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A LIMIT THEOREM ON A SUBCRITICAL GALTON-WATSON
PROCESS WITH IMMIGRATION

By K. N. VENKATARAMAN AND K. NANTHI

University of Madras, Madras

For a sub-critical Galton-Watson process X with immigration, estimators
have been studied by Pakes (1971) for the mean of the stationary distribution
of X, and by Nanthi (1979) for the offspring mean and the immigration mean
of X. These estimators have been shown by them to be asymptotically normal.
In this paper it is shown that they have a joint limiting distribution which is
singularly normal.

1. Introduction. Let Z(n,r), Y(s);r,s,n=1,2, --.; be independent non-negative,
integer-valued random variables such that (i) Z (n, r) are identically distributed like Z (say),
and 0 < E(Z) =m < 1,and 0 < Var(Z) = o} < o; and (ii) Y (s) are identically distributed
like Y (say), and E(Y) = A, and Var(Y) = o} are both positive and finite.

In this paper we study the subcritical Galton-Watson process X = (X(n); n = 0) with
immigration which has the conventional specification that X (0) = 1, and

(1.1) Xn)=Zn)+ Y(n), n=1

where

(1.2) Zn)=Zn,1)+.---+Z(n,X(n—-1)) if X(n—-1)>0
=0 if X(n—-1)=0.

We recall (Heathcote, 1966; Senata 1969; Pakes, 1971) that X has a stationary probability
distribution with mean pu = (1 — m)~'A. Pakes (1971) has shown that

(1.3) T=n""X(0) +---+ X(n))

is strongly consistent for u, and n'/%(T' — u) converges in law (—), as n — o, to a normal
random variable with mean zero, and variance A30%, where Ao = (1 — m)”’, and 0§ = po}
+ 0%, using a classical triangular array approach. An alternative proof of this result based
on a time series approach, has been recently provided by Venkataraman (1982).

On the assumption that Z(r) and Y(r), r = 1, ..., n are observed, Nanthi (1979) has
identified

o= (X0 + -+ X(n—1)"Y Z(r)
and
(1.4) A=n"U(Y(Q) +---+ Y(n))

as maximum likelihood estimators of m and A, and has shown that n'/*(7i — m) converges
in law, as n — o, to a normal random variable with mean zero and variance wleof. Itis
elementary to note that n'/AA — A) converges in law, as n — , to a normal random
variable with mean zero and variance ¢3.

The principal aim of this paper is to derive the joint limiting distribution of T, 1, and
. To be precise the following basic result is proved.
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THEOREM 1. Under the basic assumptions on X,
(nl/2(T _ ‘U,), nl/?(n':t _ m), nl/Z(x _ }\))

converges in law, as n — «, to a normal random vector (¢, &, &) say which has zero
mean, and the properties that (a) £ = Ao(p & + &); (b) & and & are independent; and
(c) Var(&) = u'o3, and Var(&) = o3.

The singularity of the joint limiting distribution of T, 1, and X, as well as the asymptotic
independence of i and X are perhaps anticipated, but are not readily established. The
basic lemmas that are needed to prove Theorem 1 are presented in Section 2. The final
argument in the proof of Theorem 1 is developed in Section 3. Some concluding remarks
are made in Section 4. We adopt a direct characteristic function-approach to prove
Theorem 1, relating it to the probability generating functions f(x) and A (z) of Z and Y
respectively, which are well defined on the compact set Dy = (u; |u| = 1) of the complex
plane. To list the basic features of f(x) and % (u) that are exploited in the sequel, we
observe that these functions have derivates up to second order on Dy, by virtue of the
moment conditions satisfied by Z and Y. Next it is obvious that

fw) —fw) =Y 0 P(Z=r)u" —v)
flu)—fw)=Y2orPZ=r)@w™'—0v).

Using the identity that " — v" = (u — v)(W™' + w2 v +---+ v""!) we infer from (1.5)
that, for u, v € D,

(1.5)

[fw) = fw)|=m|u—v|
[f'w) =@ = Q)u-vl
A similar proof shows that, for u, v € D,
|hA(u) —h(v)|=A|u—v|
|A'(w) —h'W)|=h"(1)|u—v|.

(1.6)

(1.7)

The moment conditions imposed on Z and Y do not guarantee such relations for f”(«) and
h”(u). However these functions are uniformly continuous on Dj.

2. Preliminary ground work. Following Pakes (1975) we introduce, for u € D,
(2.1) g W) =u, and g,(u)=uf(g.—1(u)); n=1.

It is easy to check that, as observed by Pakes (1975), g, () is the probability generating
function of the total progeny n(n), say of a simple Galton-Watson process, originating from
a single ancestor, and being governed by f(u) as its offspring probability generating
function.

LemMA 1. Under the moment conditions on Y and Z, the following statements hold

for u, v € Dy, and, for n = 0.
(a) |gn(u)| = Ao; lgn(u)| = AoBo;  Bo=f"(1)A§ + 2mA,
(b) lgn(u) — g (W)= Aolu—vl|; |gn(u) — g.(v)| = AoBo|u—v|
(¢c) Given e > 0, there exists for all n, a 8,(¢) > 0, depending only on e, such that

lgn(u) — g ()], |gn(w) —grn(®)], &7(u) —gi)|<e
whenever |u — v| < .
() gn(1) = Ao(1 —m"*)

g7 (1) = AoBo + Ci(n — )m” + C(n — Ym™ + Csm”
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where C,, C, and Cs are constants of appropriate determination.
ProoF. By definition g5,(1) = En(n) = Ao(1 — m"™*"). An easy way to work out g,/ (1)
is to note that

(22)  grn(u) =uf' (gn-1(W))gr-1(1) + uf"(8n-1 (W) (gr-1(w)) + 2f (-1 (U))gr-1 (u).

Letting # = 1 in (2.2), and solving the resulting difference equation, on substituting for
£1.(1), the expression for g, (1) in (d) is obtained. Another implication of (2.2) is that

(2.3) gn(1)=mgr(1) + By

which recursively implies that g,/ (1) = A¢B,. The proof of (a) is completed on noting that
gn(1) = Ao, and | g1 (1) | = g.(1), and | g5 (u) | = g/ (1). The proof of (b) needs only the
additional remarks that, as in the case of (1.7),

(2.4) lgn(u) — g ()| =grn(D) |u—v]|, |gn(u)—g.(w)|=gi(1)|u—uv|

To prove (c), we choose |u — v| <min(Ag'e, (AoBo)'e) = 8:(¢)(say) to render, by virtue
of (b), each of | g, (1) — g.(v) |, and | g% () — | g7 (v) | less than ¢ for | u — v| < §;. We make
use of (1.6), (2.2), (a) and (b), and the uniform continuity of f”(x) on D, to derive, on some
manipulation, that there exists a 82 (¢) > 0 such that, for |u — v| < 8.,

(2.5) lgn () —gr (V)| = Ad'e + m|gn-1(u) — gr-1(v) |

and thus | g7 (u) — g+ (v) | < e. The proof of (c) is completed on choosing 8 = min (§;, 8;).
Next, for fixed real a, b, and 0, we let

(2.6) o-(0) = e”g (e™); r=0

where i is the complex root of —1. It is obvious that ¢, () is the characteristic function of
a + b n(n). Further, on direct evaluation, for » = 0.

(2.7) o1 (0) = iae’ g, (e™) + ibe?“* Vgl (&™)

(2.8) ¢;/ (0) = _[aZeiﬂagr(esz) + (2ab + bZ)eiﬂ(a+b)g;(eu)b) + b2ei0(a+2b)g;/ (eiﬂb)l

These remarks on ¢,(), together with Lemma 1, and the fact that for real «, and 6,
|expfa ) — 1| <2]|a 8 yield the following lemma stated without proof.

LeEMMA 2. Under the moment conditions on Y and Z, the following statements hold
forr=0,and|a|+|b|>0.

(a) |- (0] <15 |¢r(0) | <|a|+|b|Ao =M, (say), and
|67 (@)= (a®>+2Ao|a||b| + Ao(1 + Bo)d? — M, (say)
(b) ¢-(0) = 1; ¢7(0) = tks + L1 (r); ¢7(0) = =Ko + Lq(r)

where (1) K = a + b Ao; (ii) K» = (a® + 2ab Ao + Ao(1 + By)b?),
Yi—oLi(r) = M; (constant) for t=1,2
(¢) Given € > 0, there exists, for all r, a To(e) > 0, depending only on e, such that,
[6:(0) = ¢:(0) ], ¢1(0) =410, |67 ((0) —¢/(0)|<e
whenever | 0| < 1.
Let us define that, for r =0
(2.9) H,(8) = h(¢-(9)).

We list below the basic properties of H,(6) of interest.
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LeEmMA 3. Under the moment conditions on Y and Z, the following statements hold
forr=0,and|al+|b]|>0.

(a) H,(0) = H.(0) + 6 H/(0) + % 8% H! (0) + 6% J,.(0)
where

(i) H.(0) =1, and H;(0) = X ¢,(0)

(ii) HJ (0) = 2" (1)$;7(0) + Ao/ (0)

(b) Given & > 0, there exists for all r, a 71(¢) > 0, depending only on ¢, such that | J.(6) |
< ¢, whenever | 0] < ;.

ProOOF. Maclaurin expansions of the real and imaginary parts of H,(8) = H,-(6) +
iH,, (0) yield (a) on identifying
(2.10) 2 J,.(0) = (H1.(C10) — H1-(0)) + i(H%.(C, 6) — H5.(0))

where Ci(r, §), and Ca\r, 6) are some real numbers in the open interval (0, 1). A direct
evaluation of H/ () implies that

|HY (6) — H7 (0)| = 2Mih" (1) | $7(6) — 67(0) | + N | ¢/ (6) — 67 (0) |
(2.11) + M|’ (6:(0)) — A’ (6,(0)) |
+ M| A" ($,(6) — A" ($-(0) |

M, and M, being specif ed in Lemma 2. A joint appeal to Lemma 2(c), (2.4), (2.11) and the
uniform continuity of 2”(z) on D; yields, on some manipulation that given & > 0, there
exists a 71 (e) > 0 such that | H" (6) — H, (0) | < ¢ whenever | 8| < 7, and hence, by virtue
of (2.10) | J.(6) | < e whenever | 0| < ;.

Next we observe that H, () being a characteristic function, and |H(f)| = My(a
constant), it is possible to choose py > 0 such that |H,(0) — 1| < % if | 0] < po. As a
consequence, an appropriate expansion of log(1 + z) yields that, for | 8| < po,

(2.12) log H,(6) = 4,(8) — Y5 y7(6) + d(r, O)y°(r, §)
where ,(6) = (H.(0) — 1), and | d(r, 6)| < 1 for |§| < po. We invoke Lemma 2(b), and
Lemma 3 to derive from (2.12) the following lemma stated without proof.

LEMMA 4. Under the moment conditions on X,

— n'ZINK + Y553 log Ho(n™Y%) — — % (B (1) K2 + MKy — A2K?)

as n— o, for fixed real a, and, b with |a| +|b| > 0.

3. Final argument in the proof of Theorem 1. We invoke the Markov property of
X to derive from (1.1) that E X, = A + (1 — y)m”, and thus
(3.1) n "X,—,0 as n-— oo.

Let us define that
32  Ti=n"AT—-p; T=n""2Y", ZF) - mX(r —1)); Ty = n' 2R = )).
An appeal to (3.1) yields that, for real a;, a3, and as
ali + wTs + oy = —n"(ap + a)) + 172 (r — mas + a5)(X(1) + -+ + X(n))

+n 72y — as)(Z(1) + -+ + Z(n) + 0,(1)

A recursive use of (1.1) together with the Markov property of X implies that the
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characteristic function I, («, 8) of

(3.4) (n7AXQA) + .-+ + X(n), nTVHZA) + .- + Z(n)))
is given by
(3.5) flgn(explin™(a + BINI/=0 H,(n7"?)

on identifying that a = —f, and b = a + B. The first factor on (3.5) can be shown to
converge to unity, as n — o, on invoking (1.6) and Lemma 1(b). Thus an application of
Lemma 4 together with (3.5) yields that, as n — o

(3.6) log I, — in™AK, — =% (h"(1)K} + AK, —\’K3).

These observations as applied to (3.3) enable us to infer that, as n — o, the characteristic
function of (711, Ts, T5) converges to the normal characteristic function exp(—%@Q(a1, az,
a3)), where

(3.7) Qlay, oz, a3) = Adodal + polad + o303 + 2udooiaias + 2A005a1a5.

It can be easily checked that @(ai, a2, as) = 0 when —Aga; = a2 = a3. Theorem 1 follows
from these results and the additional observations:

@) n 2 —m) = n(X©0) + -+ + X(n — 1)1
(3.8) (i) P UXO0) + -+ X(n—1) >pp as n— oo,

4. Concluding remarks. Based on it and A, the maximum likelihood estimator of u
is identified to be ji = (1 — 1) ~'A, which satisfies the relation that

(4.1) E-p=0-m A=) +A1-m)(1-m)'(n—m).
This relation together with Theorem 1 yields:

THEOREM 2. Under the basic assumptions on X, n"*(j — p) converges in law, as n
— o, to the normal random variable & (of Theorem 1).

Thus T and ji turn out to be equally asymptotically efficient estimators of p, although
the determination of i calls for the values of the components Z(r) and Y(r),r=1, - -, n.

Let (m, X) and (m*, A\*) be the estimators proposed for (m, A) by Quine (1976) and
Klimko and Nelson (1978), based on X(¢), t = 1, - - -, n. Venkataraman (1982) has shown
that each of

AT —w),  nY20i —m), >R = N), and
(T -, n2m*—m), n">A\*=N)

converges in law, as n — o, to the same normal vector (£(1), £(2), £(3)) of mean zero,
exhibiting a singularity determined by the relation £(1) = Ao (ué(2) + £(3)), in spite of £(2)
and £(3) being correlated. This pattern of singularity looks interesting.
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