx)
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where G(x) is some distribution function on [a, oo]. Moreover, we can rewrite (20) as

_bla—-10) x ~ b X x—a  ~
1) e = a(b+t) j[a,m] x—b dGlx) + a J[a,m] x+tx—> dG(x)

for —a <g< m.zThus, x[/(t) is the Stieltjes transform of a distribution function 5 which
satisfies G(a) = G(b) 2 0. It follows from the uniqueness theorem for Stieltjes transforms
([11], page 336) that G= G. Note that

a—-b x—a
+
b+t x+t

for (t, x) € (—a, —b) X (a, ). We have, by (21), that y(¢) < 0 on (—a, —b) and thus
Y((—a)+) = 0. This completes the proof.

<0

5. Proof of Theorem 2. Letyu € I,. Lemma 4.1, 4.2 and the remark following Lemma
4.1 yield the decomposition p = »;*v, where »; is exponentially distributed with density
ae” ™ and », is absolutely continuous except at the origin with density

w(x) = J ue ™ dGu) for x>0
[b,0)

and has a mass 1 — G() at the origin. Here, @ = a, and G(x) is a distribution function on
[b, o] such that b = inf{x; G(x) > 0} = b, and the corresponding function m(\), which
appears in Lemma 4.1, coincides with m,. Thus p is absolutely continuous with density

x e—ux)

(22) f(x) = f aule ™~ ¢ ) 16w,
[6,00]

u—a

The representation (22) of f shows that f belongs to C*((0, »)). The first and the second
derivatives of f satisfy the equations

(23) f'(x) = —af(x) + ¢(x)
and
(24) f"(x) = a’f(x)— ap(x) + ¢'(x)

respectively, where ¢(x) = (5. .jaue ™ dG(u). Let A(x) = f'(x)* — f(x)f”(x). By (22)-(24),
we have

(25) Ax) = ¢(x)* + &(x) f(x),

where ¢(x) = —¢'(x) — ap(x).

Now we can prove (i). Let @ = b. Then £(x) = 0 for x > 0. Thus A(x) = 0 for x > 0 and
(i) is true by Ibragimov’s theorem.

Let us prove (ii). Suppose that b < @ and [§ m,(u) du < a — b. Let

o1(x) = j aue™* dG(u),
[b,@)

&i(x) = f au(u — a)e ™ dG(u)
[b,@)

and
X —ux)

) = f e ™) 6w
[b,a) u a

and let ¢2(x) = ¢(x) — ¢1(x), &2(x) = £(x) — &i(x) and fo(x) = f(x) ~ fi(x). Then A(x) is the
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sum of
Ai(x) = ¢:1(%)” + &(x) fi(x),
Az(x) = 2¢1(x)p2(x) + &i(x) folx) + &2(x) fu(x)
and
Ay(x) = ¢2(%)* + &%) fol).
By the definitions of these functions, we easily obtain the following.
d1(x) = 0(e™), &(x) = 0(e™),
(26) ¢2(x) ~ a%e *(G(a) — G(a—)) and
§2(x) = o(e™™)
as x > o, If a = u < x, then

u(l — e@ %)

) u
< min ,ux <1+ ax.
u—a u—a

Here we used the fact that u/(u — a) is decreasing on [a, »©) and ux is an increasing
function of u. The last inequality yields the estimate
27) fo(x) = a(l + ax)e ™™ forall x=0.

(u—a)x _

Since e 1= (u — a)x, we have that
(28) fi(x) = x1(x).
By (27) and (28), we have that
| Aa(x) | = ¢1(x){2¢2(x) + x&(x)} + a(1 + ax)e ™ | &i(x) |.

Then we have

(29) Az(x) = O(xe @*9%) a5 x— oo,
By (26) and (27), we have that
(30) - As(x) = o(xe™2*) as x— oo,

Let d = inf{x; G(x) > G(b)} and let ¢y and M be quantities that are defined for G in
Lemma 4.1. Note that M(A) = [ } m,(u) du. We consider the following three cases:
I d=a.

(Ia) G(a—) < G(a),

(Ib) G(a—) =G(a) and 0 < y((—a)+) < oo.
(I1) d=oba.
Il b<d<a.
These three cases are not empty and exhaust all possibilities. For, if b = d < a, then G(a)
> G(b). Thus M(a) < a — b by Lemma 4.2 (ii). Since M(a) = [§ m,(x) dx, the assumption
of (ii) of Theorem 2 is fulfilled. Let d = a. Then G(a—) = G(b) > 0. If G(a) > G(a—), then
the assumption of (ii) of Theorem 2 is also fulfilled by Lemma 4.2 (ii). Suppose that G(a)
= G(a—) = G(b) > 0. Then the domain of ¥ can be extended to (—a, —b) U (—b, =) and
Y((—a)+) exists if we allow infinity. Lemma 4.2 (ii) shows that the assumption of (ii) of
Theorem 2 holds if and only if 0 < Y((—a)+) < o in this case.

Case (I). Let G(b) = q. Note that G is flat on (b, a). Thus we have
(31) ¢1(x) = abge™™,  &i(x) = abq(b — a)e™™
and

fi2) = abg(e ™ = e™)/(b — ).
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We also obtain that

(32) Ai(x) = (abg)’e™ ™,
Then we easily obtain by (25), (31) and (32) that
(33) A(x)e % = {A(x) + &i(x) fo(x) }e ™ + q(x)
= abq(b — a){ba_ba q+ ﬁ(x)e""} + n(x)

where n(x) = {fi(x)é(x) + 2¢1(x)p2(x) + Asz(x)}e“?* It is easy to see by (26), (30) and
(31) that

(34) lim, ... 7(x) = 2a’bg(G(a) — G(a—)).

Let G(a) = G(a—) and 0 < Y((—a)+) =< . Since u/(u — t) is positive and increasing as
t T aforeacha <u< oo,

au (1 — e(a—u)x) dG(u)

lim, . e*fa(x) = lim,_ J

(a,]

u—a

= J % dG(u) = limye f W 4Gw).
(@] u—a (@] u—t

These equalities show that
. b
hmx_.m{ba_—a g+ fz(x)eax} = ay((—a)+).

Thus we have by (33) with (34) that
(35) lim, ... A(x)e“*?* = a®bq(b — a)Y((—a)+) < 0.
If G(a) > G(a—), then

lim, .. e“fo(x) = lim,.. a’x(G(a) — G(a—)) = .
Thus we obtain by (33) with (34) that
(36) lim, e A(x)e " = —co,

Now (35) and (36) establish Theorem 2 (ii) in Case (I).
Let us consider Case (II) and (III). We have already estimated As(x) and As(x). In order
to estimate A;(x), we write A;(x) as

(37) Ai(x) = J Ya’uvP(u, v, x) dG(u) dG(v)
[b,0)?

where
(38) Py, v, x) = {(a — u)’e”“** + (a — v)%e """ — (u — v)%e"“**}/(a — u)(a — V).

Choose 8 so that 0 < § < (@ — d)/2 and fix it. Let D; = [b, a — §]* and D, = [b, a]’\D;.
Since P(u, v, x) < 2e~“*"* on [b, a]?, we have that

J P(u, v, x) dG(u) dG(v) < 2 j e~ “% dQ(u) dG(v)
D, [b,a)x[a—8,a)

(39)

= o(e™ @By a5 x— 0.

Case (II). Let us estimate the integral of P(u, v, x) on D; with respect to dG dG.
Choose ¢ € (b, (a + b)/2 — §) and fix it. We estimate the integral of the nonnegative terms
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(the first and the second terms in the braces of the right hand side of (38)) and the integral
of the nonpositive term (the third term) of P(u, v, x) separately. The integral of the
nonnegative terms is shown to be bounded by a constant times e ~“*”* by estimating the
integrand. In order to estimate the integral of the nonpositive term, restrict the domain of
integration to [, c]* and then estimate the integrand. The result is that

(40) J P(u, v, x) dG(u) dG(v) < Nie @™ — Nye >
D

1

where N, is a constant and N> = [, ((w — v)/(a — b))? dG(u) dG(v). Since d = b, N» is
positive. Therefore, noting that 2c <a + b — 28§ <a + b < 2a, we have by (29), (30), (39)
and (40) that A(x) < 0 for large x > 0.

Case (III). Choose ¢ € (d, a — 28) and fix it. Since & < d < a, G must have a jump ¢
> 0 at b. Bearing this fact in mind, we can estimate the integral of P(u, v, x) on D, with
respect to dG dG as in the case (II). We have

(41) f P(u, v, ¥) dG(u) dG(v) = Nye @ — Nye~+*
D

1

where N is a constant and Ny = [, q((u — b)/(a — b))> dG(u). Here we restricted the
domain of integration of the non-positive term to {6} X [b, c]. By the choice of ¢, the
constant N, is positive. Therefore, by (29), (30), (39) and (41), we have A(x) < 0 for large
x>0since b+c<a+b—26<a+ b< 2a This completes the proof appealing to
Ibragimov’s theorem.

6. Remarks.
REMARK 1. An example. There exists k(u) which satisfies the condition of Theorem
2 but does not satisfy the condition of Theorem 1. Let

k(u) = e—au + e——bu _ e—cu
for 0 < a < b < c. The function k(u) is positive for « > 0. We have
[k/(u)]Z _ k(u)k”(u) = _(a _ b)2e—(a+b)u _ (b _ C)Ze—(b+c)u + (C _ a)Ze—{c+a)u.

Since 0 <a<b<e, [k W] — k(u)k” (1) <0 for large u > 0. Thus £(u) is not log concave.
However, since

c
u k() =u"'e™™ + J e dx,
b

k(u) satisfies the condition of Theorem 2.

REMARK 2. An application of Lemma 4.1. It is shown in [14] that all L distributions
are unimodal. Thus all stable distributions are unimodal. Let us prove this fact as an
application of Lemma 4.1. Let p be a stable distribution with exponent 8(0 < 8 < 2). The
characteristic function fi(¢) of p is represented as

20 0—
) = exp{cl J glt,wyu"Pdu+c J glt,u)jul™* du}
0 —o0

-+

where c1, c;= 0 and g(t, u) = e“ — 1 — itu(1 + u*)~". Note that c,u™"# = d; [§ Ne ™ d
for u > 0 where d; = 0 is a constant. Let a, = (ndi")"/?. Define m,(\) (n =1, 2, ---) by

mn(}\) =0 if A < ap

=1 if A=an
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forn=1,2, --. and mo(\) by
mo(A) = lee - 2:=1 mn(A).

Then mo(A) = 1 and d;A? = mo(N) + Y1 ma(A). Note that for n = 1, the distribution with
characteristic function

epr’ g(¢, u) duf m.(A)e ™ dA
0

+ 0

is an exponential distribution, which is strongly unimodal. Since mo()) < 1, the distribution
with characteristic function

exp f g(t, u) duJ’ mo(A)e™ dA
0 0

+

has a completely monotone density by Lemma 4.1 and the remark following it. Apply the
same argument to cz|u|”'?. Then, we can decompose i as pi*uz where p; is strongly
unimodal and . is unimodal as a convolution of two unimodal distributions with mode at
the origin and support on the positive and negative axes respectively.
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