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THE EXPECTED RATIO OF THE SUM OF SQUARES TO THE
SQUARE OF THE SUM'

By D. L. McLE1sH AND G. L. O’BRIEN
University of Alberta and York University

Let {X,,i=1,2, ...} be a sequence of positive ii.d. random variables.
Define S, = Y1 X, and T, = Y, X?. We study the rate, if any, at which
E[S;*T.]— 0.

1. Introduction. Let X, X, --- be non-negative independent random variables with
common distribution function F. Assume F(0) < 1 and let H(x) = 1 — F(x) = P(X; > x).
Define S, = Y%, X; and T, = Y X?. Let R, = T,S;% if S, > 0, R, = 1 otherwise. It is
shown in Theorem 4 that ER, — 0 iff [§ H(y) dy is slowly varying. The purpose of the rest
of this paper is to study the rate at which ER, — 0.

The question which led us to this study was posed by Professor A. Joffe (private
communication) in connection with his work (1978) on branching processes. He specifically
sought moment conditions on X; under which ER, = O((In n)™") as n — c«. The answer to
this question is provided by Corollary 2; namely it is sufficient that E{X; In X} < o (where
0 In 0 = 0). Theorem 6 gives a further sufficient condition for ER, = O{(In n)"'}.

Note that the quantity R, is related to one of the “self-normalized sums” studied by
Logan, Mallows, Rice and Shepp (1973). Specifically, R, = (S, (2))% Observe, however,
that they assume EX; = 0 when E | X | < o, which is incompatible with our non-negativity
assumption. Cohn and Hall (1982) have also recently obtained some results on ER, in the
course of their study on weighted sums of random variables. For some readers, the main
interest in our theorems will be in the methodology. The various techniques used below
may also be useful in studying expectations of other random variables.

We use the following conventions throughout this paper. Let a, and b, be sequences of
positive numbers. We write a, = o(b,) if a,b;' — 0 as n — «; a, = O(b,) if a,b,' = c for
all n where ¢ is a positive constant; a, ~ b, if a,b;* — 1 as n — «; and a, = b, if a, =
O(b,) and b, = O(a,). Also, the symbols C, C;, Cs, etc. always denote positive constants.
If we write a,, < C;b, for all n, we mean that there exists C; > 0 such that a, < C;b,, for all
n, unless C; has already been determined by earlier considerations. Finally, when we
consider limits, we always mean as the variable goes to plus infinity.

By Jensen’s inequality, n~' < R, < 1 ass. for all n so that n™' < ER, < 1. The exact
behaviour of ER, depends very much on the nature of H as the following heuristic
argument suggests. Suppose H(x) = x~° for x > 1, where b > 0. The random variables
H(X;) are uniformly distributed in (0, 1). Suppose H(X;), H(X3), .., H(X,) have the

“typical” values n™!, 2n"", ..., 1 in some order. Then a direct calculation gives

Ro= Yy k™27 (Yh B707) 2

The asymptotic behaviour (in the sense of =) of these typical values of R, is given in Table
1 for various values of b. Table 1 also gives the asymptotic behaviour of ER,, as determined
later in the paper. Note that the latter entries are somewhat larger than the former when
1 < b < 2 but they are the same when b < 1 or b = 2.
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TABLE 1
Asymptotic Behaviour of Typical R, and
of ER, when H(x) = x7°.

b Typical R, ER,
b>2 n! n!
b=2 n'lnn n'Inn
1<b<?2 n27'-2 n'"?
b= (In n)~2 (Inn)™!
o0<b<l1 1 1

2. The case of finite mean. We begin with estimates which make explicit the
relationship between ER, and the rate of growth of S,,. Define M,, = max(X1, Xz, « - -, X5).

LeEMMA 1. (a) Suppose a, is a sequence of positive reals such that

an

(1) P[S.—-M,=a,]= o(na;2 J

0

vH(v) dv)

Then

o

ER, < 2nanj v(v + a,)*H(v) dv(1 + o(1))

0

)

=< 6na;? J ' vH(v) dv(1 + o(1)).
0

(b) Suppose a, is a sequence such that P(S,-1 > a,) — 0. Then

o

ER, = 2na, J v(v + a,)*H(v) dv(1 + o(1))

0

= % na;zj ' vH(v) dv(1 + o(1)).
0

Proor. First note that for a > 0

af v H(@) dv=<a f v 2H(a) dv = H(a)

=2a72 J vH(a) dv = 2a_2J vH(v) dv.
0 0

Therefore

a

a f v(v+ a)H@w) dv= a_zf vH(v) dv + af v 2H(v) dv
0 0 a

)

=3a7? J vH(v) dv.
0

On the other hand,
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a‘2J vH(v) dv =< 8af v(v + a)H() dv
(5) o 0

= 8af v(v + a)°H(v) dv.
0

The second inequalities in (2) and (3) follow from (4) and (5) respectively. Observe that
(6) ER,<ER,,S,.— M,=a,) + P(S, — M, < a,).
Now,
ER,, Sn — M, = a,) < Y31 EQZ (X + @.)"?) = nEX3 (X + a,) 2
1
= 2nj tPX (X1 +a,) ' >t) dt

(7 0

1

= 2nJ tP(X: > (1 — &) lant) dt
0

= 2na, f v(v + a,) *H(v) dv
0

where we have substituted v = (1 — ¢)'a,t. The first inequality in (2) now follows from
(6), (7), (1) and (5). The first inequality in (3) is obtained by combining (7) with the
following:

ER, = nE(X}.S:%)
8 = nE(X3S:%| Sp-1 = an)P(Su-1 < a,)
=nEXHX: + a,)"?)(1 + 0(1)). O
The next result indicates the relationship between ER, and H in cases when EX; < oo.

We note that the upper bound applies even when EX; =  but it is not in general tight in
that case, as can be seen by supposing xH(x) — .

THEOREM 1. For any H,

9 ER, = O{n_l f xH(x) dx} .
0

IfEX, < w,

(10) ER, = n_lJ' xH(x) dx.
0

Proor. Consider any a such that 0 < ¢ < min(1, EX;). An estimate due to Chernoff
(1952) shows that

(11) P (S,-1 = an) = o(p")
where 0 < p < 1. Therefore
(12) P[S, — M, = an] = P[U;{S, — X; < an}]
= nP[S,-1 = an] = o(np")

so that (1) holds with a, = an. By (2),
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n

ER,<6a"?n"! f vH(v) dv{1 + o(1)}

0
which proves (9). Similarly, if EX; < a < o, then P[S, > an] — 0 by the law of large
numbers. Applying (3) with a, = an,

n

ER, = 2an? J v(v + an)*H(v) dv(1 + o(1))

0

n

= 2an’(n + an)'3j vH(v) dv(1 + o(1)),
)

which proves (10).0

We note that the upper bound (9) can also be obtained by a truncation argument like
that used later in Theorem 4. For the rest of this section we give some simplifications and
improvements in Theorem 1. We begin by showing that if H satisfies a moderate smooth-
ness condition then we may replace the integrals in (9) and (10) by quantities which do not
involve integration.

CoROLLARY 1. Suppose there exist numbers a > 1 and m > a2 such that H(ax) =
mH(x) > 0 for all large x. Then ER, = O{nH(n)} and if EX, < « then ER, =~ nH(n).

ProOF. Since H is non-increasing, the hypotheses ensure that H is R — O varying as
in Seneta (1976, pages 92-94). By his Theorem A.2,

(13) nH(n) = n™! J yH(y) dy.
0

The results now follow from (9) and (10).0

The next corollary provides an answer to Joffe’s original question as cited in the
introduction. It shows in particular that ER, = o{(ln n)™'} if E{X; In X;} < o.

COROLLARY 2. Let K be a function which is positive and non-decreasing for all large
x and for which there exists constants a > 1 and m > a™* such that K(ax) < m'K(x) for
all large x. If E{K(X1)} < o, then ER, = o{n/K(n)}.

ProoF. Let C be sufficiently large that the conditions on K apply for all x = C. These
conditions imply in particular that K(x) = o(x?) so that

J x{K(x)} ' dx = oo.
(e}
Also,
K(x)H(x) Sf K(y)F(dy) — 0,
so that H(x) = o[{K(x)}']. The last two statements together imply that
(14) f xH(x) dx = o{ f x(K(x))™ dx} .
0

C

The result now follows from (9) and (14) by applying (13) to {K(x)}™'.0
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If we now put further smoothness restrictions on H than we did in Corollary 1, we can
obtain a more precise result. Specifically we assume X falls in the domain of attraction of
a stable law with exponent b (notation: X; € 2(b)). For b < 2, this amounts to assuming
that H(v) is regularly varying with exponent —b. Note that this implies H satisfies the
hypotheses of Corollary 1. For b = 2, X, is in the domain of attraction of a normal law. A
sufficient condition for X; € 2(2) is of course that EX? < o, Background material for
these notions may be found in Feller (1971, VIIL8).

THEOREM 2. Suppose X; € 2(b) and p = EX; < . Then,

n

(15) ER, ~2n"'u? f vHv)dv if b=2

0

(16) ER, ~pT@2 - 01+ bnH(n) if 1=b<2.

Proor. We first assume 1 =< b < 2. Fix a <y, let a, = an, and let ¢ > 0. By Lemma 1
with the estimate (12) and by the substitution v = nu,

(17) ER. < [2n_la'2J vH(v) dv
0

+ 2anH(n) f H(nu){H(@n)} 'u(a + u)~® du} (1 + o(1)).

By the regular variation of H and by dominated convergence, the second integral in (17)
converges as n — o to

(18) f u'a+u) P du=05a""T2 — B + b).
By Theorem 1 on page 281 of Feller (1971), the first integral at (17) is
(19) f vH(v) dv ~ 272 — b)"'nH(n).

0

Since ¢ is arbitrary, (18) and (19) together give
(20) ER,=a T2 - 51 + b)nH(n){1 + o(1)}.

On the other hand, if EX; < a < « and ¢ > 0 is sufficiently small, similar calculations show
that

ER, = 2un*® f v(v + na)*H(v) dv{l + o(1)}
(21) "

= 2unH(n) J u'a+ w7 du{l + o(1)} = a "2 nHn)T'(2 — B)'(1 + b)

for large n. The result follows by letting a increase to x in (20) and decrease to win (21).
For the case b = 2, well known facts on domains of attraction (see Feller (1971), page
577) provide that x*H(x){ [§ v*F(dv)} ™' — 0 as x — . We deduce that

(22) nH(n) = o{n‘1 f vH(v) dv} .
. o
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As in (17) with a < p and ¢ = 1, we therefore obtain

ER, = |:2a_2n_1 J vH(v) dv + 2anf Hnu)u(a + u)™® du] (1+ o(1))
0 1
= [2a""n_1 f vH(v) dv + 2anO(H(n))}(1 + 0o(1))
0

=2a7%n7! J vH(v) dv(1 + o(1)).
0
By (22), [§ vH(v) dv is slowly varying. For a > EX; and ¢ > 0, we see from (3) that

ER, = 2n%a f (v) dv(1 + o(1))
0

v
(en + an)® H

=2n"la(e + a)_aj vH(v) dv(1 + o(1)).

0

These bounds on ER,, lead to (15).0
COROLLARY 3. ER,=n"'ifandonly if EX? < . In this case, ER, ~ n ' EX3}(EX)) ™%

Proor. The “if” part and the second sentence follow from Theorem 2. If EX; < o, the
“only if” part follows from (10). We delay the “only if” part with EX; = o until Theorem
5. 0

We have given an integral free expression for the asymptotic behaviour of ER, when
the conditions of Corollary 1 hold. When EX} < », we know ER, ~ n". Part of the gap
between these two cases is filled by the following result.

THEOREM 3. Suppose H(x) = x°1(x) where 7 satisfies the conditions specified in
Theorem 6 below. Then ER, = n(In n) H(n).

We do not prove this result, but only remark that the proof is similar to that of Theorem
6.

3. The case when EX; = «, It follows from Theorem 1 that if EX; <  then ER,
— 0. We begin this section with a more complete result.

THEOREM 4. ER, — 0iff [(H(y) dy is slowly varying (or equivalently iff {5y dF(y)
is slowly varying).

Proor. If ER,— 0, then S;'{max(Xi, X,, - -+, X,)} — 0 in probability. It was shown
by Breiman (1965) that this implies the slow variation of the integral. (This result is
compatible with those of Logan et al (1973) and Darling (1952).)

Now suppose [5H(y) dy is slowly varying. It is shown by Feller (1971, pages 236-237)
that there exists constants a, > 0 such that, for ¢ > 0,

(23) P(|az'S, — 1| > ¢) < ne%a;? f x* dF(x) + nH(a,) — 0.

0

It follows that
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ER,=<4a7;E(T,, all X,<a, and S,=%a,)
(24) + P(some X;> a,)+ P(S, < %a,)

s4a;2nf x*dF(x) + nH(a,) + P(S, < %a,)— 0. 0O
0

The next result shows that if EX; = «, ER, cannot converge to zero at anything but a
slow rate.

THEOREM 5. Suppose EX; = «. There is a slowly varying sequence b, such that lim
SUP e b ER, = o0,

Proor. By Theorem 4, we may assume pu(x) = [5y dF (y) is slowly varying. By Feller
(1971, page 236), we may choose constants a, such that
(25) P(S,=2a,)—>0

and such that, as a function of n, a, is an inverse of the regularly varying function s (u(s)) ™.
The result of Seneta (1976, page 21) shows that a, is itself regularly varying with exponent
1. Using the hypothesis EX; = o, an integral comparison test yields

Saci (Inn)?H(n(n n)™) = »
so that H(n(In n)™%) > n"! for infinitely many n. Thus
P(T,>n*(n n)™*) = P(max (X1, X, + -+, X,) > n(ln n)™2)
=1-[F(n(n n)~%]" -40.
Combining this with (25), we see that there exists C > 0 such that
ER,=E(R., S. <2an, T, > n*(n n)™)

= (2a,)7’n*(In n)*[P(T, > n*(n n)™) — P(S, = 2a,)]

=Cn%a;*(Inn)™*
for infinitely many n. The result follows with b, = a2n"%(In n)°. O

We have shown that, if the integral in Theorem 4 is slowly varying and if EX; = «, then
ER, converges slowly to zero. In the next theorem, we put some smoothness conditions on
H and then obtain a precise rate.

THEOREM 6. Suppose H(x) = x~'7(x) > 0 for all x > 0 where 7 satisfies
A
T(xY) _

(26) m=< T

for all A € [1, a] and x = A where m, M, a and A are constants satisfying
O<a'l<m<l<M<o,
Then ER, ~ (ln n)™".

Proor. First observe that K(x) = r(e*) is R — 0 varying and the hypotheses of
Theorem A.2 of Seneta (1976, page 94) are met. For y = x = In A we therefore have

B a
@7) m [m x] ) =1 =M [I“—y] ()

m In x
where a = (In M)(In @) " and 8 = —(In m)(In @) ™! < 1. It is obvious from (27) that
(28)  (x) = O((ln )%
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and

(29) (In x)7% = O(r(x)).

By Seneta’s theorem we also have
x x In x

(30) J’ H(y) dy=j ylr(y) dy=j 7(e') dt = 7(x) In x.
A A InA

Foranyg>0andforO<p<gq(q + 1)},

fy"H(y) dysf ye dy+f Yyl (y) dy
0 0 x

=(g+ )72 + g7 x%sup{r(y):xa” = y < x}
=q'x%(x)m 'p (1 + 0(1)),

where we have used (29) and (27). A similar lower bound shows that in fact for any q > 0

(31) f yH(y) dy = x7(x).
0
Define b, = nt(n) In n. Then
(32) n(n n)*? = b, = Cin(n n)**
for large n. Thus,
(33) (In(86,))(Inn)'—1
as n — o for any 8 > 0. It follows from (27) that
7(8b,) Inn ¥ m
(34) Tm)szm%ﬁ]ZE

for sufficiently large n and that
(35) 7(8b,) = 7(n).

Now define X; = X, if X; < b,,, 0 otherwise. Let S;, = Y%, X/ and let
by
(36) a.=ES,=n f
0
The last integral nfé’" H(x) dx = n7(b,)In b, = nt(n)ln n = b, by (30), (33), and (35) and
similarly nb, H(b,) = nt(n). Thus,
(37) a, = b,.
The next step is to estimate the rate of growth of S, by a truncation argument and
Chebyshev’s inequality (see also Feller (1971), pages 236-237). For any ¢ > 0,

P[|S. — an| > ea,] = P[|S) — a,| > ea,] + nH(b,)

by
x dF(x) = —nb,H(b,) + nJ H(x) dx.
0

b,
(38) =e%ayn J x2 dF(x) + nH(b,)
0

by,
=2¢72%a;%n f xH(x) dx + nH(b,)
0

= Cy(an’nb,7(by)) + nby'r(by)

< Csnb;'r(n) = Ci(ln n)™,

for n sufficiently large, where we have used (31), (37), and (35). A similar truncation at b,
combined with the argument at (24) yields the upper bound



THE EXPECTED RATIO 1027
(39) ER,=O(lnn)™).

Next, choose § € (O, %—) where Cs is given by (38) with e = 1. By (35),
3

(40) nH(3b,) = n

nr(n)lnn 7(85,) > 0

as n — . On the other hand, by (34),

m

for large n. By Bonferroni’s inequality, (40) and (41),
Plmax(Xi, Xy, - -+, X,) > 8b,]= nH(8b,) — (’2‘) (H(8b,))*

(42)
= % nH(8b,) = 51—
for large n. By (38) with ¢ = 1, (42) and (37),
ER,= i—:l-’% P[T, > 622, S, < 2a,] = Cs{P[ T, > 6°b2] — P[S, > 2, ]}
(43) = Cy{ P[max(X, -+ -, X,) > 8b,] — Cs(In n)™1}

m G| m 1
=C {m m}—@ (5 03)““ n)

for sufficiently large n. The theorem now follows from (39) and (43). O

REMARK. It is obvious that if EX; < o then lim inf xH (x)Iln x = 0. We see from (29)
that this is not true here; thus the hypotheses of the theorem imply EX; = . By (27) the
hypotheses also imply that [§H (y) dy is slowly varying.

We note that (38) gives us the following rate of convergence result for a generalized
weak law of large numbers.

CoRrROLLARY 4. Let H satisfy the hypotheses of Theorem 6 and define a, by (36). For
>0,

Plla;'S, — 1| >¢] = 0((In n)™).

4. Further ramifications and examples. Theorem 2 implies nER,— 1 + a~* when
X: has a Gamma («, 1) distribution. Simulations (when « = 0.5) indicate that the
convergence occurs very rapidly. We also simulated the value of R, for variables having
densities of the type f(x) = ¢(1 + x)™*~! for x > 0, f(x) = 0 otherwise. For example, when
b = 1.5, the asymptotic behaviour should be given by (16), but graphs indicated a highly
erratic behaviour. This results from the fact that R,/ER, — 0 in probability in this case.
In other words, the asymptotic behaviour of samples (and hence sample means) of R,
differs profoundly from that of ER,. This can be shown whenever H(x) is regularly varying
with exponent —b, 1 < b < 2, by first demonstrating that

(44) nH(dY?) — 0

where d, = n’H(n) = n’ER, = S:ER, and then verifying by truncating each X; at d?
that (44) implies d,'T, — 0 in probability. Thus, under these conditions, the rate of
convergence apparent in (16) represents for a single sequence (or average of a fixed number
of sequences) an empirically unverifiable phenomenon.

Many of the foregoing results do not depend heavily on the independence of the random
variables X; X,, - - .. Assume now that the random variables are identically distributed but
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possibly dependent. Take a, = an in Theorem 1. In order to draw the conclusion ER, =
O{n™" [§ vH(v) dv} we may replace o(-) in the condition (1) of Lemma 1 by O(.). It is
sufficient, then, that P{S, < @.} = O(n™"). This may be seen to hold under a variety of
dependence assumptions using only Chebyshev’s inequality, for example when the se-
quence of random variables is pairwise independent, or when second moments are finite
and the random variables are orthogonal. Similarly, the condition of Lemma 1(b) may be
replaced in the case a, = an, a > EX; by the condition lim sup P{S, > an} < 1. This is
also an easy consequence of Chebyshev’s inequality in many cases.

Consider the class of examples obtained by letting H(x) = x~*(In x)” for large x where
b=0and —o<r<o (withr<0ifb=0).Ifb>2o0rif b =2 and r < —1, then EX? <
o and ER, ~ n"'u"2EX3 by Corollary 3. By Theorem 1, ER, ~ n '(Inln n) if 6 = 2 and r
=—-land ER,=n'(lnn)*'ifb=2andr>-1.If1<b<2o0rifr <—1and b = 1, then
ER,=n'"(nn)" If b =1and r = —1, we obtain the answer from the proof of Theorem
6. Let b, = nIn In n and calculate directly that @, = b,. Then deduce that ER, = {(In n)(In
Inn)} "L If b=1and r > —1, Theorem 6 implies that ER, = (In n)~". Finally, if b < 1, it can
be shown that ER, = 1 by the results of Logan et al (1973) and Darling (1952).

Acknowledgment. The authors are grateful to Professors H. Kesten, Y. Ogura and
S. I. Resnick for pointing out references 7, 8 and 1, respectively.
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