MOMENT AND PROBABILITY BOUNDS WITH QUASI-SUPERADDITIVE STRUCTURE FOR THE MAXIMUM PARTIAL SUM¹

By F. A. Móricz, R. J. Serfling and W. F. Stout

University of Szeged, Johns Hopkins University, and University of Illinois

Let X_1, \dots, X_n be arbitrary random variables and put $S(i,j) = X_i + \dots + X_j$ and $M(i,j) = \max\{ |S(i,i)|, |S(i,i+1)|, \dots, |S(i,j)| \}$ for $1 \le i \le j \le n$. Bounds for $E\{\exp tM(1,n)\}, E(j,n) = M^{\gamma}(1,n)$ and $P\{M(1,n) \ge t\}$ are established in terms of assumed bounds for $E\{\exp t|S(i,j)|\}, E|S(i,j)|^{\gamma}$ and $P\{|S(i,j)| \ge t\}$, respectively. The bounds explicitly involve a nonnegative function g(i,j) assumed to be *quasi-superadditive* with index $Q(1 \le Q \le 2)$: $g(i,j) + g(j+1,k) \le Q(j,k)$, all $1 \le i \le j < k \le n$. Results previously established for the case Q = 1 are improved and are extended to the case Q < 2. When Q(i,j) is given by Var(i,j), applications of the case Q > 1 include sequences Q(i,j) exhibiting long-range dependence, in particular certain self-similar processes such as fractional Brownian motion.

1. Introduction. Let X_1, \dots, X_n be arbitrary random variables. The only restrictions on the joint distribution of the X_k 's will be those imposed by the assumed bounds on the quantities

$$(1.1) \quad E\{\exp\,t\,|\,S(i,j)\,|\,\}, \qquad E\,|\,S(i,j)\,|^{\gamma}, \qquad P\{\,|\,S(i,j)\,|\,\geq\,t\}, \qquad 1\leq i\leq j\leq n,$$
 where

$$S(i,j) = \sum_{k=i}^{j} X_k, \qquad 1 \le i \le j \le n,$$

 $\gamma \ge 1$ is a fixed real number, and t runs through an interval of the positive real line. Define

$$M(i,j) = \max\{ |S(i,i)|, |S(i,i+1)|, \dots, |S(i,j)| \}, 1 \le i \le j \le n,$$

and for convenience set S(i, j) = M(i, j) = 0 for j < i. We will establish bounds for the quantities

$$E\{\exp tM(1, n)\}, E M^{\gamma}(1, n), P\{M(1, n) \ge t\}$$

in terms of the respective assumed bounds for the quantities in (1.1).

The bounds will relate to the variables S(i, j) in specified ways through some function g(i, j) satisfying

(1.2a)
$$g(i,j) \ge 0$$
, all $1 \le i \le j \le n$,

(1.2b)
$$g(i, j) \le g(i, j + 1)$$
, all $1 \le i \le j \le n$,

(1.2c)
$$g(i,j) + g(j+1,k) \le Q g(i,k)$$
, all $1 \le i \le j < k \le n$,

where $1 \le Q < 2$. We call the property (1.2c) *quasi-superadditivity with index Q* (or simply Q-superadditivity); the case Q = 1 corresponds to the usual notion of superadditivity.

Received July 1981; revised December 1981.

¹ Research supported by the Army, Navy and Air Force under Office of Naval Research Contract No. N00014-79-C-0801. Reproduction in whole or in part is permitted for any purpose of the United States Government.

AMS 1970 subject classifications. Primary, 60G99.

Key words and phrases. Fluctuation of sums; moment inequalities; probability inequalities; quasisuperadditivity. 1032

Remarks on quasi-superadditivity. (i) In many situations the function g(i, j) is given by

$$(1.3) g(i,j) = \operatorname{Var} S(i,j), 1 \le i \le j \le n,$$

in which case 1-superadditivity is equivalent to

(1.4)
$$\operatorname{Cov}\{S(i,j), S(j+1,k)\} \ge 0, \text{ all } 1 \le i \le j < k \le n.$$

Thus, for this choice of g(i, j), the notion of Q-superadditivity for Q > 1 is needed for any sequence $\{X_k\}$ for which any one of the inequalities in (1.4) is violated. Indeed, for g(i, j) given by (1.3), it is easily seen that

$$\frac{1}{1+\rho^{+}}g(i,k) \le g(i,j) + g(j+1,k) \le \frac{1}{1-\rho^{-}}g(i,k), \qquad 1 \le i \le j < k \le n,$$

where ρ^+ and ρ^- are the maxima of the positive and negative parts of the quantities $Corr\{S(i,j), S(j+1,k)\}$, respectively. In other words,

$$\rho^{+} = \max_{1 \le i \le j < k \le n} [\rho(i, j, k)]^{+} \quad \text{and} \quad \rho^{-} = \max_{1 \le i \le j < k \le n} [\rho(i, j, k)]^{-},$$

where

$$\rho(i, j, k) = \text{Corr}\{S(i, j), S(j + 1, k)\}.$$

It is clear that in the case of independence, $\rho^+ = \rho^- = 0$.

(ii) For the case that g(i, j) is of the form g(i, j) = g(j - i + 1), (1.2c) becomes

(1.5)
$$g(i) + g(j-i) \le Qg(j)$$
, all $1 \le i \le j \le n$.

In particular, for g(n) of the form $g(n) = n^r$, (1.5) is satisfied with Q given by

$$Q_r = 2^{1-r}, \qquad 0 < r < 1,$$

= 1, $r \ge 1.$

Note that for 0 < r < 1 we have $1 < Q_r < 2$.

- (iii) Combining the two previous remarks, we see that for g(i,j) given by (1.3) the case of Q-superadditivity for Q>1 corresponds, roughly speaking, to the property that $\operatorname{Var} S(1,n)$ increases slower than O(n) as $n\to\infty$. Sequences $\{X_i\}$ exhibiting long-range dependence possess this type of dependence structure. See Mandelbrot and Taqqu (1979) and Taqqu (1979) for examples including fractional Brownian motion and other self-similar processes.
- (iv) For Q = 1, as pointed out by Longnecker and Serfling (1977), there exist nonnegative constants u_1, u_2, \dots, u_n such that

$$g(1, n) = \sum_{k=1}^{n} u_k$$
 and $g(i, j) \le \sum_{k=1}^{j} u_k$, all $1 \le i \le j \le n$.

In this case the theorems below may be proved by reduction to the case that g(i, j) is exactly of the form $g(i, j) = \sum_{k=i}^{j} u_k$.

- (v) The superadditivity property (corresponding to Q=1) has been considered in this context by Serfling (1970) and Móricz (1975), for example. However, the quasi-superadditivity notion is new with the present paper.
 - (vi) Note that in the case Q=1, (1.2a) and (1.2c) imply (1.2b). \square

Section 2 will present *exponential* estimates, that is, exponential bounds on $E\{\exp(tM(1,n))\}$ and $P\{M(1,n)\geq t\}$ in terms of similar bounds on $E\{\exp(t|S(1,n)|)\}$ and $P\{|S(1,n)|\geq t\}$, respectively. Section 3 will treat *power-type* estimates.

2. Exponential estimates. This section deals with bounds of exponential form.

THEOREM 2.1. Suppose that there exist a constant $K \ge 1$, a function g(i, j) satisfying (1.2) with $1 \le Q < 2$ and a $t_0 \ge 0$ such that

$$(2.1) E\{\exp t | S(i,j)|\} \le K \exp \phi(t)g(i,j), \quad all \quad t > t_0 \quad and \quad 1 \le i \le j \le n,$$

where $\phi(t) > 0$ for $t > t_0$ and for each constant C > 1

$$(2.2) \sup_{t>t_0} \phi(Ct)/\phi(t) = \chi(C) < \infty; \lim_{C\to 1+\chi} (C) = 1.$$

Then there exist constants $A \ge 1$ and $B \ge 1$, depending on Q and χ but not on n or $\{X_k\}$ or otherwise on g or ϕ , such that

(2.3)
$$E\{\exp t M(1, n)\} \le AK \exp B_{\phi}(t)g(1, n), \quad all \quad t > t_0.$$

Note that Condition (2.2) essentially means that $\phi(t)$ does not grow faster than a polynomial. In particular, for each $\gamma \geq 0$, the function $\phi(t) = t^{\gamma}$ satisfies (2.2). The special case $\phi(t) = t^2$ and Q = 1 is given by Móricz (1976b).

Proof of Theorem 2.1 Let $\beta \in (Q-1, 1)$ be given, for example $\beta = Q/2$. Choose q>1 such that

(2.4)
$$\chi(q) \le \min\left\{\frac{1}{\beta}, \frac{1}{Q - \beta}\right\},\,$$

which is possible due to (2.2), and set

$$(2.5) A = 2^p and B = \chi(p),$$

where 1/p + 1/q = 1.

The theorem holds trivially in the case n = 1. Assume the induction hypothesis that the result holds for all integers n satisfying $1 \le n < N$. We will show that the result then follows also for n = N.

It is easily seen that, for any $m \in \{1, 2, \dots, N\}$ and t > 0,

(2.6)
$$E\{\exp t M(1, N)\} \le E\{\exp t M(1, m - 1)\}$$

$$+ E\{\exp[t | S(1, m)| + t M(m + 1, N)]\}.$$

For the β given above, let m be determined by

$$(2.7) g(1, m-1) \le \beta g(1, N) \le g(1, m).$$

In the case m = 1, our convention is g(1, 0) = 0. Thus also, by (1.2) and (2.7), we have

(2.8)
$$g(m+1, N) \le (Q - \beta)g(1, N).$$

By Jensen's inequality, the induction hypothesis, and (2.7), we obtain

$$\begin{split} E\left\{\exp\,t\,M(1,\,m-1)\right\} &\leq (E\left\{\exp\,qt\,M(1,\,m-1)\right\})^{1/q} \\ &\leq (AK\,\exp\,B\phi(qt)g(1,\,m-1))^{1/q} \\ &\leq A^{1/q}K\,\exp[\beta B\phi(qt)g(1,\,N)/q]. \end{split}$$

Hence, using (2.2) and (2.4),

(2.9)
$$E\{\exp t M(1, m-1)\} \le A^{1/q} K \exp B\phi(t) g(1, N).$$

Also, by Hölder's inequality, the induction hypothesis, (1.2), (2.1) and (2.8), we have

$$\begin{split} E\left\{\exp[t\,|\,S(1,\,m)\,|\,+\,tM(m\,+\,1,\,N)]\right\} \\ &\leq (E\left\{\exp\,pt\,|\,S(1,\,m)\,|\,\right\})^{1/p}(E\left\{\exp\,qt\,M(m\,+\,1,\,N)\right\})^{1/q} \\ &\leq (K\,\exp\,\phi\,(pt)g(1,\,m))^{1/p}(AK\,\exp\,B\phi\,(qt)g(m\,+\,1,\,N))^{1/q} \\ &\leq A^{1/q}K\,\exp\,B\,g(1,\,N)[\phi\,(pt)/pB\,+\,\phi\,(qt)(Q\,-\,\beta)/q\,]. \end{split}$$

Taking into account (2.2), (2.4) and (2.5), we obtain

$$E\{\exp[t \mid S(1, m) \mid + tM(m + 1, N)]\}$$
(2.10)
$$\leq A^{1/q}K \exp B\phi(t)g(1, N)[\chi(p)/pB + \chi(q)(Q - \beta)/q]$$

$$\leq A^{1/q}K \exp B\phi(t)g(1, N).$$

Collecting (2.6), (2.9) and (2.10) together, we have

$$E\{\exp t M(1, n)\} \le 2A^{1/q}K \exp B\phi(t)g(1, N),$$

which is equivalent to the desired inequality (2.3) for n = N, owing to (2.5). This completes the induction argument and the proof of Theorem 2.1. \Box

THEOREM 2.2. Suppose that there exist a constant $K \ge 1$, a function g(i, j) satisfying (1.2) with $1 \le Q < 2$, and a t_0 , $0 < t_0 \le +\infty$, such that

$$(2.11) P\{|S(i,j)| \ge t\} \le K \exp[-\phi(t)/g(i,j)], all 0 < t < t_0$$

and $1 \le i \le j \le n$, where $\phi(t) > 0$ for $0 < t < t_0$ and for each constant C, 0 < C < 1,

(2.12)
$$\inf_{0 < t < t_0} \phi(Ct) / \phi(t) = \chi(C) > 0; \quad \lim_{C \to 1-} \chi(C) = 1.$$

Then there exist constants $A \ge 1$ and $B \ge 1$, depending on Q and χ but not on n or $\{X_k\}$ or otherwise on g or ϕ , such that

(2.13)
$$P\{M(1, n) \ge t\} \le AK \exp[-\phi(t)/Bg(1, n)], \quad all \quad 0 < t < t_0.$$

REMARKS. (i) If g(i, j) = 0 for certain i and j, our convention is that the right-hand side of (2.11) is equal to 0 for all t > 0. That is, in this case $P\{ | S(i, j) | = 0 \} = 1$, which means that S(i, j) = 0 almost surely. Now, if g(1, n) = 0, then g(1, j) = 0 for all $j, 1 \le j \le n$, a fortiori M(1, n) = 0 almost surely, and inequality (2.13) to be proved is trivially satisfied.

- (ii) Setting $\phi^*(t) = 1/\phi(1/t)$, $\phi^*(t)$ is then defined for all $t > 1/t_0 = t_0^*$. It is easily checked that $\phi(t)$ satisfies (2.12) with a $\chi(C)$, 0 < C < 1, if and only if $\phi^*(t)$ satisfies (2.2) with a $\chi^*(C) = 1/\chi(1/C)$, the latter function being defined for C > 1.
- (iii) The case Q=1 was treated (under somewhat more restrictive conditions on ϕ) by Móricz (1979). \square

Proof of Theorem 2.2 This time let $\beta \in (Q/2, 1)$. Choose q, 0 < q < 1, in such a way that

$$\chi(q) \ge \frac{Q - \beta}{\beta},$$

which is possible because of (2.12), and set

(2.15)
$$A = 3^{\beta/(1-\beta)}$$
 and $B = 1/\beta \chi(p)$,

where p + q = 1.

The induction argument of the previous theorem is used. Thus, for N and m the same,

we write

$$(2.16) \quad P\{M(1, N) \ge t\}$$

$$\le P\{M(1, m - 1) \ge t\} + P\{|S(1, m)| + M(m + 1, N) \ge t\}$$

$$\le P\{M(1, m - 1) \ge t\} + P\{|S(1, m)| \ge pt\} + P\{M(m + 1, N) \ge qt\}.$$

By the induction hypothesis and (2.11),

$$\begin{split} P\{M(1,N) \geq t\} \leq AK \exp[-\phi(t)/Bg(1,m-1)] + K \exp[-\phi(pt)/g(1,m)] \\ + AK \exp[-\phi(qt)/Bg(m+1,N)], \end{split}$$

whence, using (1.2), (2.7) and (2.8) we obtain

$$\begin{split} P\{M(1,N) \geq t\} \leq AK \exp[-\phi(t)/\beta Bg(1,N)] + K \exp[-\phi(pt)/g(1,N)] \\ + AK \exp[-\phi(qt)/(Q-\beta)Bg(1,N)]. \end{split}$$

Now take (2.12), (2.14) and (2.15) into consideration:

(2.17)
$$P\{M(1, N) \ge t\} \le 3AK \exp[-\phi(t)/\beta Bg(1, N)].$$

Here the right-hand side does not exceed $AK \exp[-\phi(t)/Bg(1, N)]$, provided that

$$\ln 3 - \phi(t)/\beta Bg(1, N) \le -\phi(t)/Bg(1, N),$$

which holds if

(2.18)
$$\phi(t)/Bg(1, N) \ge (\beta \ln 3)/(1 - \beta).$$

By (2.17), we obtain the desired (2.13) for n = N under the assumption (2.18). On the other hand, if (2.18) is not satisfied, then by (2.15) we have

$$A \exp[-\phi(t)/Bg(1, N)] > A \exp[-(\beta \ln 3)/(1-\beta)] = 1.$$

Consequently, (2.13) to be proved clearly holds, since in any case $P\{M(1, N) \ge t\} \le 1$. This completes the induction step and the proof of Theorem 2.2. \square

REMARK. If, in addition to (2.12), we have

(2.19)
$$\lim_{C \to 0_+} \chi(C) = 0,$$

then Theorem 2.2 can be strengthened for the special case Q=1. In fact, on account of (2.19), if $\beta \to 1-$ we can take $q \to 0+$ in (2.14), and consequently, $p \to 1-$ in (2.15). This means that in the conclusion (2.13) we can choose B as close to 1 as we wish. But we stress that $A \to +\infty$ as $\beta \to 1-$. \square

The proof of Theorem 2.2 and this remark are modeled after that of Theorem 1 of Móricz (1979).

PROBLEM 1. In the special case Q = 1, can B = 1 in Theorem 2.2 under the additional assumption (2.18)? This assumption is satisfied, for example, in the case $\phi(t) = t^2$. \Box

3. Power-type estimates.

THEOREM 3.1. Let $\alpha > 1$ and $\gamma \ge 1$ be given reals. Suppose that there exists a function g(i,j) satisfying (1.2) with $1 \le Q < 2^{(\alpha-1)/\alpha}$, such that

$$(3.1) E|S(i,j)|^{\gamma} \leq g^{\alpha}(i,j), \quad all \quad 1 \leq i \leq j \leq n.$$

Then there exists a constant A, depending on α , γ and Q but not on n, $\{X_k\}$ or otherwise on g, such that

$$(3.2) E M^{\gamma}(1, n) \leq A g^{\alpha}(1, n).$$

REMARK. The special case Q=1 was proved by Móricz (1976a) and by Longnecker and Serfling (1977), independently of each other and with different determinations of the constant A. \square

PROOF. The proof closely follows that of Theorem 1 of Móricz (1976a). Thus we only sketch it. Set $\beta = Q/2$ in (2.7) and (2.8), and estimate as follows:

$$M(1, N) \le |S(1, m)| + \{M^{\gamma}(1, m - 1) + M^{\gamma}(m + 1, N)\}^{1/\gamma}$$

Via Minkowski's inequality, this yields

$$(3.3) \quad \{EM^{\gamma}(1,N)\}^{1/\gamma} \leq \{E \mid S(1,m) \mid^{\gamma}\}^{1/\gamma} + \{EM^{\gamma}(1,m-1) + EM^{\gamma}(m+1,N)\}^{1/\gamma}.$$

Hence, using the induction hypothesis, (3.1), (2.7), and (2.8) with $\beta = Q/2$, we obtain

$$\begin{split} \{EM^{\gamma}(1,N)\}^{1/\gamma} &\leq g^{\alpha/\gamma}(1,m) + \left\{ \frac{Q^{\alpha}}{2^{\alpha-1}} A g^{\alpha}(1,N) \right\}^{1/\gamma} \\ &\leq g^{\alpha/\gamma}(1,N) \left(1 + A^{1/\gamma} \frac{Q^{\alpha/\gamma}}{2^{(\alpha-1)/\gamma}} \right). \end{split}$$

For A large enough, this implies

$$\{EM^{\gamma}(1,N)\}^{1/\gamma} \leq A^{1/\gamma} g^{\alpha/\gamma}(1,N).$$

which is equivalent to (3.2) for n = N. The smallest A satisfying the condition

$$1 + A^{1/\gamma} \frac{Q^{\alpha/\gamma}}{2^{(\alpha-1)/\gamma}} \leq A^{1/\gamma}$$

is given by (observe that the assumption $Q < 2^{(\alpha-1)/\alpha}$ is essential)

$$A = \left(1 - \frac{Q^{\alpha/\gamma}}{2^{(\alpha-1)/\gamma}}\right)^{-\gamma}.$$

The proof of Theorem 3.1 is complete. \Box

Theorem 3.2. Let $\alpha > 1$ be a given real. Suppose that there exist a function g(i, j) satisfying (1.2) with $1 \le Q < 2^{(\alpha-1)/\alpha}$, and a t_0 , $0 < t_0 \le +\infty$, such that

$$(3.4) P\{ | S(i,j) | \ge t \} \le g^{\alpha}(i,j)/\phi(t), all 0 < t < t_0 and 1 \le i \le j \le n,$$

where $\phi(t) > 0$ for $0 < t < t_0$ and (2.12) is satisfied for each C, 0 < C < 1. Then there exists a constant $A \ge 1$, depending on α , Q and χ but not on n, $\{X_k\}$ or otherwise on g or ϕ , such that

$$(3.5) P\{M(1, n) \ge t\} \le Ag^{\alpha}(1, n)/\phi(t), \quad all \quad 0 < t < t_0.$$

For $\phi(t) = t^{\gamma}$ and $g(i, j) = \sum_{k=1}^{j} u_k$, $u_k \ge 0$. Theorem 3.2 was established by Billingsley (1968, page 94, Theorem 12.2).

PROOF OF THEOREM 3.2. Take $\beta = Q/2$ as in the proof of Theorem 3.1. For p + q = 1, p > 0, q > 0, choose q sufficiently close to 1 that

$$(Q/2)^{\alpha}[1 + 1/\chi(q)] < 1$$

(cf. (2.12)), and then choose A large enough to satisfy

$$(3.6) (Q/2)^{\alpha} [1 + 1/\chi(q)] + 1/A\chi(p) \le 1.$$

Then apply the usual induction argument, starting with (2.16). By the induction hypothesis, (3.4), (2.7) and (2.8) with $\beta = Q/2$, we obtain

$$\begin{split} P\{M(1,N) \geq t\} \leq & \, A(Q/2)^{\alpha}g^{\alpha}(1,N)/\phi(t) + g^{\alpha}(1,N)/\phi(pt) + A(Q/2)^{\alpha}g^{\alpha}(1,N)/\phi(qt) \\ & = & \, A\left\lceil \left(\frac{Q}{2}\right)^{\alpha} + \left(\frac{Q}{2}\right)^{\alpha}\frac{\phi(t)}{\phi(qt)} + \frac{\phi(t)}{A\phi(pt)}\right\rceil g^{\alpha}(1,N)/\phi(t). \end{split}$$

On account of (2.12) and (3.6), we have immediately that

$$P\{M(1, N) \ge t\} \le A \left[\left(\frac{Q}{2} \right)^{\alpha} \left(1 + \frac{1}{\chi(q)} \right) + \frac{1}{A\chi(p)} \right] g^{\alpha}(1, N) / \phi(t)$$

$$\le A g^{\alpha}(1, N) / \phi(t),$$

which is the desired (3.5) for n = N. This completes the proof of Theorem 3.2. \square

Finally, we treat the question of how to modify Theorem 3.1 in the case $\alpha = 1$. This will be done in a more general setting. To this effect, let $\{\lambda(n): n = 1, 2, \dots\}$ be a given nondecreasing sequence of positive numbers. Set

(3.7)
$$\Lambda(1) = \lambda(1),$$

$$\Lambda(n) = \lambda\left(\left\lceil \frac{n}{2}\right\rceil\right) + Q^{1/\gamma} \Lambda\left(\left\lceil \frac{n}{2}\right\rceil\right), \quad n \ge 2,$$

where $\lceil \cdot \rceil$ and $\lfloor \cdot \rfloor$ denote the upper and lower integral parts, respectively. It is clear that $\{\Lambda(n): n=1, 2, \cdots\}$ is also a nondecreasing sequence of positive numbers. Furthermore, a simple calculation gives that

(3.8)
$$\Lambda(n) = \sum_{k=0}^{\lfloor \log n \rfloor} Q^{k/\gamma} \lambda\left(\left\lceil \frac{n}{2^{k+1}} \right\rceil\right), \quad \text{all } n \ge 1.$$

Here and in the sequel, the logarithms are to base 2.

THEOREM 3.3. Let $\gamma \geq 1$ be a given real. Suppose that there exist a function g(i,j) satisfying (1.2) with $Q \geq 1$ and a nondecreasing sequence $\{\lambda(n)\}$ of positive numbers such that

(3.9)
$$E |S(i,j)|^{\gamma} \le g(i,j)\lambda^{\gamma}(j-i+1), \quad all \quad 1 \le i \le j \le n.$$

Then

$$(3.10) EM^{\gamma}(1, n) \leq g(i, j)\Lambda^{\gamma}(n),$$

where $\Lambda(n)$ is defined by (3.7).

We state the special case $\lambda(n) \equiv 1$ in the form of a separate theorem, as follows (cf. (3.8)).

COROLLARY 3.1. Let $\gamma \geq 1$ be a given real. Suppose that there exists a function g(i, j) satisfying (1.2) with $Q \geq 1$ such that

$$E |S(i,j)|^{\gamma} \le g(i,j), \quad all \quad 1 \le i \le j \le n.$$

Then

(3.11)
$$EM^{\gamma}(1, n) \leq g(1, n) \left(\sum_{k=0}^{\lfloor \log n \rfloor} Q^{k/\gamma} \right)^{\gamma}.$$

REMARKS. (i) The right-hand side of (3.11) is of order of magnitude $g(1, n)(\log 2n)^{\gamma}$ as $n \to +\infty$ for Q = 1 and g(1, n) $n^{\log Q}$ for Q > 1.

- (ii) Corollary 3.1 for $g(i, j) = \sum_{k=i}^{j} u_k, u_k \ge 0$, is given in Billingsley (1968), page 102.
- (iii) The even more special case of Corollary 3.1 when $\gamma = 2$, $g(i, j) = \text{Var}\{S(i, j)\}$, and the X_k 's are mutually orthogonal, is the famous Rademacher-Menšov inequality (see, e.g., Doob, 1953, page 156.).
- (iv) Corollary 3.1 for Q = 1 was essentially proved by Serfling (1970), while Theorem 3.3 also for Q = 1 (using a slightly different notation) by Móricz (1975).

PROOF OF THEOREM 3.3. It runs along the same lines as the proof of Theorem 1 of Móricz (1975). Therefore, we present it here in a short form. We begin with (3.3). By the induction hypothesis and (3.9),

$$\{EM^{\gamma}(1,N)\}^{1/\gamma} \leq \lambda(m)g^{1/\gamma}(1,m) + \{\Lambda^{\gamma}(m-1)g(1,m-1) + \Lambda^{\gamma}(N-m)g(m+1,N)\}^{1/\gamma}.$$

Let us choose m at present to be $m = \lceil N/2 \rceil$. Then $m - 1 \le \lfloor N/2 \rfloor$ and $N - m = \lfloor N/2 \rfloor$. Exploiting (1.2), we arrive at the inequality

$$\begin{split} \{EM^{\gamma}(1,N)\}^{1/\gamma} &\leq \lambda \left(\left\lceil \frac{N}{2} \right\rceil \right) g^{1/\gamma}(1,N) \\ &+ \left\{ \Lambda^{\gamma} \left(\left\lfloor \frac{N}{2} \right\rfloor \right) g(1,m-1) + \Lambda^{\gamma} \left(\left\lfloor \frac{N}{2} \right\rfloor \right) g(m+1,N) \right\}^{1/\gamma} \\ &\leq \left\{ \lambda \left(\left\lceil \frac{N}{2} \right\rceil \right) + Q^{1/\gamma} \Lambda \left(\left\lfloor \frac{N}{2} \right\rfloor \right) \right\} g^{1/\gamma}(1,N), \end{split}$$

which is equivalent to (3.10) for n = N, thanks to (3.7). This completes the induction step and the proof of Theorem 3.3. \square

In closing, we mention an open problem concerning the probability inequality version of Theorem 3.3.

PROBLEM 2. Let $\gamma \geq 0$ be a given real. Suppose that there exist a function g(i, j) satisfying (1.2) with $Q \geq 1$ and a t_0 , $0 < t_0 \leq +\infty$, such that

$$P\{|S(i,j)| \ge t\} \le g(i,j)/t^{\gamma}$$
, all $0 < t < t_0$ and $1 \le i \le j \le n$.

How can one precisely estimate from above the probability $P\{M(1, n) \ge t\}$ for all $0 < t < t_0$ in terms of g(i, j) and γ ? The answer is not known even in the special case $g(i, j) = \sum_{k=1}^{j} u_k, u_k \ge 0$. \square

REFERENCES

- [1] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.
- [2] Doob, J. L. (1953). Stochastic Processes. Wiley, New York.
- [3] LONGNECKER, M. and SERFLING, R. J. (1977). General moment and probability inequalities for the maximum partial sum. Acta Math. Acad. Sci. Hungar. 30 129-133.
- [4] Mandelbrot, B. B. and Taqqu, M. S. (1979). Robust R/S analysis of long run serial correlation. Proc. 42nd Session of ISI.
- [5] Móricz, F. (1975). Generalization of some classical inequalities in the theory of orthogonal series. Math. Notes 17 127-133.
- [6] MÓRICZ, F. (1976a). Moment inequalities and the strong laws of large numbers. Z. Wahrsch. verw. Gebiete 35 299-314.
- [7] Móricz, F. (1976b). Probability inequalities of exponential type and laws of the iterated logarithm. Acta Sci. Math. (Szeged) 38 325-341.
- [8] Móricz, F. (1979). Exponential estimates for the maximum of partial sums. I. Sequences of rv's. Acta Math. Acad. Sci. Hungar. 33 159-167.
- [9] SERFLING, R. J. (1970). Moment inequalities for the maximum cumulative sum. Ann. Math. Statist. 41 1227-1234.

[10] TAQQU, M. S. (1980). Self similar processes and related ultraviolet and infrared catastrophes. In Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory. North Holland, Amsterdam.

F. A. Móricz Bolyai Institute University of Szeged Aradi vértanúk tere 1 Szeged, Hungary 6720 R. J. SERFLING DEPARTMENT OF MATHEMATICAL SCIENCES THE JOHNS HOPKINS UNIVERSITY BALTIMORE, MARYLAND 21218

W. F. STOUT DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS URBANA, ILLINOIS 61801