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MOMENTS AND ERROR RATES OF TWO-SIDED STOPPING RULES'

By ApaM T. MARTINSEK

University of Illinois at Urbana-Champaign

For Xi, X5, - « - iid.,, EX; =p#0,S, = X\ + . . - +X,, the asymptotic
behavior of moments and error rates of the two-sided stopping rules

inf {(n=1:|S,|>cn*},c>0,0=a<1,

is considered. Convergence of (normalized) moments of all orders as ¢ — o is
obtained, without the higher moment assumptions needed in the one-sided
case of extended renewal theory (Gut, 1974), and in a more general setting
than just the iid. case. Necessary and sufficient conditions are given for
convergence of series involving the error rates, in terms of the moments of X;.

1. Introduction. Let X, Xi, X, - - - be i.i.d. with mean y, and let S, = X; + - - - +
X,.. If p > 0, the stopping time N. of extended renewal theory is defined by

(1.1) N.=inf(n=1:S,>cn},¢c>0,0=a<1.

Since N. —  a.s. as ¢ — o, by the Strong Law of Large Numbers

(1.2) (c/p) V09N, > las. as c—> o,

As for the moment convergence in (1.2), Gut (1974) has shown that for p > 1,
EXYP<wo ENZ<own al ¢>0

13) < EN? ~ (c¢/p)P"™* as c¢—> o,

Assume now that p 5 0, and define the two-sided stopping rule N, by

(1.4) N.=inf{n=1:|S,|>cn},c> 0, 0==a<l
It is clear that
(1.5) (¢/|u]) V"N, - las. as c—> o,
Because N, < N,, from (1.3) and (1.5) it follows that if ¢ > 0 and E (X"} < , p > 1, then
{(c™V/*"9N,)?: ¢ = 1} is uniformly integrable
and
ENZ ~ (¢/|p|)PP™® as c¢— o.

It is natural to ask whether the sufficient condition E (X )” < o is also necessary, as it is
in the one-sided case. Theorem 1 of Section 2 and its corollaries assert that this condition
is not necessary, that is,

{(cV'"YN,)P:c = 1} is uniformly integrable for all p > 0,

provided only that u 7 0. In fact, this result is shown to be true not only for i.i.d. sequences,
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but for more general sequences of independent random variables under conditions to be
discussed below.

Another issue of importance is the asymptotic behavior of P(Sy < 0) as ¢ —  for p
> 0 (and of P(S5 > 0), ¢ — o, for u < 0), which corresponds to the error probability in the
case of a sequential test. This asymptotic behavior when |X| has a finite moment-
generating function has been investigated by Berk (1978), for very general stopping
boundaries. In Section 3, necessary and sufficient conditions for the convergence of series
involving P(S§5 < 0),j =1, 2, --- are obtained in terms of the moments of X~. These
results are similar in nature to the random walk results of Hsu and Robbins (1947), Baum
and Katz (1965), and Chow and Lai (1975).

2. Asymptotic behavior of moments of N. The requirement imposed on the
sequence of independent random variables in Theorem 1 involves a corresponding sequence
of centering constants a,, and is twofold. First, the delayed averages of the a, should
converge uniformly to p # 0 and finite (Condition (2.1)). Second, the centered random
variables X, — a, must obey the Weak Law of Large Numbers uniformly in their delayed
sums (Condition (2.2)). When these conditions are satisfied, Theorem 1 gives the uniform
integrability of (¢’ /*" ¥ N,)?, allp > 0,0 <= a < 1.

THEOREM 1. Let X, Xz, --- be independent random variables, and assume there
exists a sequence of real numbers a, such that if Apn = Y1 Qr,, then
(2.1) n Ay, — u # 0 (finite) as n — o, uniformly in k,

and for all ¢ > 0,

(2.2) P(|Spn — Apn| = en) > 0 as n — o, uniformly in k,
where Sy, = Y1 Xi+;. Define

(2.3) N.=inf {n=1:|S,|>cn*}, ¢>0,0=a<]l1.
Then

(2.4) (Y9 N.)P:c = 1} is uniformly integrable, all p > 0.

Proor. Without loss of generality, 4 = 1. Choose 8 so that 0 < « < § < 1, and assume
¢ =1, K = max(Ky?, 4/ %) where K, = 1 is chosen so that

(2.5) n=Ko= P(|S,.|= (%)n) <% for all j
(this can be done by (2.1) and (2.2)). It follows from (2.5) and independence that
n= KO = P(maxjsm I S(j—l)n,n | = (I/Z)n) = (1/2)”‘,

for all m. In order to simplify notation, assume that K¢/~ and K°c*/"~ are integers.
Then by the triangle inequality,

P(N. > K% ¥) = P(max<g:/0- j | S;| < ¢)
=< P(max,<gc/u-o | S| < Kec®/=¢)
(2.6) = P(max,=g./u-o | S,| < K*c/"%)
= P(maxj=(x] | Sy-prser-o, grovow| < 2Kc!/17)
= P(max=ix]| Sy-yrrerio, g < () KeV/07)

< (1/2)[K1—6]
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Hence for L = max (Ky/?®, 47/0),

(2.7) j 2P 1P(N, > xc/ ") dx < J L ()* ldx = 0

L L
as L — oo, uniformly in c. That is,
{(cY9"N,)?: ¢ = 1} is uniformly integrable for all p > 0.

In the following two corollaries, results are given only for the case p > 0; the analogous
results for u < 0 can be obtained easily from these by replacing X with —X, S, with —S,,.

CoroLLARY 1. Let X, X1, X, - -- beiid., EX = pu > 0. Define

(2.8) N=N,,.=inf{ln=1:S, & [-ein% c2n*]}, c1, 2 >0, 0= a < 1.
If ¢; = O(cz) as ¢ = min(cy, cz) — o, then *

(2.9) {(czV'"®N)?:c = 1} is uniformly integrable

and

(2.10) EN? ~ (c2/uy?’" as ¢ — o, all p > 0.

Proor. Consider first the case ¢; = ¢2 = c. If p € (0, =), (2.9) is immediate from
Theorem 1, putting a, = u for all n. When p = o, n”'S, — « a.s., and therefore

(2.11) sup, P(| S| = (%)n) < ¥
if n is sufficiently large. By (2.11) and the proof of Theorem 1,
(2.12) {(cY " N)?:c = 1} is uniformly integrable

for all p > 0, proving (2.9) when u = . In the general case, assuming that ¢; = O(c;) as ¢
= min(c;, ¢z) — %, define

(2.13) Nejve, = inf{n = 1:|S,| > (1 + ¢2)n*}.

From the proof above,

(2.14) {[(c1 + )" N, 4e,]7:¢ = 1} is uniformly integrable for all p > 0.

Because N < Nc., and ¢1 + ¢z = O(cz) as ¢ — o, (2.9) follows from (2.14). (2.10) now
follows from (2.9), since c; /" ® N — u™ %079 a5, as ¢ — oo,

COROLLARY 2. LetX;, Xs, - -- be independent random variables with EX, = a,, and
assume (2.1) holds for some p. € (0, ), and that

(2.15) sup, E| X, — EX,|" < « for some r > 1.

Define N by (2.8). If 1 = O(c2) as ¢ = min(ci, ¢z) — o, then

(2.16) {(czY ¥ N)?:¢c =1} is uniformly integrable,
and
(2.17) EN? ~ (c2/uw)? "™ as ¢ — », all p > 0.

ProoF. We may take r = 2. By the Tchebychev and Marcinkiewicz-Zygmund ine-
qualities (see Chow and Teicher, 1978, page 356), forn, k= 1,2, «++, Ap» = 3} ar+j, and
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some B, € (0, ©) (depending only on r),
P(|Se,n— Apn|=en) = e 'R "E|Sku — Arnl”
=B, e 'nEQi (X, — a)°)"
(2.18) =B 'nEQIHT X —«l)
< B.e"'n”"(nM), where M = sup, E| X, — a.|,
=B Me'n'"">0 as n— o

uniformly in Z.
Thus (2.2) holds, so by Theorem 1

{[(ci + ) """ Ney 1] e = 1}
is uniformly integrable, all p > 0, and (2.16) follows as in the proof of Corollary 1. By a
theorem of Loéve (see Chow and Teicher, 1978, page 121),

n7'S,—>u as.as n— oo,
so
(2.19) c;V/ION - VW a5, ¢ o, )
and thus (2.17) follows immediately from (2.16) and (2.19), finishing the proof.
3. Asymptotic behavior of the error rates associated with N.. For X, X1, Xo, -

iid, EX=u,S,=X:+ .-+ X,, Berk (1978) has proved (as a special case of a much more
general theorem) that if E (exp(¢]| X |)) < o for some ¢ > 0,

log[ P(Sx. < 0)] ~ —Ac/"™ as c—
for u > 0, and similarly
log[ P(Sx. > 0)] ~ =AcY/"™ as c¢— o

for u < 0, where A is a positive constant which depends on the moment-generating function
of X and on «. It is natural to ask about the asymptotic behavior of these probabilities
when X does not necessarily have finite moment-generating function, but does have finite
pth moment for some p > 1. Theorem 2 gives necessary and sufficient moment conditions
on X~ for convergence of series involving the probabilities P (Sy, <0), u > 0 (the analogous
results about P(Sx, > 0), u < 0, follow immediately upon replacing X by —X throughout).
Using the random walk results of Chow and Lai (1975), upper bounds for such series in
terms of the moments of X are also obtained.

THEOREM 2. Let X, X1, X», - -+ beiid., EX = u > 0, and define

N.=inf{n=1:|S.|>cn*},c>0,0=a<1l.

Assumep > 1.
(1) If a = 0, then for every y € (1, 2],
(81) Y7 P %P(infis,Si<0) = Ap” ' {[p 'EX -w) 1"+ WE| X - w|n)E/ ey
where A = A, , € (0, ) depends only on p and y. Furthermore,
3.2) E(X7)? < w0 Y7 j72P(infy=, S5, < 0) < o & Y7 j*°P(Sx, < 0) < .
(ii) If a > 0, then (3.1) holds for every y € (1, 2]. Furthermore,
(3.3) E(X7)" < o= Y7 j"*P(infi=,S§, < 0) < o,
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and
(3.4) YEJPPP(Sy, <0) <o = E(X )<,
where s =max(p — 1, (p — 1)(1 — a) + 1).

Proor. (i) Assume E(X™)” < . Then by Kiefer and Wolfowitz (1956),

(3.5) E (supp=o(—S,)) 77! < o,
so that
(3.6) YT JP PP (infi=;SF, < 0) = Y7 jP 2P (supn=o(—S,) >J)

= K, E (supn=0(=S,)) 7" < o0,
where K, € (0, ©) depends only on p. By Theorem 1 and Lemma 2 of Chow and Lai (1975),
(8.7  E(supn=o(—S.))""" = E (supn=o(pun — S, — un))”™*
= Cup" {[pE(X =717 + (WE| X — 1))

for every y € (1, 2], where C = C,, depends only on p and y. Combining (3.6) and (3.7)
proves (3.1), with A = K,,C,,,. Finally, )

YTJPPP(Sr <0) = Y P P Bia P Xi| <J, «+ -, | Skt | < 7, Xk > 27)
(3.8) =YY P X1 <, -+, | Set| = J) P(X™ > 2j)
= 3217 P(X™ > 2)) Ti P(N, = k)
= Y727 P(X™ > 2j)E(N)).

Suppose that
37 /7P (Sx, < 0) < .
Since EN; ~ j/u as j — o, it follows from (3.8) that
ITJPTIP(XT > 2)) < o,

and hence E (X7)” < c; combining this result with (3.6) finishes the proof of (3.2).
(ii) The proofs of (3.1) and (3.3) are similar to those in Part (i). To show (3.4), assume

Y7 jP2P(Sx, < 0) < .

We have
YEJPP(Sy, < 0) =Yg R P(I X S, oo, | Sk | < j(R = 1), X5 > 2jk%)
(3.9) =22 J" 7 i P(N, = k) P(X™ > 2jk°)
=N P R P(N, = k) P(X™ > 2jk%)
= P72 jPP (X > 2/ e/ ey UMY PN, = k).
Now
(310) j—l/(l—u)min(l\_]j’ (j/‘u)l/(l—a)) — ‘u—l/(l—n) a.s.

asj — oo, and

(3.11) 7V min( N, (/) 0) < g0,
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hence by dominated convergence

(3.12) E[min(N;, (i/p)Y" )] ~ G/u)Ve® as j— w.
Therefore, from (3.9) and (3.12),

(3.13) Y P2+ /1= p (X~ 5 g ~e/(=a)j1/(-0)) < o
and it follows that

(3.14) E(X7)Pr 0ot < oo,

Since

(3.15) YT P (SF, < 0) = BT j7°P(X7 > ),

we have also
(3.16) E(X7)"! <o,
which together with (3.14) completes the proof of (3.4).

REMARK. The implications
E(X7)? <= Y7 j?2P(infi=;S7, < 0) < oo,

as well as the inequality (3.1), remain true for
N.=inf{n=1:8S, € [-cn*, f.(n)]},
where f. is any positive function. The implications
YPjPPP(Sy, <0) <o = E(X7)P <o, a=0

and

$TJ P (Sx, < 0) < 0= E (X)X pbem 00w <0 g5,

hold if
N.=inf{n=1:S, & [—cn® dn°]},

provided that d = O(c) as min(c, d) — « (in both cases the proofs given for Theorem 2
apply with minimal change).
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