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LIMIT THEOREMS FOR SOME RANDOM VARIABLES
ASSOCIATED WITH URN MODELS

By L. FLaTTO

Bell Laboratories

Balls are successively thrown, independently and uniformly, in n given
urns. Let N, be the number of throws required to obtain at least m balls in
each urn. Let N7, be the number of urns containing exactly r balls upon
completion of the N, th throw, r = m. We prove that, given N,,,, = [n logn
+ (m — 1)nloglog n + nx], Npm, ~ e *(log n)"™*'/r! as n — ® in probability.
From this, we derive the following limit law for the joint distribution of N,;,

ooy Ny limy o P(Np, < nlogn+ (i — Dnloglogn + nx; 1<i<m) =
1 exp(—(1/(i — 1)!)e™™). This result generalizes earlier work of Erdos and
Renyi who obtained the limit law for N, . as n — .

1. Introduction. Consider the following classical urn problem. Balls are successively
thrown, independently and uniformly, in n given urns labeled 1, ---, n. Let Ny, 1 =<n,m
< , be the number of throws required to obtain at least m balls in each urn, in which case
the urns are said to be covered m times. Erdos and Renyi [1] have proven the following
limit law.

THEOREM 1. Let N, = nlogn + (m — 1)n log log n + nX, . Then lim, .. P(Xym
=x) = exp(—(1/(m — 1)})e™™).

Using this result, it is possible to derive the asymptotic behavior of the expectation
E(Nym).

THEOREM 2. E(N,.) =nlogn+ (m —1)nloglogn + C,n + o(n) as n — o, where
C,, =y — log(m — 1)\, y being Euler’s constant.

This result had previously been obtained by Newman and Shepp [5], except for the
value of C,.

The above theorems reveal the rather surprising feature that, up to first order terms, it
takes n log n throws for the first cover, each subsequent cover requiring only an additional
n log log n throws. To obtain a better understanding of this phenomenon, we derive limit
theorems for N}, ., N, . conditioned on N,, ., where N .., N . are respectively defined to
be the number of urns containing precisely m balls upon completion of the N, ,.th throw,
and the number of throws past the IV, ..th one required to obtain at least one more ball in
each of N}, urns. Thus Nym+1 = Num + N7 for all n, m.

The following two limit theorems will be proven in Sections 2 and 3. We indicate here
how they imply N, .. ~ n log log n in probability as n — «, 1 = m < , and the specific
form of the limit law of Theorem 1.

THEOREM 3. Let N(n, m, x) = [nlogn + (m — 1)n log log n + nx], [x] denoting the
largest integer < x. Let N}, r = m, equal the number of urns containing precisely r
balls upon completion of the N, th throw (In particular N, mm = Ny»). For each e > 0,
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Niwr
e—x(log n)r—m+l
r!

lim, .. P 1|>e|Nym=N(n,mx) |\ =0

uniformly on every finite interval a < x < b.

THEOREM 4. Let N* be the number of throws necessary to obtain at least one ball in
each of the urns 1, - .-, k (k < n), the balls being thrown independently and uniformly
into theurns 1, --., n. Then

lim; . P(N% < nlog k + ny) = exp(—e™).

Theorem 3 states that, given N,.,, = N(n, m, x), N}, ~ e *(log n)""™"'/r!in probability.
This result can be derived heuristically. Let N = N(n, m, x) balls be thrown into n urns.
The probability of hitting a specific urn is 1/n. As n — o, the number of balls in a given
urn becomes Poisson distributed with parameter A = N/n. Hence given N,,,, = N(n, m, x),
the number of urns with r balls should be ~(A"/r!)e™n ~ e *(log n)"™*'/r!. Since N, .,
= N¥ with 2 = N}, we conclude from Theorems 3 and 4 that N7, ~ n log log n in
probability. Theorems 3 and 4 explain the limit law for N, . For they readily imply

limy e P(Npm+1 < nlog n + mn log log n + n{y — log m!}| Nu» = N(n,m, x))
(1.1)

]
= limn_,wP<N,’{,,,, =n log<£m+gn> + ny|Npm = N(n, m, x)) = exp(—e™).

We may drop the condition N, , = N(n, m, x) in the first line of (1.1). Substituting y for
y — log m!, we get Theorem 1.

In Section 3, we derive from Theorems 3 and 4 limit laws (unconditioned) for N7, .,
N .. We also show that the random variables X, ., 1 = m < «, are asymptotically
independent as n — .

We conclude with another explanation of Theorem 1, though only heuristic. Let m > 1.
Since N7, 1n—1 will be much larger than N},;,, 1 =r < m — 1, N, should roughly equal
N,1 + N7 im-1, where N, 1,1 is the number of throws past the N, th one required to
obtain at least one additional ball in each of the N7,1,,—1 urns. Theorem 3 then yields

limy o P(Npm <nlogn+ (m — 1)nloglog n + n{y —log(m — 1)!} |

—X m—1
(1.2) N,1=[nlogn + nx]) = limn_,mp(1\];{)1’”‘_1 =n log(e (Sloﬁ’;))' )

+ ny| N, =[nlog n + nx] | = exp(—e™).

We may drop the condition N,; = [n log n + nx] in the first line of (1.2). Substituting
y for y — log(m — 1)!, we get Theorem 1.

Whether the above argument can be made rigorous is left here as an open problem.

The author thanks L. A. Shepp for several helpful discussions concerning the contents
of this paper.

2. Proof of Theorem 3. We derive asymptotic formulas for the expectation and

variance of N}, ., conditioned on N, . Chebychev’s inequality then proves Theorem 3.
Let

X = 1, if urn i contains exactly r balls upon completion of N, ,, th throw.
! 0, otherwise.

Thus Nym=X1 + -+ + X,,. Let Pomny = P(Nym = N). Then

@1 E(Xi -+ X, Nun=N) = 5 !

n,m,N

(Qn,m,/,r,N + Rn,m,/,r,N)
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where
_p N,»= N;urns 1, ..., £ contain exactly r balls upon completion of
Qumern = Nth throw; Nth ball falls in one of the urns 1, -+ -, ¢
_p Npm = N;urns 1, - ., ¢ contain exactly r balls upon completion of
Rumern = Nth throw; Nth ball falls in one of the urnsZ + 1, --.,n

We first derive exact and asymptotic formula for E(X; - -+ X;| Num = N).

LEMMA A.
N-m
. 1 (N-1 1
l) Pn,m,N = F(m _ 1)(1 - ;) P(Nn_l,m = N - m)
) (N —1)! 1 AT
11) Qn,m,t;m’N = / (m!)/_l(m — ]_)'(N — /m)' 7"(1 - ;) P(Nn_/‘m = N - /m)
(22) Qn,mj,r,N = 0, r>m

(N -1)! 1
#D)m — DN — r£ — m)! n™tm

111) Rn,m,/‘r,N = (n - [)
N—ré—m
1
.(1 _ f_::_> P(Nososm=<N—ré —m).

Proor. 1) Let the Nth ball fall in urn i, 1 < { < n, the remaining m — 1 balls in urn ¢
being thrown in at the specified times 1 < Ny < N; < ... = N,,-;1 = N — 1. The probability
of this subevent of (N, = N) is (1/n™(1 — 1/n)¥"™P(N,_1m < N — m). Since there are
n N-1

m-—1

ii) If N,» = N and the Nth ball falls into urn i, then urn i contains m balls upon
completion of the Nth throw. Hence @, m..r~ = 0 for r > m. To derive the formula for @
in case r = m, we argue as follows. Let the Nth ball fall in urn i, 1 =i < /. Of the first N
— 1 balls, urn ¢ gets m — 1 balls, each of theurns 1, .-+, —1,i + 1, .- - £ gets m balls, the
remaining N — /m balls falling into urns £+ 1, ..., n and: covering these m times. The
subevent of (N, = N) obtained by specifying i and the times at which the balls are
thrown into 1, .- -, ¢ has probability

such subevents, we get the desired formula for P, .

(N-1)!
(m) "' (m — HI(N — ¢m)!

1 f N—¢tm

W(l - —) P(Ny—ym =N — ¢/m). There are ¢

n n

such subevents, so that we obtain the desired formula.
iii) The reasoning is identical with that of ii) and is omitted. To obtain an asymptotic

formula for E(X; -+ X;| N.» = N) we require an estimate on the rate of approach of

P(X,n < x) to its limit exp(—1/(m — 1)!e™*).

LEMMA B. P(X,n<x) = exp(— (me_ 1)!) + 0<lolgolg0;g2 n>.

REMARK 1. Lemma B is a special case of a result of Kaplan [See the remark in 3, page
216]. The proof presented here is more elementary.

REMARK 2. The above estimate is understood to hold uniformly on any finite interval
—a=<=x=a.le forany a >0,

P(Xn,m = x) - exp( - ) ‘ < C(m, a) log log n ’
log n

¢
(m —1)!



930 L. FLATTO

2=n<owand —a = x < a. C(m, a) is a positive constant depending on m, a but
independent of n. This uniform interpretation of the 0-sign is assumed throughout this
section. (In formulas (2.8), (2.9) the estimates are uniform in the two variables x, j)

REMARK 3. For m = 1, the above error estimate can be improved to O(log n/n). We
leave out the derivation as the estimate of Theorem 2.2 more than suffices for our purpose.

PrOOF. Assume, without loss of generality, that for given n, x runs only through
values for which N(n, m, x) is an integer. Let | x| < a, and choose n sufficiently large so
that N(n, m, x) > 0 for | x| < a. Let N = N(n, m, x) and

P, = P(upon completion of Nth throw, some urn has m — 1 balls)
P, = P(upon completion of Nth throw, some urn has less than m — 1 balls)

The event (X, » > x) means that upon completion of Nth throw, some urn has less than
m balls. Hence

N—j
1 1
2.3) |P(X,,,,,,>x)—P1|5P25n2}"=32<1;.]);j<1—;> :
. [N\ 1 1\" _(nY T 1
Smce(});(l—;) S(;)e =0 W , we get
(2.4) P(Xn,me)=1—P1+O( ! )
logn

By inclusion-exclusion

(2.5) 1- P =Y (=1)m,,

where 7,, = (;l -P(in first N throws, each of the urns 1, - -, j contains exactly m — 1
balls). Thus

n

B N! 1 F\
26) M = (j)'((m DYV = jm = D) D (1 - Z) :

Let /= [log n/log log n], n = 3 and write

1 .
1-— P1 - exp{—me_"} = (1 - Pl - /j_=10 (_l)l'ﬂn,j>

~ —e* e *
—1 . —_ ® — =
+ Y=o (_1)1<7Tn,]]-—“‘_—_!((m Y ) FKj!((m Y A+ A + As.
Taking logarithms of both sides of (2.6), a straightforward though somewhat tedious
calculation yields

(2.7)

e loglogn .
2.8 nj =————-——<1+ —_ |, =L
@8 i Ji((m — 1)!)’{ 0<j logn )} J=
We conclude from (2.8) and Stirling’s formula,
2 -0(<) =02 h =
(2.9) me=O0\Z7 ) =0\ ) where |x|=a.

From (2.9) and the inclusion-exclusion inequalities
1-P =Y (-1)m,,;, k even

(2.10)
1-P = 2’;‘=0 (—l)j‘ﬂn,], k odd
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we get
(211) |A1|<Wn/=0<7)
Similarly,

e 1
(2.12) |A3|—O<7!)—0 -\/—;>
Inserting (2.8) into the series for A,, we get
(©2.13) |4;] = O (loglogn)

logn

Lemma B follows from (2.7) and the estimates (2.11) — (2.13).
Welet N=N(n,m,x),s=r—m, A= (Nnn=N).

LeEmmMma C.

— s\’ (s+1-1 oo ]
E(Xl "'X/IA)=(-er—'£(£:/_)_> +0((logn) og Ogn)‘

Proor. From (2.2), we have

( Y N—(m
Qn,m,/,m,N _ l (N - m)! 1 n )
Py (m)" | (N = ¢m)! nt=0mH ( 1 )N—m

(2.14)
P(Npm-¢= N — ¢m)
P(Nyn-1=N-m)’

Let B be the quantity inside the parentheses. A computation yields

—x /—1
(2.15) p=lelogn) (1 N 0<log log n )) ~
n logn

It is readily checked that
(2.16) Nn,mx)—¢m=N@mn—4¢m,x’) where x' —x= O(logn) .

n

It follows from (2.16) and Lemma B that

(2.17) P(Npn_yr=<N — ¢m) = exp(—e"‘)(l + 0<lﬁgl°ﬂ)) i
logn

We conclude from (2.15), (2.17) that

Z<e“ l(:g n )H
Qnm,irN _ m: 1+0 loglogn
Py n’ logn ’

Similarly, we derive

—X s+1\ 7/
2.19) Ry irn _ (e (log n) 1+0 log log n '
Py r'n log n

Lemma C follows from (2.1), (2.18), 2.19).

(2.18)
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2s+1
LEmMMA D. Cov(XiX:|A) = O<(log n) n;log log n) '

Proor. Since X;, X, are identically distributed, Cov(X;iX2|A) = E(X:X;|A) —
E*X;|A). Lemma D follows from Lemma C, upon setting /=1, 2.

LEMMA E. E(Njn.|A) =‘jn—, (log 7)**' + O(log log n)
6% (Nym|A) = O((log n)**'.log log n).

ProOF. As the X/s are exchangeable random variables, we have E(N,n.|A) =
nE(X;|A)
63 (Npm|A) =no*X;) + n(n — 1) Cov(X:1X:|A) = n E(X1|A)

+n(n—1) Cov(XiXz|A).

(2.22)

Lemma E follows from Lemmas C and D.
Finally, Theorem 3 is a direct consequence of Lemma E and an application of Cheby-
chev’s inequality.

3. Limit Laws. We derive in this section limit laws for the random variables N7, .,
N} .., and the sequence {X, 1, Xn 2, +++, Xnm} as n — . These limits laws are derived
from Theorem 3 and from the following.

THEOREM 4. Letl<Fk=n, —a=x<=<a,where a>0. Let N* be the number of throws
necessary to obtain at least one ball in each of the urns 1, - - - | k, the balls being thrown
independently and uniformly into the urns 1, - - - , n. Then lim;_..| P(N% < nlog k + nx)
— exp(—e™™) | = 0 uniformly in n and x.

ProoF. Let N = nlog k + nx. Assume % = k, where log k&, > a. Thus N > 0. Without
loss of generality, we may assume that for given n and %, x runs only through those values
for which N is an integer.

Let ¢ be a positive integer. For & > ko, write

\N
P(NE=N) — exp(—e™®) = <P(Nk =N =3~ (_l)j(k')(l - 'J_l> )

J
3.1)
AN : .
. e ’* -1 _
+ oo (—1)f<(f>(1 —%) -5 ) - 3‘-’=,»+1(—j—!)—e AL+ Ay + Aa
By the inclusion-exclusion inequalities
k c+1\ RN 1 e (44 1)
2 A= 1- = N

32) |41l <f+ 1)( n ) SR Z+1)

A computation shows that for given J,

AN
log{k<k—1> A 1)(1_%) }

(3.3)
=—jx+ O(

log %
k

) uniformly for |x|<a,n==%.

Hence, for fixed j,

1 Y g
(3.4) limk-—>w< )(1 -1 ) =—— uniformly for |x|=a,n=%.
J n J!
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Let ¢ > 0. Choose ¢so that }j=.+; e¥/j! = ¢/3. Then | As| < ¢/3 and, by (3.2), | A;| = ¢/3
for |x| <a,n=k By (3.4) AK.> ko, £3|As| <e/3for |x| < a,n=Fk>K,.. Hence | P(N}
= N) —exp{—e ™} | <efor |x| = a, n = k > K., thereby proving Theorem 4.

THEOREM 5.

N/
. n, —
lim,,_, P 2 _zx\=e* x>0

—1
o logn

Proor. LetZ,,=m!e*" N} /logn. By Theorem1,Ve>03 a.>03 P(|X,n|> a.)
<eforl=<n < w. Let x,1, Xn2, - - - denumerate all possible values of X, .. Then, for § > 0,

385) P(|Zum—1]>8) =P(|Xum| > a) + Nsui=a. P Znm — 1| > 8 | Xoym = Xur).

Let n — . We conclude from Theorem 3 and 3.5) that lim sup,.wP(|Zpm — 1| > 8)
< & Since ¢ > 0 is arbitrary, this means lim, P (| Z,» — 1| > 8) = 0. Le., for given m, Z,
converges to 1 in probability as n — . Since N, ./ ((1/m) log n) = Z, , e **/(m — 1)! and
Znm— 1 in probability, we have

. N;L,m . e-X"""
llmn—>ooP 1 =x\= llmn—moP(m = x)
—logn
m

(3.6)
=lim,; o P(Xpm < — logim — 1) x) = ™.

THEOREM 6. Let1<m < « and x;, -+, X arbitrary real numbers. lim,_,..P (X, <
X1y ooy Xom < Xp) = H:’;l lim, P (X, < x;). Le., X,1, -+, Xum are asymptotically
independent as n — .

Proor. We assume the results holds for m and show that it then holds for m + 1. Let
X,=Xn1, oo, Xam)y x=(x1, o+, %m). By X, = x;,wemean X,,, < x,,1=<1=m.

Let ¢, § > 0. Define Z, ,, as above. We have shown in the proof of Theorem 5 that 3 N, 5
3 P(|Zum — 1| > 8) < e whenever n > N, ;. Hence for all x1, - -+, Xp+1

(3 7) P(Xn = X, Xn,m+1 = xm,+1) - P(Xn = X, Xl,m+l = Xm+1, 1 - 6

=Zym=1+8)|<e for n> N.s.
Let o = (au, - -+, a) and B denote respectively the values attained by X,,, Z,,..,. Then

3.8 PX.=x%Xomi1 =< Xm+1,1 —8=<Z,,=<1+9)
3.8
= Znsx,|/£—1|<: P(Xn,m+l = Xm+1 IXn =aq, Zn,m = B)‘P(Xn =a,Zym= ,8)

Since N, = Nym+1 — Nom = nloglog n + n(Xym+1 — Xi,m), we have

(3 9) P(Xn,m+l = Xm+1 |Xn =aq, Zn,m = B)
' = P(Nx'm =n lOg lOg n + n(xm+l - am) |Xn =aq, N::.m = k)

B

where k = k(a, B, n) =ﬁ

e “log n.

N/ . is the number of throws required to place at least one ball in each of the N}, ,, urns.
It follows that the right side of (3.9) = P(N* < nlog log n + n(x,+1 — a»)) = P(NF =
nlogk + n(xm.: + log (m!/B))), N being defined as in Theorem 4. Inserting into (3.8),



934 L. FLATTO

we get

PX,.=xXom+1=Xm+1, 1 —06=Z, =<1+ 6)
(3.10)

1
= Yo=x|p-1|=e P(Nﬁ =nlogk + n(x,,,+1 + log% >)~P(Xn =a, Znm = ).

Write

|
P<Nﬁ =nlogk+ n(x,,,ﬂ + log%))

(3.11) = {P<Nﬁ =nlogk + n<xm+1 + log%!)) - exp(——_ﬁf’:m+I )}

—e Prma —e Fm+ —e Fm+1
+ | exp T — exp .y + exp oy

and split ¥ accordingly into ¥; + Y2 + Ys. Thus

Xs= eXP(

For given ¢ > 0, choose 8 = §, < % 3 | exp(—e #*+'/m!) — exp(—e~**'/m!) | <.e whenever
| B — 1| < 8. Min, sk (a, B, n) = 1/2m! e ™ log n — » as n — . We may therefore apply
Theorem 4 to get lim,_.» Y1 = 0. It follows from (3.10), (3.11) that

lim suproe P(Xn < %, Xom+1 < Xms1, 1 = 8. = Zpm =1+ 8)

—p ¥m+1

; >.P(Xn5x,1—65Zn,msl+8).
m.

(3.12) —pm+1
_exp< p=) )P(anx,l—aeSZn,ms 1+68)|<e

(3.7) and (3.12) yield

“Xm+1

= 3e.

(3.13) lim supn—« | P(Xp < %, Xom+1 = Xm+1) — exp( )P(Xn = x)

m!

Since € > 0 is arbitrary, we conclude from (3.13) the desired result

lirnn—awP(an =X1, 00, Xn,m+1 = xm+1) = H:’:;l exp((_l__i-l)—!> .
COROLLARY. lim,_.« P(N. . < nloglogn + nx) = F,(x) where F,(x) = exp{(1/(m
= 1He ™ }+(1 — exp{(1/ml)e™"}).

Proor. Let N, = nloglogn + n Y, .. By Theorem 3.3 (Xym, Xnm+1) =« (X1, X2)
as n — , X; and X, being independent random variables whose respective distribution
functions are exp{(1/(m — 1)})e™™}, exp{(1/m!)e *}. Hence Yo m = Xom+1 — Xpm =2 X1 —
X, as n — . Since P(X; — Xo < x) = F,,(x), we get lim, .o P(N, » < nloglogn + nx) =
limy_ P (Yim = x) = Fn(x).
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