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MOMENT AND PROBABILITY BOUNDS WITH
QUASI-SUPERADDITIVE STRUCTURE FOR
THE MAXIMUM PARTIAL SUM!

By F. A. Méricz, R. J. SErRFLING AND W. F. Stour

University of Szeged, Johns Hopkins University, and University of Illinois

Let Xy, ---, X, be arbitrary random variables and put S(i, j) = X, +
<o+ +X,and M (i, j) = max{|SG, )|, |SCGi+ D], ---,|SG)|}for 1=i
=</ = n. Bounds for E {exp tM (1, n)}, E M"(1, n) and P{M(1, n) = t} are
established in terms of assumed bounds for E {exp £| S(i,/) | }, E| S(i,7) | " and
P{|S(,J)| = t}, respectively. The bounds explicitly involve a nonnegative
function g(z, j) assumed to be quasi-superadditive with index @ (1 = Q < 2):
g@,J)+g(j+1L k) =Qg( k) all=i=<j<k= n Results previously
established for the case @ = 1 are improved and are extended to the case 1
< @ < 2. When g(i, j) is given by Var S(i, j), applications of the case @ > 1
include sequences {X,} exhibiting long-range dependence, in particular certain
self-similar processes such as fractional Brownian motion.

1. Introduction. LetXj, .., X, be arbitrary random variables. The only restrictions
on the joint distribution of the X,’s will be those imposed by the assumed bounds on the
quantities

(L1)  E{expt|SGH},  EISGHI  P{USGHI=8), 1=isj=n,
where
S, j)=Y4h-iXp, 1=<is<j=<n,
v = 1is a fixed real number, and ¢ runs through an interval of the positive real line. Define
M, j) =max{|S@ )|, |SGi+1)],---,|SCHI|}, l=si=sj=n,

and for convenience set S(i, j) = M(i, j) = 0 for j < i. We will establish bounds for the
quantities

E{exp tM(1, n)}, EMQ1,n), P{M(1,n)=t¢}

in terms of the respective assumed bounds for the quantities in (1.1).
The bounds will relate to the variables S(i, ) in specified ways through some function
£ (i, j) satisfying

(1.2a) g(i,j)=0, all 1=i<j=n,
(1.2b) g, /)<glj+1), all 1=i<j=n,
(1.2¢) g, /) +8i+1Lk)=Qglik), al 1=i<j<k=n,

where 1 = @ < 2. We call the property (1.2¢) quasi-superadditivity with index @ (or simply
Q-superadditivity); the case @ = 1 corresponds to the usual notion of superadditivity.
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REMARKS ON QUASI-SUPERADDITIVITY. (i) In many situations the function g(i, j) is
given by

1.3) g(i,j) =Var S(i, ), l=si=sj=n,
in which case 1-superadditivity is equivalent to
(1.4) Cov{S(,j), S(j+1,k)}=0, all 1<i<j<k=<n.

Thus, for this choice of g(i, /), the notion of @-superadditivity for @ > 1 is needed for any
sequence {X;} for which any one of the inequalities in (1.4) is violated. Indeed, for g(i, j)
given by (1.3), it is easily seen that

m:g(l,k)ﬁg(L,])+g(j+1,k)s gl k), 1=i<j<k=n,

1—p~
where p* and p~ are the maxima of the positive and negative parts of the quantities
Corr{S(i, j), S(j + 1, k)}, respectively. In other words,
p" =maxisig;<k=n[p (G, /, k)]" and p~ = maxi<isi<r=alp G, j, k)17,
where
p(i,J, k) = Corr{S(, j), S(j + 1, k)}.

It is clear that in the case of independence, p* = p~ = 0.

(ii) For the case that g(i, j) is of the form g(i, j) = g(j — i + 1), (1.2¢) becomes
(1.5) g0)+g(j-i)=Qg()), all 1=si<j=n.
In particular, for g(n) of the form g(n) = n’, (1.5) is satisfied with @ given by
Q. =2, o0<r<l,
=1, r=1.

Note that for 0 <r <1 we have 1 < @, < 2.

(iii) Combining the two previous remarks, we see that for g(i, j) given by (1.3) the case
of @-superadditivity for @ > 1 corresponds, roughly speaking, to the property that
Var S(1, n) increases slower than O(n) as n — . Sequences {X;} exhibiting long-range
dependence possess this type of dependence structure. See Mandelbrot and Taqqu (1979)
and Taqqu (1979) for examples including fractional Brownian motion and other self-similar
processes.

(iv) For @ =1, as pointed out by Longnecker and Serfling (1977), there exist nonnegative
constants uy, uz, - -+, u, such that
g,n)=Yiyu and g(G,/)=Yi-iwx, all 1si<j=<n.
In this case the theorems below may be proved by reduction to the case that g(i, j) is
exactly of the form g (i, j) = Y- us.

(v) The superadditivity property (corresponding to @ = 1) has been considered in this
context by Serfling (1970) and Méricz (1975), for example. However, the quasi-superaddi-
tivity notion is new with the present paper.

(vi) Note that in the case @ = 1, (1.2a) and (1.2¢) imply (1.2b). 0
Section 2 will present exponential estimates, that is, exponential bounds on

E {exp(tM(1,n))} and P{M(1, n) = ¢} in terms of similar bounds on E {exp(¢t|S(1,n)|)}
and P{|S(1, n) | = t}, respectively. Section 3 will treat power-type estimates.
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2. Exponential estimates. This section deals with bounds of exponential form.

THEOREM 2.1. Suppose that there exist a constant K =1, a function g (i, j) satisfying
(1.2) with 1 = @ < 2 and a ty, = 0 such that

(21) E{expt|S@G,j)|}=Kexpo(t)g(i,j), all t>t and 1=<i<j=<n,
where ¢ (t) > 0 for t > t, and for each constant C > 1
(2.2) SUP:>4,P(Ct) /o (t) = x (C) < oo lime,1+x(C) = 1.

Then there exist constants A = 1 and B = 1, depending on @ and x but not on n or {X;}
or otherwise on g or ¢, such that

(2.3) Efexpt M(1,n)} = AKexp Bo(t)g(l,n), all t>t.
Note that Condition (2.2) essentially means that ¢(¢) does not grow faster than a

polynomial. In particular, for each y = 0, the function ¢ (¢) = ¢” satisfies (2.2). The special
case ¢ (¢) = t* and @ = 1 is given by Moéricz (1976b).

Proor oF THEOREM 2.1 Let 8 € (@ — 1, 1) be given, for example 8 = @/2. Choose ¢
> 1 such that .

(2-4) X(Q) = min{% ) le__B } ’

which is possible due to (2.2), and set
(2.5) A=2" and B=x(p),

where 1/p + 1/¢ = 1.

The theorem holds trivially in the case n = 1. Assume the induction hypothesis that the
result holds for all integers n satisfying 1 = n < N. We will show that the result then
follows also for n = N.

It is easily seen that, foranym e {1,2, ..., N} and £ > 0,

(2.6) E{exptM(1,N)} < E{exp t M(1, m — 1)}
' + E{exp[t|S(1,m)| + t M(m + 1, N)]}.
For the B given above, let m be determined by
(2.7) gl,m—-1)=<Bg(1,N)<g(1,m).
In the case m = 1, our convention is g(1, 0) = 0. Thus also, by (1.2) and (2.7), we have
(2.8) g(m+1,N)=(Q - pBg(1,N).
By Jensen’s inequality, the induction hypothesis, and (2.7), we obtain
E{exptM(Q1,m—1)} = (E{exp gt M(1, m — 1)})¢
= (AK exp Bo(gt)g(1, m — 1))"/¢
= AY’K exp[BB4(qt)g(1, N)/q].
Hence, using (2.2) and (2.4),
(2.9) Efexpt M(1,m — 1)} = AYK exp B¢ (t)g(1, N).

Also, by Holder’s inequality, the induction hypothesis, (1.2), (2.1) and (2.8), we have
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E {exp[t|S(, m)| + tM(m + 1, N)]}
= (E{exp pt| S(1, m) | })"(E {exp gt M(m + 1, N)})"?
= (K exp ¢(pt)g(1, m))""(AK exp Bo (qt)g(m + 1, N))'
=AYK exp B g(1, N)[¢(pt)/pB + ¢(gt)(Q — B)/q].
Taking into account (2.2), (2.4) and (2.5), we obtain
E {exp[t|S(1, m)| + tM(m + 1, N)]}
(2.10) = A"K exp B¢ ()g(1, N)x(p)/pB + x(q)(Q — B)/q]
= AY9K exp B¢ (t)g(1, N).
Collecting (2.6), (2.9) and (2.10) together, we have
E{expt M(1,n)} < 242K exp B (t)g(1, N),
which is equivalent to the desired inequality (2.3) for n = N, owing to (2.5). This completes
the induction argument and the proof of Theorem 2.1.0
THEOREM 2.2. Suppose that there exist a constant K = 1, a function g (i, j) satzs]fymg
(1.2 withl1=Q <2,and a t,, 0 < ty = + =, such that
(2.11) P{|S@G,j)|=t} = Kexp[—¢(t)/g@i,j)], all 0<t<ip
and 1 <i=<j=<n,where ¢(t) >0 for 0 < t < ty, and for each constant C,0< C< 1,
(2.12) infoci<syp (Ct) /9 (t) = x (C) > 0; lime,1-x(C) = 1.

Then there exist constants A = 1 and B = 1, depending on @ and x but not on n or {X}
or otherwise on g or ¢, such that

(2.13) P{M(@,n) =t} < AK exp[—(t)/Bg(L,n)], all 0<t<t.

REMARKs. (i) If g(i, j) = 0 for certain i and j, our convention is that the right-hand
side of (2.11) is equal to O for all £ > 0. That is, in this case P{|S(i, j) | = 0} = 1, which
means that S(z, j) = 0 almost surely. Now, if g(1, n) =0, then g(1,j) =0forallj, 1 <J
=< n, a fortiori M (1, n) = 0 almost surely, and inequality (2.13) to be proved is trivially
satisfied.

(ii) Setting ¢*(£) = 1/¢(1/t), ¢*(t) is then defined for all ¢t > 1/t, =t§. It is easily
checked that ¢ (¢) satisfies (2.12) with a x(C), 0 < C < 1, if and only if ¢ *(¢) satisfies (2.2)
with a x*(C) = 1/x(1/C), the latter function being defined for C > 1.

(iii) The case @ = 1 was treated (under somewhat more restrictive conditions on ¢) by
Moéricz (1979). 0

Proor oF THEOREM 2.2 This time let 8 € (/2, 1). Choose ¢, 0 < ¢ < 1, in such a way
that

(2.14) @) =2=F
B
which is possible because of (2.12), and set
(2.15) A=3#""H and B=1/Bx(p),

where p + ¢ = 1.
The induction argument of the previous theorem is used. Thus, for N and m the same,
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we write
(2.16) P{M(1,N) =t}
=PM(1,m—-1)=¢t} +P{|SA,m)|+ M(m+1,N)=t¢}
=PM(1Q,m—-1) =t} +P{|SA,m)|=pt} + P(M(m + 1, N) = qt}.
By the induction hypothesis and (2.11),
P{M(1, N) =t} = AK exp[—¢(t)/Bg(1,m — 1)] + K exp[—¢ (pt)/g(1, m)]
+ AK exp[—¢(gt)/Bg(m + 1, N)],
whence, using (1.2), (2.7) and (2.8) we obtain
P{M(1, N) =z t} = AK exp[—¢(¢)/BBg(1, N)] + K exp[—¢ (pt)/g(1, N)]
+ AK exp[—¢(qt)/(Q — B)Bg(1, N)].
Now take (2.12), (2.14) and (2.15) into consideration:
(2.17) P{M(1, N) =t} = 3AK exp[—¢(¢)/8Bg(1, N)].
Here the right-hand side does not exceed AK exp[—¢ (¢)/Bg(1, N)], provideq that
In3 —¢(t)/BBg(1, N) = — ¢(¢)/Bg(1, N),
which holds if
(2.18) ¢(t)/Bg(1, N) = (BIn 3)/(1 — B).

By (2.17), we obtain the desired (2.13) for n = N under the assumption (2.18).
On the other hand, if (2.18) is not satisfied, then by (2.15) we have

A exp[—¢(¢)/Bg(1, N)] > A exp[-(81In 3)/(1 - B)] = 1.
Consequently, (2.13) to be proved clearly holds, since in any case P{M (1, N) = ¢t} < 1.
This completes the induction step and the proof of Theorem 2.2. 0
REMARK. If, in addition to (2.12), we have
(2.19) limc_o, x(C) =0,

then Theorem 2.2 can be strengthened for the special case @ = 1. In fact, on account of
(2.19), if 8 — 1— we can take ¢ — 0+ in (2.14), and consequently, p — 1— in (2.15). This
means that in the conclusion (2.13) we can choose B as close to 1 as we wish. But we stress
that A —» +oasf— 1-.0

The proof of Theorem 2.2 and this remark are modeled after that of Theorem 1 of
Moricz (1979).

ProBLEM 1. In the special case @ = 1, can B = 1 in Theorem 2.2 under the additional
assumption (2.18)? This assumption is satisfied, for example, in the case ¢ (¢) = t2. 0

3. Power-type estimates.

THEOREM 3.1. Let a > 1 and y = 1 be given reals. Suppose that there exists a
function g (i, j) satisfying (1.2) with 1 = @ < 2“~Y* such that
(3.1) E|SGj) | =g*G,j), all 1=i=<j=n.

Then there exists a constant A, depending on «, y and @ but not on n, {X} or otherwise
on g, such that
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(3.2) EM'(1,n)<AgQ1,n).

ReEMARK. The special case @ = 1 was proved by Méricz (1976a) and by Longnecker
and Serfling (1977), independently of each other and with different determinations of the
constant A. [

Proor. The proof closely follows that of Theorem 1 of Méricz (1976a). Thus we only
sketch it. Set 8 = @/2 in (2.7) and (2.8), and estimate as follows:

MO, N)=|SQ,m)|+{MQ,m—-1)+ M'(m + 1, N)}'/.
Via Minkowski’s inequality, this yields
(33) {EM'(1, N)}*<{E|SQ, m)|"}"" + (EM"(1, m — 1) + EM"(m + 1, N)}/.
Hence, using the induction hypothesis, (3.1), (2.7), and (2.8) with 8 = @/2, we obtain

o /v
e, 8 =g00,m L aram|

. QN
=g (1, N)(l + A 3 a_l,/y> .
For A large enough, this implies
{EM*(1, N)}/* = AY7ge/7(1, N),
which is equivalent to (3.2) for n = N. The smallest A satisfying the condition

144 LT g
2(a—1)/Y -

is given by (observe that the assumption @ < 2“~1/« is essential)

Qa/v Y
A = <1 - W .

The proof of Theorem 3.1 is complete. 0

THEOREM 38.2. Let o > 1 be a given real. Suppose that there exist a function g (i, j)
satisfying (1.2) with 1= Q <2“ V" and a ¢y, 0 < ty < +oo, such that
(3.4) P{|SG))| =t} =g*G,))/é@t), all O<t<ty, and 1<i<j=<n,

where ¢ (t) > 0 for 0 < t < t, and (2.12) is satisfied for each C,0 < C < 1. Then there exists
a constant A = 1, depending on a, @ and x but not on n, {X;} or otherwise on g or ¢, such
that

(3.5) P{M(1,n)=t}=Ag*(1,n)/é(t), all 0<t<t.

For ¢(t) = t" and g(i, j) = Yh-: Uk, wx = 0. Theorem 3.2 was established by Billingsley
(1968, page 94, Theorem 12.2).

Proor oF THEOREM 3.2. Take 8 = @/2 as in the proof of Theorem 3.1. For p + q =
1,p >0, g > 0, choose q sufficiently close to 1 that

@/2)T1 +1/x(g)] <1
(cf. (2.12)), and then choose A large enough to satisfy

(3.6) (@/2)(1 + 1/x(q)] + 1/Ax(p) = 1.
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Then apply the usual induction argument, starting with (2.16). By the induction hypothesis,
(3.4), (2.7) and (2.8) with 8 = )/2, we obtain

P{M(1,N) =t} = A(Q/2)°g"(1, N)/¢(t) + g*(1, N)/$ (pt) + A(Q/2)°g"(1, N)/$ (qt)

_JdreY . (oY e . s T .
_A[<2) +<2> ¢(qt)+A¢(pt—)}g(I»N)/‘i’(t).

On account of (2.12) and (3.6), we have immediately that
P{M(1,N)=t}= A[(g >a<1 + L) +—1— ]g“(l, N)/o(t)
2 x(q@) ) Ax(p)
=Ag*(1, N)/¢(t),
which is the desired (3.5) for n = N. This completes the proof of Theorem 3.2. 0
Finally, we treat the question of how to modify Theorem 3.1 in the case a = 1. This will

be done in a more gereral setting. To this effect, let {A(n):n =1, 2, ...} be a given
nondecreasing sequence of positive numbers. Set

3.7 A1) =A(1),

Aln) = A([%D + Q”’A(BJ), n=z2,

where [-] and | - | denote the upper and lower integral parts, respectively. It is clear that
{A(n):n=1,2, ...} is also a nondecreasing sequence of positive numbers. Furthermore,
a simple calculation gives that

(3.8) A(n) = Ylosnd Qk/m([?:’ﬁ-l) , alln=1
Here and in the sequel, the logarithms are to base 2.
THEOREM 3.3. Lety =1 be a given real. Suppose that there exist a function g(i, j)

satisfying (1.2) with @ = 1 and a nondecreasing sequence {\(n)} of positive numbers
such that

3.9 E|ISGH)|"=sg@ )N (j—i+1), all 1=si<j=n.
Then
(3.10) EM'(1, n) = g(i, ))A"(n),

where A (n) is defined by (3.7).

We state the special case A(n) = 1 in the form of a separate theorem, as follows (cf.
(3.8)).

CoroLLARY 3.1. Let y =1 be a given real. Suppose that there exists a function g (i,
J) satisfying (1.2) with @ = 1 such that
E|SGj)|"=g@,)), all 1=si=sj=n.
Then
(3.11) EM'(1,n) < g(1, n) (TL% @*7y.

REMARKS. (i) The right-hand side of (3.11) is of order of magnitude g(1, n)(log 2n)” as
n— +ow for @ = 1and g(1, n) n'° for @ > 1.
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(ii) Corollary 3.1 for g(i, j) = Y%-i us, ux = 0, is given in Billingsley (1968), page 102.

(iii) The even more special case of Corollary 3.1 when y = 2, g(i, j) = Var{S(i, )}, and
the X,’s are mutually orthogonal, is the famous Rademacher-Men$ov inequality (see, e.g.,
Doob, 1953, page 156.).

(iv) Corollary 3.1 for @ = 1 was essentially proved by Serfling (1970), while Theorem 3.3
also for @ = 1 (using a slightly different notation) by Méricz (1975).

Proor or THEOREM 3.3. It runs along the same lines as the proof of Theorem 1 of
Moéricz (1975). Therefore, we present it here in a short form. We begin with (3.3). By the
induction hypothesis and (3.9),

{EM"(1, N)}'"<A(m)g""(1, m) + {A"(m — 1)g(1,m — 1) + AY(N — m)g(m + 1, N)}"/".

Let us choose m at present to be m = [N/2]. Thenm — 1 <|N/2] and N — m = |[N/2].
Exploiting (1.2), we arrive at the inequality

(EMY(1, )} = A(g])gm, N)

([ eons o]
<(([3]) e (3] m,

which is equivalent to (3.10) for n = N, thanks to (3.7). This completes the induction step
and the proof of Theorem 3.3. 0

In closing, we mention an open problem concerning the probability inequality version
of Theorem 3.3.

ProBLEM 2. Let y = 0 be a given real. Suppose that there exist a function g(i, j)
satisfying (1.2) with @ =1 and a &, 0 < £ < +, such that

P{|SG))|=t)=g@,j)/t, all 0<t<t and l=isj=n.

How can one precisely estimate from above the probability P{M (1, n) = ¢} forall 0 < ¢
<t in terms of g(i, j) and y? The answer is not known even in the special case g(i, j) =
2J1¢=1 Up, Up = 0.0
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