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ON THE CENTRAL LIMIT THEOREM FOR STATIONARY
MIXING RANDOM FIELDS

By E. BOLTHAUSEN

Technische Universitdt Berlin

A simple proof of a central limit theorem for stationary random fields
under mixing conditions is given, generalizing some results obtained by more
complicated methods, e.g. Bernstein’s method.

We consider a real valued stationary random field X,, p € Z¢, i.e., the X, are real random
variables and the joint laws are shift invariant. We shall always assume that EX2 < oo, If
o1, p2 € Z% let d(p1, p2) = maxi=i=q | p1(i) — p2(i)|, where p (i), 1 =i < d, are the components
of p. If A C Z“ we write | A | for the number of elements in A and dA = {p € A: there exists
o’ & A with d(p, p’) = 1}. Let A, be a fixed sequence of finite subsets of Z%, which increases
to Z¢ and satisfies

(1) limy,r | 8 |/]An | = 0.

Let S, = Ypen, (X, — u) where p = EX,,.

It is generally believed that the existence and positivity of 6% = ¥,z cov(Xo, X,) has
something to do with the validity of the central limit theorem, i.e., the asymptotic
normality of S./o|A,|"2. Newman [6] proved that the existence and positivity of o2
together with the quite strong FKG conditions is sufficient for the central limit theorem.
A central limit theorem is proved here under mixing conditions with the slowest possible
decrease ensuring the existence of ¢ In case d = 1, such theorems have been proved by
Ibragimov and Linnik [3] and Gordin [2].

Actually, our Theorem as it is stated does not include these results. However, it is easy
to prove a slightly more general result which includes the classical central limit theorems
for d = 1. (See the remarks following the proof of our Theorem.) For d > 1, theorems in
this direction have been obtained by Neaderhouser [5] and Nahapetian [4], but their
conditions are stronger than those used here. Most of the proofs are based on Bernstein’s
method of dividing the sum into blocks and approximating then by independent variables.
Gordin uses an approximation by martingales, but his method appears difficult to generalize
to dimensions = 2. Also Bernstein’s method becomes a bit troublesome in higher dimen-
sions for reasons I shall indicate below. We shall give here a very simple and direct proof
which avoids any approximating techniques and which is based on an idea of Ch. Stein.

If A C Z9 let o/, be the o-algebra generated by the X,, p € A. If A1, Ax C Z¢, let d (A,
A;) = inf {d(p1, p2): p1 € Ay, p2 € A2}. The mixing coefficients we use are defined as follows,
ifnEN, k(€ NU {0}

ar,((n) = sup{| P(A1 N Az) — P(A))P(A2)|: Ai €E A, | M| =k, |Az| = ¢, d(Ay, A2) = 1}
p(n) = sup{| cov(Yy, Ys)|: Y; € La(4,,)), I Yille =1, d(p1, p2) = n}.
Theorems based on conditions on a.. are quite useless for applications to Gibbs fields as

has been remarked by Dobrushin [1].
THEOREM. If ¥5-1 m?'ar/m) < o for k + £=< 4, a1o(m) = 0(m™?) and if
a) Se_im@lp(m) <o or

b) for some 8>0|X, |b+s <o and Ym-1 m? i (m)¥®® < oo,
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1048 E. BOLTHAUSEN

Then Ypezt| cov(Xo, X,)| < » and if 6® = Y, cov(Xo, X,) > 0, then the laws of S,/c| A, |
converge to the standard normal one.

ProoF. The convergence of Y, |cov(Xo, X,)| follows from the following well-known
lemma (see [3] Theorems 7.2.2 and 7.2.3).

LemMA 1. If the Z, € Ly+s(s7(,,) for some 8 > 0, then
| cov(Zy, Zo)| = esoni(d (py, p2))™ ™| Z1 [loss || Z2 [loso.
We now apply the simple truncation technique which has also been used by Ibragimov

and Linnik: If N > 0 let fv: R — R be defined by fn(x) = (x A N) v (—~N) and Fo=id—
fv. X, = fn(X,) + f(X,) and

ESpen, (f(X,) — Efu(X,)/0 | A [VH? = 3, ren, cov( faX,)fx (X)) /0% | An |

which converges to 0 as N — o uniformly in 7. It therefore suffices to prove the theorem
for bounded variables. For bounded variables we need only ¥%-; m® as,(m) < % and
a1e(m) = o(m™?. The proof is then based on the following lemma which is in the spirit of
Stein’s paper [7].

LEMMA 2. Let v, n € N, be a sequence of probability measures in R wifh
a) supn J | X |2Vn(dx) < oo,

b) lim,, f (A — x)e™v,(dx) =0 forall NER.
Then the v, converge to the standard normal law.

Proor. a) implies tightness of the sequence {»,}. If » is any limit law, then

f x%v(dx) < sup, J x*v(dx) andif ., — ,
then
lim, e J' xvy,(dx) = J' xv(dx).
Therefore
J’ (IA — x)e™*p(dx) = 0.

It follows that » is the standard normal law. So the lemma is proved.

We continue with the proof of the theorem for bounded variables: We may assume EX,
= 0. As ax,/(m) is decreasing, we have for 2 + ¢ < 4 oy .(m) = o(m™). We choose a
sequence my, n € N, with ax,/(m,)| An |2 — 0 and m;¢ | A, |'* > o asn— . Ifa € Z¢,
let Sa,n = zﬁEAn,d(n,ﬁ)Smn Xﬁ and a, = ZneAnE(XaSa,n), Sn =a;1/2 Sn, Sa,n =a;1/2 Sa,n. From
(1) and Ygez« | cov(X., Xp) | < o we obtain

@) @n = var(S,)(1 + o(1)) = | An | 6*(1 + o(1)).

It therefore suffices to prove that S, is asymptotically standard normally distributed. As
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sup, ES% < o it follows from Lemma 2 that it suffices to prove that
(3) lim,«E((GA — Sp)e*) =0 forany A€ R.
Write
G\ = S,)e?S = iAe™S (1 = @7 Saen, XaSan)
(4) — an'%e™ Toen, X[1 — e — iXS, ]

-1/2 S-S
— Qn / EaEA,, Xael Ea=8) =Al _A2 _A3

say.
Now E(|A1|?) = N2 Yaw g diepymm die,p)=m c0V(XaXs, X, Xg), all summation indices
belonging to A,.. If d(a, a’) = k£ = 3m, we have

(5) | cov(XoXp, XoXp)| < azo(k — 2m).
If min(d (e, @), d(a, B), d(a, B’)) = j we have
| cov(XaXp, XaXp)| = | E(XaXoaXpXp)| + | E(XaXp)| | E (X, Xp)|
=< cai3(j) for some constant ¢ = 0.
Therefore
E|A:|? = Na:2 | An| (m® Sioam B g2k — 2m) + ¢'m® 357 au3(5))
= O0(| A |'m?) = 0(1).
E|A;z| = car’sup.en,ESE . = ¢’an'’? Yp.p.a00,p=ma0,81<m EXpXp)
= c”a,"’m? = 0(1).
| EAs| = cai®a10(m) = 0(1). So (3) and therefore the theorem follow.
REMARK 1. The various types of mixing coefficients are a bit disturbing. If one prefers
to use just one, one sees that e.g. || X |lo+s < % and ¥ %=1 m* ' a¥*® (m) is sufficient for the

theorem. It would be quite nice if one could replace as. by a;.; however, a proof eludes
me.

REMARK 2. One of the advantages of the method is that one does not need conditions
on ay, . for arbitrary large k&, £ Nahapetian e.g. uses the condition

=1 M [sup(ro(m) /k) ]/ < oo
where gz, is the uniform strong mixing coefficient
sup{| P(Az | A1) — P(A3)|:A; € A, d(A1, A2) = m, | Aq | = £}

The need of such conditions seems to be inherent in Bernstein’s method, as one has to
estimate the dependence between blocks consisting of a large number of random variables.

REMARK 3. For d = 1 our theorem does not contain the central limit theorems usually
stated for sequences (see [3]). These are based on the following mixing coefficients. Let:

A = 0(Xp:n = m), A" =0(X,:n=m), meEZ, and
a(n) = sup{| P(AN B) — P(A)P(B)|:A € o, Be g™}
ﬁ(n) = sup{| COV(Zl, Zz)l IZ1 € Lz(ﬂo), Z2 € Lz(ﬂn), " Z, "2 = 1}

In fact, it seems to be impossible to estimate the ay,, in terms of & or p.
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However, our theorem can be slightly generalized: Define
a1(n) =sup{| PLAN BN C) — P(A)P(BN C)|:A € 0(Xy), Be #,, cCes™}
arAn) =sup{| P(A1N -+ NArNAp1 N oov N Apsr)
—PAIN - NA)PAr N -+ N Ari))|: Ai € 0(X,),
d({ny, «+-, ne}, {Mes1, «++ , nesr}) = n}.

Then it is easy to see that af.(n) < 3&(n), a},/(n) < 5a(n) if 2 + ¢=< 4. Furthermore, one
easily checks that our theorem remains true if a1 and ax, -are replaced by these coefficients.
So one obtains that, if

a) | X flovs < 00, $imm1 &(m)¥ @ < 0 or

b) ¥ %=1 p(m) < o, then the conclusion of the theorem remains true. It is not difficult to
give also a slight generalization in this direction of our theorems for d > 1, but as the
notations become messy and there seems to be no use of this, I do not give it.

Acknowledgment. I thank the referee for suggesting a number of improvements of
the original manuscript.
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