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CONVERGENCE RATES RELATED TO THE STRONG LAW
OF LARGE NUMBERS'

By JAMESs ALLEN FiLL

Stanford University

Let X, X;, - - - be independent random variables with common distribu-
tion function F, zero mean, unit variance, and finite moment generating
function, and with partial sums S,. According to the strong law of large
numbers,

S,
P = P{;" >c¢, forsome n=m

decreases to 0 as m increases to © when ¢, = ¢ > 0. For general ¢,’s the Hewitt-
Savage zero-one law implies that either p,, = 1 for every m or else p., | 0 as
m 1 . Assuming the latter case, we consider here the problem of determining
P up to asymptotic equivalence.

For constant ¢,’s the problem was solved by Siegmund (1975); in his case
the rate of decrease depends heavily on F. In contrast, Strassen’s (1967)
solution for smoothly varying ¢, = o(n~*") is independent of F.

We complete the solution to the convergence rate problem by considering
c»’s intermediate to those of Siegmund and Strassen. The rate (Theorem 1.1)
in this case depends on an ever increasing number of terms in the Cramér
series for F' the more slowly ¢, converges to zero.

1. Objective. Throughout this paper we suppose that X;, X, .. is a sequence of
independent random variables with common distribution function F. Denote the random
walk of partial sums by S, = Y7~ Xj, with S, = 0. The distribution F is assumed to be
standardized in the sense that EX = 0, Var X = 1, where, to facilitate notation, we have
introduced another random variable X distributed according to F. Assume throughout that
the moment generating function (mgf) E exp(£X) for F'is finite for £ in some neighborhood
of 0 and write

(1.1) K(§) = log(Ee®)

for the cumulant generating function (cgf). This assumption, which restricts attention to
the so-called mgf case, is stronger than required for the more elementary results (for
example, the laws of large numbers) discussed in this paper. However, the main result of
this work deals only with the mgf case.

Our main goal will be to estimate the probability of the event

SN ]
—>c¢, forsome n=m
n

when m is large for a specified sequence ¢ = (¢,) of positive numbers. It is natural to think
of the sequence ¢ as a “boundary” on the growth of the sequence (S,/n) of sample means
as the “time” n increases. Often it will be more convenient to deal either with the
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124 JAMES ALLEN FILL

standardized process (S./n'/?) or with the random walk S. The corresponding boundaries
will be denoted as follows:

TABLE 1
Process Value at time n Boundary Value at time n
Sn
sample means = c Cn
. Sﬂ
standardized — ¥ Y (n) = Ve,
Vn
Sn

g(n) = Yny(n)

random walk

We write Z for a standard normal random variable. OQur result can be stated roughly as
follows.

THEOREM 1.1. If g:(0, ®) — (0, ©) has a smooth derivative and satisfies the
monotonic growth conditions

g(t)
(1.2) mT
for some 8 > 0 and
(1.3) é’% Lo,
then with (t) = g(8)/Vt
g'(m)

(1.4) Pm~In=—2""""P(S,>g(m)}.0O

Vm¥’(m)

The rate of convergence of P{S,, > g(m)} is given by Cramér’s Theorem (2.7) below.

2. Weak law of large numbers. Although the present work concerns itself with
convergence rates related to the strong law of large numbers, we begin with an examination
of convergence rates related to the weak law. There are two reasons for this review: the
weak-law results (1) provide motivation for, and (2) are used in the proofs of, the
corresponding strong-law theorems.

The convergence rate problem for the weak law of large numbers (WLLN) is to

determine
(2.1) P{ > c},
or equivalently, the upper tail probability

(2.2) P{& > c},
m

up to a factor (1 + o(1)).
A more general problem is to determine the asymptotic behavior of

(2.3) P{& > cm}
m

for an arbitrary sequence of positive numbers c,. In view of the central limit theorem
(CLT) for S, it is convenient to express (2.3) in the standardized form

Sn

m

S
(2.3a) P{— > \I'(m)}.
i

m
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Indeed, the CLT states that when ¥(m) = ¥, is constant,

Sn
(2.4) P{ﬁ > qfo} — P{Z>¥,).

The CLT is thus an invariance principle in the sense that the right side here is independent

of F.
The Berry-Esséen Theorem (see Feller, 1971, Theorem XVI, 5.1) bounds the error in
approximating the left side of (2.4) by the right, uniformly in ¥,. As a particular conse-

quence,

S

(2.5a) P{-—— > \Il(m)} -0
vm

if and only if

(2.5b) ¥(m) — oo.

The general problem of convergence rates related to the WLLN is to determine (2.3) up
to a factor (1 + o(1)) when (2.5) is in force.

Return to the case ¥(m) = cm'/? of (2.1). Any unified theory for handling this case
must require ¢ to be small in some sense. For example, if S has symmetric Bernoulli
components, i.e., if X assumes the values *+1 with probability % each, then for any ¢ = 1

(2.6) P{%— > c} =0 forevery m.

Making precise the condition that ¢ be small, Bahadur and Ranga Rao (1960) solved
the WLLN convergence rate problem. The criterion of smallness for ¢ is that there exist a
unique nonzero value &, necessarily positive, for which K (&) = ¢ In marked contrast to
the invariance principle (2.4), the rate of convergence in (2.5a) in this case depends heavily

onF.
The case ¥(m) = o(m'?) with ¥(m) — o, intermediate to the CLT case of constant ¥

. and the WLLN case ¥(m) = cm'/?, was resolved by Cramér (1938):

Sn Y(m) , (¥(m)
2.7) P{—— > \I'(m)} = (1+ o(1))P{Z > ¥(m)} -exp[‘l’z(m) ———A(———)]
Vm Vm Vm

Here
A(£) = Th=o A"

is a certain power series, the so-called Cramér series for F, which converges for £ in a
neighborhood of 0. For each % the coefficient A, depends on the moments of F of orders up
to and including & + 3; for example,

1

_1 3 _1 4 _ _1 3)2
Ao 6EX, )\1—24EX 3 8(EX).

For a precise definition of A, see (6.1). )
For the normal tail probability on the right in (2.7) we have the standard estimate

(2.8) P{Z>¥(m)} ~ [«/2_7r\I'(m)]_1exp[— -;— \I'Z(m)]

(as usual, a,, ~ b, means the same as a, = (1 + 0(1))b,). On a logarithmic scale the
correction in (2.7) to the normal approximation becomes negligible:

S 1
log P{—'"— > \I'(m)} ~ == ¥(m).
ym 2
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Even on the probability scale of (2.7), the correction is unnecessary if ¥ does not grow too
rapidly:

(2.9a) ¥ (m) = o(m'%) implies P{i"- > \I'(m)} ~ P{Z > ¥ (m)}.
m

If ¥ is allowed to increase somewhat more quickly, the correction requires only the
constant term A, from the Cramér series:

.
(29b) ¥ (m) =o0(m"*) implies P{i > \I'(m)} ~P{Z>¥(m)}- exp[)\o ¥ (m)].
Jm m

In general, if ¥ (m) — o and ¥ (m) = o(m*™) with 0 < n < 1%, then only the moments of
F of orders up to and including [1/n] — 1 need be known to identify the convergence rate
(2.7). ([x], the “ceiling” of x, denotes the smallest integer at least as large as x.)

The transitions in form from the CLT to Cramér’s result and from Cramér’s result to
the WLLN solution are smooth. When ¥ is nearly constant, as in (2.9a), Cramér’s result
is an invariance principle of the same form as the CLT. When, at the other extreme, ¥ (m)
grows nearly as quickly as m'/? the convergence rate (2.7) depends heavily on F. The
Bahadur—Rahga Rao result for ¥ (m) = cm'/? can be stated in the form

Sn ¥ (m) ¥ (m)
(2.10) P{—— > \I'(m)} ~ 1+ B)P{Z>¥(m)}e [1'2( ) -——}\(-——)]
um P m m

as m — o, where 8 depends on ¢ and heavily on F but vanishes in the limit as ¢ — 0. Thus
(2.7) may be regarded as the limiting form of (2.10) when ¢ — 0.

3. Strong law of large numbers. According to the strong law of large numbers
(SLLN), S../n — 0 with probability 1; equivalently, for any constant ¢ > 0

Sn

> ¢ for some an}lO as m 1 oo,

(3.1 P{
We have the decomposition

P{§>c for some an}+P{—§>c for some an}
n n

(3.2) S
—P{—p—p>c for some p=m and —7"'>c for some qam}

for the probability in (3.1). In Fill (1980, Section 4.3) it is shown that the last term in (3.2)
is asymptotically negligible when compared to the sum of the first two terms. So we
consider the one-sided version ‘

3.3) P{%>c for some n_>_m}10 as m1l o
of (3.1).
A more general problem is to determine the asymptotic behavior of
(3.4) Pm = P{E"— > W¥(n) forsome n= m}
Vn

for an arbitrary sequence of positive numbers ¥ (n). No matter what the sequence ¥,

S,
(3.5) pmip= P{-——— >W¥(n)io. as n— 00}.
Vn
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It follows from the Hewitt-Savage zero-one law (Feller, 1971, Theorem IV, 6.3) that
(3.6) p=0 or p=1

The case p = 1 is trivial from the convergence rate viewpoint, for then p,, = 1 for every m.
The classification of boundaries ¥ according to the dichotomy (3.6) is effected by the
Kolmogorov-Petrovski-Erdos-Feller integral test (cf. Jain, Jogdeo, and Stout, 1975);

KPEF integral test. If0<Y¥ 7, then

o0 ¢ ,
3.7 p= (1) according as J 2% e V2 dt: 0.0

Note that the criterion (3.7) is, like its weak-law analogue (2.5), an invariance principle.

There are obvious counterparts to (3.4-3.7) for Brownian motion (BM). In fact, (3.7) for
S is most easily proved from (3.7) for BM by showing that S can be closely approximated
by a BM (cf. Komlés, Major and Tusnady, 1976, Theorem 1).

In the interesting case that p = 0 in (3.5) we say that g is an upper class boundary for
the random walk S and write g € U(S). (Otherwise g is a lower class boundary and g €
L(S).) If ¥ 1, the KPEF test allows us to write g € U indifferently for g € U(S) (for any
S). A similar comment applies to the notation g € L.

The test (3.7) gives rise to the celebrated law of the iterated logarithm (LIL), which
quite precisely describes the “interface” between U and L. Here L, denotes % iterations of
the natural log function L = log.

Law of the iterated logarithm. If
3 1/2
(3.8) g = [2t(th + 3 Lyt + Lyt + -« + L1t + (1+ B)L, t):]

with p > 3, then

(3.9 g€ IU: according as 8 Z 0.0

The general problem of convergence rates related to the SLLN is to determine p, up
to a factor (1 + o(1)) when g € U. Let T\, = inf{n:n =m, S, > g(n)}, the inf of the empty
set being +c. Then T, = m, and

Pm=P{S,>g(n) forsome n=m}=P{T,<x}
admits the decomposition
310) pm=P{Tn=m}+P{m<Tn<w}=P{S,>g(m)} +P{m<T,<on}.

The convergence rate for the first term is known from studying the WLLN; the second is
new. For a simple lower bound we have

(3.11) Pm = P{S, > g(m)}.

Siegmund (1975) used the relation (3.10), together with the Bahadur—Ranga Rao
estimate for the first term and his own analysis of the second, to solve the convergence
rate problem in the SLLN case g(t) = ct. Strassen (1967) solved the problem for boundaries
g € U not too far from the U\L interface (3.8)—roughly speaking, for g(¢) = o(¢t*°) as
t — . The main contribution of this paper is to complete the solution to the convergence
rate problem by bridging the gap between Strassen’s boundaries and Siegmund’s; see
Section 6.

We set the stage by reviewing, in the next two sections, the results of Strassen and

Siegmund.
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4. Strassen’s result. We recall the omnibus restriction to the mgf case. Modulo a
precise definition of the adjective “smooth”, Strassen’s result (1967, Theorem 1.4) can be
stated as follows:

THEOREM 4.1. (Strassen). If g € U has a smooth derivative, 0 < ¥ 1, and g(t) =
t**7 for some y > 0, then

T L g0 e g

4.1 m~ Jm = =
) B T v

One precise definition of “smooth” is that g be continuously differentiable and satisfy

gu)~g({t) as u~t— .

REMARK 4.2. (a) Strassen used an intricate argument to show that for Brownian
motion B

(4.2) P{B(t) >g(t) forsome t=s}~J, as s— ®

and used this, along with approximation of S by B via Skorohod embedding (see Breiman,
1968), to deduce his invariance principle (4.1). In light of (2.9a) one might expect that the
restriction on the growth of g could be eased to g(¢) = o(t*?). This can in fact be done
(Fill, 1980, Theorem 3.2.1).

(b) Theorem 4.3 in Strassen (1967), a lemma to (4.1) credited by Strassen to F. Jonas,
is in error. As noted by Sawyer (1972), the Skorohod embedding time for X may not have
finite mgf eventhough X does. Theorem 3.2.1 in Fill (1980) repairs the proof of (and yields
a result somewhat better than) Theorem 4.1 by using the dyadic quantile-transformation
approximation of S by B due to Komlés, Major, and Tusnady (1975; 1976) instead of
Skorohod embedding.

(c) If we assume g(¢)/t*® |, then

W(¢)

t) < —-.
g( 7;

(The relation a(t) =< b(¢) means that a(¢) = O(b(t)) and b(¢) = O(a(t)).) In fact,

1, v(t)) 3
=0/ () =5

o [0 e,

m

Thus

which is the tail integral in the KPEF test (3.7). O
ExAMPLE 4.3. Define g € U at the U\L interface according to (3.8), with p > 3 and
B> 0. Then ‘
(4.3) P{Sn > g(m)} ~ [2¥m(Lm)(Lam)*(Lsm) -+ (L,—am)(Ly—ym)***]™*
which is of much smaller order of magnitude than
(4.4) P~ [2V7B(Ly-1m)*T .

In contrast we shall see for Siegmund’s boundaries and for those of Theorem 6.1 (and also
for Strassen’s when g is not too close to L) that

(4.5) Pm XP{Sn >g(m)}.
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The extreme reluctance with which (4.4) tends to zero is a well-known phenomenon
connected with the LIL. Were g only slightly smaller we would have g € L and hence p,,
=1 for every m. 0

5. Siegmund’s result. In stating Siegmund’s solution to the SLLN case g(t) = ct we
assume that ¢ > 0 is sufficiently small. The criterion of smallness, explained in Section 2
above and detailed in Fill (1980, Section 3.4), is the same as for the Bahadur-Ranga Rao
WLLN result. We further assume that if F is a lattice distribution with span 4, then cis a
point in that lattice.

THEOREM 5.1. (Siegmund). Ifg(t) = ct with ¢ > 0 as above, then there is a constant
vy > 0 for which
(5.1) Pn~ (1+7)P{Sn>g(m)}.0

REMARK 5.2. (a) Siegmund determined the constant y explicitly and remarked that
(5.2) y—=>1 as ¢c—0.

Nevertheless, for fixed ¢ the constant y, like the constant 8 and the series A in (2.10),
depends heavily on the component distribution F. So Siegmund’s result, unlike Strassen’s,
is far from an invariance principle.

(b) Siegmund utilized the decomposition (3.10). In analyzing the second term he used
the fundamental identity of sequential analysis, the large-deviation result of Bahadur and
Ranga Rao, and some renewal-theoretic calculations. The same kind of approach is used
in proving Lemma 9.1 to Theorem 6.1.

(c) For a generalization of Siegmund’s theorem to linear boundaries g with nonzero
intercept, see Fill (1980, Theorem 3.4.1). 0

6. Completion of the solution to the convergence rate problem. The solution
to the convergence rate problem in the mgf case is completed by Theorem 6.1 below, which
overlaps somewhat with Strassen’s theorem.

Recall that

K (¢) = log(Ee*¥)
denotes the cumulant generating function corresponding to F. The so-called Cramér series
A(E) = Ti-o Mut*
for F is defined implicitly for £ near O by
(6.1) ENE) =K(2) — 26+ 1 &, 2(=2(4) givenby K'(2)=¢&
Let g: (0, ) — (0, «) and write
g(t) = Ve (@).
Define ,
(6.2) pm=P{S,>g(n) forsome nz.m}.

THEOREM 6.1. Suppose that as't | o

(6.3) % )
for some 0 < § < & and
6.4) AN

t
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If g is continuously differentiable and if for some 0 <r<1
(6.5) g'(u) ~g'(t) when t,u— o witht<u< t[1+ 1/¥¥ ()],

then g € U and

(6.6) pm~ImE&P{Sm>g(m)} as m— . []
Vm¥' (m)

REMARK 6.2. (a) That g belongs to U is an easy consequence of the KPEF test.

(b) The theorem’s method of proof requires that g be kept away from the U\L interface
and from linearity; hence the growth conditions (6.3) and (6.4).

(c) The rate of convergence of the factor P{S,. > g(m)} to zero is given by Cramér’s
theorem (2.7) and (2.8). Thus in the present case the rate of convergence depends on F,
but only through a (typically) finite number of cumulants of F.

(d) One might expect that a result like (4.1), but with a Cramer-like correction to the
exponential factor, would hold. Indeed, Fill (1980, Lemma 3.2.4) shows that (6.6) can be
recast in the form

7o [T LEW ¥ (t) <‘I'(t)>]
6.6 m = I = YO 2exp| W2(t)——= A dt.
(6.6a) p T G [ ( 7 7

In particular, (4.1) holds for g(¢) = o (¢%?).
(e) As in Siegmund’s case, g increases rapidly enough that (4.5) holds (cf. Lemma
7.1(k)). 0

ExAMPLE 6.3. The transitions from Theorems 4.1 to 6.1 to 5.1 are smooth. Let g(¢) =
t**% with 0 < § < %. Then

~ (1 +1/(28))P{Sn > g(m)}.

As 8 tends to its lower limit 0, the factor (1 + 1/(28)) tends to «. This is consistent with
Example 4.3. As § tends to its upper limit %, 1/(28) tends to 1, which is consistent with
" (5.2) in Remark 5.2(a). Furthermore, we have seen in Section 2 that the form of P {S,, >
g(m)} varies smoothly from the normal approximation to Cramér’s theorem to the
Bahadur-Ranga Rao result. 00

In Sections 7-11 we prove Theorem 6.1, thereby completing the solution to the general
problem of convergence rates related to the SLLN.

7. Some facts about the boundary. The present section is reserved for a list of
elementary properties of g resulting from the assumptions (6.3-6.5). The proofs are very

easy.

LEMMA 7.1. Let g: (0, ©) — (0, ©) be continuously differentiable and satisfy (6.3-6.5),
and let g(t) = t'/*¥(t). Then

‘I’( ) ¥(t)

(a) ) andT 10
(s e _ g(t) '
(b) (5+6> =gt =
@¥(t) = rl/?( (OB ‘t“ )
é \I’(t) 1 ¥(¢t)

d) ——=¥'(t) = ZT;
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© 4 (E0) . _1¥0 ¥
a\ ¢t ) 287 t
__d (Y@ _(1_,\¥®

0 o0=-5 (%)= (-0) 7

- d (¥(t) 1 i) (PAt) )

(h) Y(u)~¥(t)asu~t—w»

() ¥%u) - V¥3(t) >Owhent,u—> owitht=u=t+1;
(G) ¥'(u) ~ ¥'(t) when ¢, u — o as in (6.5);

gw _ .. 1

k) 2=—=2 =1+—.
® VEu'(¢) 26

8. Restriction of g-crossing times to a finite interval. Throughout this section
“fact (-)” refers to part (-) of Lemma 7.1.
We wish to define v,, > m in such a way that

8.1) Py, =0(pn) a8 m—

but g is virtually linear over [m, vn), for then we will use Siegmund’s method to
approximate the probability

DPmy, = P{S.>g(n) forsome m=n<uvn}.
As it turns out, an appropriate choice is
(8.2) Un = lm(1 + 1/¥%(m))],
where we denote by [x | the integer part, or “floor”, of x. Fact (a) implies that
(8.3) U ~m
and (6.5) yields
(8.4) g'(t) ~g'(m) when m,t— o with m=t=<uvn.

LeMMA 8.1. If un is defined by (8.2), then (8.1) holds.

Proor. By subadditivity
(85) Pm = anm P{Sn > g("v)}»

we’ll replace m by v,, in (8.5) to get an asymptotic upper bound on p, . By Cramér’s
theorem,

P{S.>g(n)} ~ [\/ﬂ‘l'(n)]_‘1 exp{— % ‘I'z(n)[l - 23\;%)— A(%)]}
(8.6) 1
~ [V2r¥ ()] exp{— 3 \Tﬂ(n)} ,

where

- Y | (V)
8.7 Y (t) = { V¢ 1—2———)\(————)]}1/2.
®7) © { ()[ (22



132 JAMES ALLEN FILL

Note
(8.8) T(@t)~T(t) as t— .

Also, as t — «

(), (T(2)
2% () F/(t) =2 ()¥'(¢)| 1 — 2—=— A
&)¥'(¢) ) ()[ 7 (J})]

v 5E) )2 e8]

— (1 + 02T ()T () — (1 + 0 (1)) T2() - (‘I'\(f” )

= (14 0(1))2¥ (£)¥’(¢)
by facts (d) and (g), so that
(8.9) T/(t) ~¥'(¢).
Hence whent,u > owitht=u=<¢t+1

2
(8.10) 0=¥%u) - ¥2t) < (1 +0(1) ki t(t)

=o0(1)
(cf. proof of fact (i)). From (8.5-8.10) and facts (h) and (d) follows

V2ap, = (1 + o(1) znam[@(n)]—lexp[- % \iﬂ(n)]

=(1+o0() f [\Tf(t)]—lexp[— % \172(t)] dt

¢ 1.
s(1+o(1))8—‘fmmexp[ E\I'Z(t)] '(¢) dt

= (f \Tﬂ/ﬁ—?(t)exp[-%\iﬂ( )]\1‘/ () dt)

But
f \T'”‘s‘z(t)exp[— 1 ‘f’z(t)]\f"(t) dt = f u'/2=2e7%" gy
m 2 . \l7(m)
~ @1/8-3(m)exp[— % \fﬂ(m)}
SO
(8.11) Pm = 0T~ 3(m)exp[— 1 ¥2(m)]).

Now by the mean value theorem, (8.8), (8.9), facts (j) and (d), and (8.2),

2
P2(v,) — ¥2(m) = (1 + 0(1))28 ( )

(Um — m) = (1 + 0(1))26%20~" (m)

and thus (8.11) (with m replaced by v,,) easily yields

(8.12) Po,, = 0([V2r¥(m)] "exp[— $ F2(m)]) = 0 (P (S, > g(m))}).
To complete the proof of Lemma 8.1 use the obvious bound

(8.13) pPn=P{S,.>g(m)}.0



CONVERGENCE RATES RELATED TO SLLN 133

Define
(8.14) Pmu, = P{S.>g(n) forsome m=n<uvn);
clearly,
(8.15) Pmy, = Pm = Pmuy, + Do,

We therefore immediately obtain

COROLLARY 82. With p, given by (6.2) and pm,., by (8.14),
(8.16) Pm ~ Pmy, @S m— oo [

9. Linearization of the boundary. We define here straight lines 4, and 4., both
passing through the point (m, g(m)), which well approximate g over the interval [m, v,.].
The definition of £, (respectively, 4,) together with the mean value theorem will imply
that this line minorizes (majorizes) g on [m, v, ].

The slope €, (respectively, &) of £, (£,) is defined to be the minimum (maximum)
value of g’ over the interval [m, v,]. We now treat both lines at once by writing, for
example, 7, indifferently for £, or Z,. By (8.4)

9.1) €n~g'(m) as m— oo,

The y-intercept of £, is

9.2) o = g(m) — men.

By analogy with (6.2) and (8.14) define

(9.3) Prl4n) = P{S, > {n(n) for some n=m)}
and

(9.4) P, (n) = P{S. > ¢u(n) for some m =<n <uvy,).

The key to analyzing (9.3) is the following lemma, to be proved in the next section.

LEMMA 9.1. Let 4, denote the straight line

(9.5) m(t) = am + €nt
and define p,.(¢£,) by (9.3). If €, > 0 satisfies
(9.6) €n— 0
and
(9.7) Vmen — o,
and if
9.8) lim sup;,—« M <1,
M
then
(9.9) Pull) ~ =2 P(S> u(m)} a5 m—> .0

€m — —

m

REMARK 9.2. The conditions (9.6-9.7) demand that €, tend to 0, but not too quickly.
Assumption (9.8) requires, loosely speaking, that the limiting proportional contribution of
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the constant term to the value at ¢ = m of either £,.(£) = am + €mt OF £ (f) = —0im + €nt iS
less than Y%. It follows from (9.8-9.9) that

Pl tm) <X P{Sy > tm(m)}. 0

According to (6.3-6.4), (9.1-9.2), and Lemma 7.1(b), £ = 4» or /. satisfies the assump-
tions of the lemma. Recall that

(9.10) tm(m) = g(m).
Furthermore, by (9.2), (9.1), and Lemma 7.1(b)-(c)
m 1
€n — Am _ 2|:€m — _M] = 2[(1 + o(1))g’(m) — EM]
(9.11) m 2 m 2 m
= (1+ 0(1)2 Vm¥'(m).
Combining (9.1) and (9.9-9.11) we get
Vm¥' (m)
completing the analysis of (9.3).
In Lemma 9.3 below we will prove the analogue
(9.13) Do, (6w) = P{S, > 4n(n) for some n=vn} = o(pu(/n))

to (8.1). As an immediate corollary (cf. Corollary 8.2),

(9.14) P, (bw) ~ Pmltm) as m— oo,

We combine (9.14) and (9.12) to obtain the rate of convergence for (9.4):
(9.15) Pmu,(fm) ~In as m— oo,

Moreover, since g(n) is trapped between ¢, (n) and 4m(n) we have

(9.16) P, (bm) = P, = Do, ()

The main result (6.6) follows from (8.16) and (9.15-9.16).

The remainder of this section is devoted to the following corollary to Lemma 9.1.

LEMMA 9.3. With £, = £n or £, (9.13) holds.

Proor. To begin the proof of (9.13), we apply Lemma 9.1 to the left side to yield

%,
9.17) Ponlln) ~ == P80, > ln(vm)),
€n — —

Um

recalling (8.3) to verify the hypotheses (9.7-9.8). In light of (8.3) and (9.8), the first factor
on the right in (9.17) asymptotes to the first factor on the right in (9.9), or, in the present
context, to the first factor in I,, (recall the proof of (9.12))..Moreover, by Cramér’s result

918)  P(S,, > lulom)) ~ [@\Ifm(vm)]"exp{~ ; \I'?n(vm)[ 1-2 ‘Pz(ﬁ'") A(%—(ﬁ—”‘)) ] };
. Um Um

here we have written
(9.19) ln(t) = VU ,(2)
so that ¥,,(m) = ¥ (m) and
Vo (Um) = U5 20(Um) = U2 (@m + €mUm)

(9.20)
=1+ o))m ™V (am + €xm) = (1 + o(1))¥ (m).



Put

(9.21)

then

(9.22)

But with
(9.23)

so that
(9.24)

we have

B2 (Vm)
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- Vo0 . (Ta\ 11
\Ifm(t>={\r?n(t>[1—2 A( )]} ;
Jt Vi

P{S, > tu(vn)) ~[~/2_7T‘I'(m)]_1exp[ % (vm)}

f(&) =&[1-28A(H)] ~ & as £-0,

/(&) = 2£[1 — 26N (8)] — 287 [N (§) + EN'(§)] ~ 2¢ as £—0,

o (o)) _(Wn(m)
—@m(m)—vmf< \/-l; ) mf( \/E )

N——"

o Ynm)\ . (¥n(0m) _ (\I'm(m)
= v,,,[f( \/,;) f( Vo ):|+(vm m)f T

¥ (m) (\I'm<m> B \Ifm<vm>>
ym \ Vm  Vom

m ‘I'z(m)
¥ (m)

=—(1+o0(1) -2%\1'(m)[(em + a—ﬂ’f) - (e,,, + ?)]

+ 1+ o()¥X"(m)

=—1+o0o1))m-2

+(1+ 0(1))

= —(1+ o(1)) - 2Vm¥ (m) ?n (1 - v—) + (1 + 0(1))¥2""(m)

= —(1+ 0(1)) - 2Vm ¥~ 2’(m) 2+ (1 + o(1) ¥ (m)
= —(1+o(W)Vm¥ " (m) . 2%

+ (1 + 0(1))Vm ¥ (m) .<e,,, + %)

=1+ o(1))x/_n;\l'1_2'(m) . <€m - a—;)

= (1 + o(1)-2m¥’'(m) ¥ ¥ (m) (recall (9.11))
= (1+ 0(1))-26¥2*”(m) (Lemma 7.1(d)).
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So
o) _ P(Sy, > bn(vm)
Pl bm) (1 +o() P{S,>g(m)}

= (1+ 0(1) - exp] — = [Fa(m) — FL(m)]} = 0(1),
2

completing the proof of (9.13).0
10. Line-crossing probabilities. This section is devoted to the following proof.

Proor or LEMMA 9.1. We first need to establish some notation. Define the distribution
function F,, by
(10.1) F,.(x) = F(en + x);

in other words, if X is distributed according to F,,, then X — €, has distribution function F.
The effect of F,, will be to replace the linear boundary £, by a horizontal one: in obvious
notation,

Pm(tm) = Pr {Sy> am for some n=m}.
Let K, denote the cumulant generating function corresponding to F,,, so that
(10.2) Kn(§) = K(§) — ené.

Recall the assumption that K is finite in an open interval I containing 0; K,, is also finite
in this interval.
Since F has zero mean and unit variance, it is well-known that

1
(10.3) K(¢) ~ 3 £ K () ~¢ K'(§)—>1 as £-0,
and that
(10.4) K@©)=0, K'(00=0, K"(¢()>0 forall (€L
From (10.2) and (10.4)
(10.5) K.(0) =0, K,.(0)=—€,, Kn(£)>0 forall (€L

Hence there exists at most one nonzero value & (m), necessarily positive, for which
K..(£1(m)) = 0. We now show that & (m) exists for sufficiently large m and that

(10.6) &i(m) ~ 26, as m— o,

Indeed, let £, — 0 be an arbitrary real sequence. By (10.2-10.3)
1
(10~7) Km(gm) = (1 + 0(1)) "2‘ g?n - emgm as m — oo,

In particular, with &, = C - 2¢, (C > 0)
(10.8) K.(¢&) = 2CeZ[(1 + 0(1))C — 11.

If C < 1, then Kn(&n) ~ —2C(1 — C)e% < 0; if C > 1, then K(£,) ~ 2C(C — 1)eZ, > 0. This
shows that &(m) exists for sufficiently large m and that, for any pair of constants
0<C<1<C,C<é&(m)/(2en) < C’' for large m; (10.6) follows.

Similarly, for large m there exists exactly one point &(m) € (0, £(m)) at which K,

vanishes, and

(10.9) &(m) ~en, as m— o,

This follows from the fact that if £,, — 0, then

(10.10) Knén) =1 +01)é—€n as m— oo,
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Next, let P,, denote the probability under which X, Xi, Xz, - - - are i.i.d. with

(10.11) P,{X € dx} = exp[{o(m) - x — Kn(éo(m))]Fn(dx).
P, has cgf
(1012) Om(0) = Ku(éo(m) + 0) — Kin(o(m))

= K(%(m) + 0) — K(%(m)) — €nb;
note that
(10.13) om(0) = ¢m(0) =0,  ¢n(0) = K"(&(m)).
Put
(10.14) bo(m) = —&(m),  6i(m) = &(m) — &(m).
Then
(10.15) Oo(m) ~ —€m, 6:(m) ~€, as m—o ®
and |
(10.16) Sm(00(m)) = dn(81(m)) = —Kn(£o(m)) = —(K (£o(m)) + €nbo(m))

1 2
~5Em a8 m— o,

We now introduce the distributions associated through “exponential tilting” with that
of X under P,,. For each real 8 for which ¢,,() < = let P,, 4 be the probability under which
X, X, Xs, - .- are ii.d. with

P o{X € dx} = exp[0x — ¢n(0)]Pn{X € dx}
= exp[0x — ¢n(0)]exp[éo(m) - x — Kn(éo(m))]Fon (dx).

(10.17)

The corresponding cgf ¢ s is given by

(10.18) o) = 6n(® + 1) = 6n(6) = Kn(olm) + 0 + 1) = Kn(Eam) + 0)

= K(é(m) + 6 + 1) — K(%(m) + 0) — €nn.
In particular
(10.19) E.oX = ¢ o(0) = ¢ m(0) <, =, 0or>0 accordingas 6<,=,or>0
by (10.13) and the strict convexity of ¢m.
As special cases of (10.17),
Pno=Pn, Pnom{X E dx} = exp[éi(m) - x]Fn(dx),
and

(10.20) Pongmy{X € dx} = exp{[£o(m) + o(m)]- x — [¢m(0o(m)) + Kn(é0(m))]} Fyn (dx)

= Fn(dx) = F(en + dx)
(cf. (10.14), (10.16), and (10.1)). Hence by (9.3) and (9.5)
(10.21) Pm(bn) = Pmgm{Sn > am for some n=m}.

Without loss of generality we consider P, ¢ to be the distribution of X;, X5, - - - , defined
on the space of (infinite) sequences of real numbers. Accordingly, let P\ denote the

restriction of P, to the o-algebra generated by the first n coordinates (n = 1, 2, ---).

Then for any 6’ and 6”, P, and P&~ are mutually absolutely continuous, and by (10.17)
dPyy

(10.22) 2 = exp{(0’ — 0”)S, — n[$n(8') — dm(0")]}.

dPyy
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In particular, by (10.14), (10.16), and (10.22)

dP(;fO‘,(m}
(10.23) gpm, — = exp[=&(m)S,] (n=12,.-.).
m,6,(m)

Let
Tn=inf{n:n=m, S, > an},
the inf of the empty set being +o. Then by (10.21)
(10.24) Pm(lm) = Prgmy{Sm > am} + P gymy{m < Tp < o0}.

By (9.5) and (10.20), the first probability in (10.24) is P{S,, > 4.(m)}. To complete the
proof of (9.9) we shall use the approach of Siegmund (1975) to show that

€ + 22
(10.25) Prgm{m < T < 0} ~——— . P(8S,, > lu(m)} as m— o.
€n — E

We first apply the fundamental identity of sequential analysis, to wit: by (10.23)

P gm{m < T, <o} =Y7_n f exp[— £i(m)S.] dPom.o,m)

{Tu=n}

(10.26) = f exp[— &(m)Sr,] dPpm.g,im)
{m<T,<w)

= exp[— &i(m)an) J exp[— £(m)(Sr,, — am)] dPum g, om-
{

m<T, <o}
Recalling 6:(m) > 0, (10.19) implies E 4,(mX > 0; hence by the SLLN
m<Th<o}={m<T,=o0}={8=amn} as. Puom,

and the final integral in (10.26) equals
f exp[— gl(m)(STm - am)] de,ﬂ,(m}
{Sw=am}
= Proom{Sn = am}

(10.27) J' E..o,m(exp[— &(m)(St, — am)]| Sn = am — y)
[0,0)

+Prgimy{Sm € am — dy | S = atm}.

The last conditional expectation in (10.27) is
(10.28) E .. 0,om(exp[— &(m) (S, ;) — ¥)]),

where 7(y) = inf{n:S, > y}. We show below that the expression (10.28) tends uniformly
in0<y< o tolasm— x; thus

(1029) P,,,,g"(,,,}{m < Tm < 00} ~ eXp[— gl(m)am] -P,,,,gl(,,,,{Sm = a,,,}.

Moreover, mimicking the proof of Cramér’s theorem we’ll show in Section 11 that

Am
€mn + —
m

(10.30) Prig,om){Sm =< am} ~ exp[£1(m)an] - - P{Sp > tn(m)}.

m
€n — —

m
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Then (10.25) follows from (10.29) and (10.30).
The first of our two assertions is that

(10.31)  Emgmlexp[— &(m)R,]) > 1 as m — o, uniformlyin 0=y <,

where R, = S;(,) — y is the excess over the horizontal boundary with level y. In light of the
inequality 1 = e™" =1 — 5 for = 0 and (10.16), it is enough to show that the nonnegative
quantity

1
(10.32) sSup{EmgsmBy: 0=y < oo} = 0<€—> as m— oo,

Indeed, for 0 = y < » we find
, 4 .
(Em,a.(m}Ry)2 = Em,9.<m>R§ = 3 Em,a,<m>(X+)J/Em,a,(m)X
using Theorem 3 in Lorden (1970). An easy dominated convergence argument shows that
Ep6,m(X*)? - E(X")? < o, and by (10.19), (10.12), (10.14), (10.10), and (10.6)
EnpmX = ¢m(0i(m)) = K'(§1(m)) — en

=1+ oD))éi(m) —en =14+ 0(1))en.

(10.33)

Therefore

1/2
(10.34)  Sup{EmsmBy:0<y<o}=(l+ 0(1))[:§ E<X+>3/em] = 0(e;') = oles),

which proves (10.32).
The remaining assertion is (10.30). Standardizing to zero mean and unit variance,

Sm - mEm,(),(m)X
Pasin(5n 2 an) = Pri| e

with
(10.35) Un = =(m = MEp,0,X) /(M Vary, g mX)"%
From (10.33) and
(10.36) Varn, s mX = ¢ m(01(m)) = Kn(&(m)) = K”(&1(m)) — 1
and (9.8) follows
(10.37) U ~ \/E(ém - "‘-"‘).

m

Let G.. be the standardized distribution of (—X) under Py, g ), and let A, be the associated
Cramér series. Were it not for the dependence of G,, on m, direct application of Cramér’s
result (which holds as well when > is changed to = on the left in (2.7)) would give

ul u
(10.38) Ponoom){Sm < am} ~ P{Z > u,n}exp[—i A,,.(—'") ]
" Vm\Jm

In fact, (10.38) can be established by rehashing the proof of Cramér’s theorem and can be
used to deduce (10.30). We shall follow a somewhat shorter route and verify (10.30)

directly, but our proof, like Cramér’s, will be based on the standard large-deviation
technique of exponential tilting.

11. A Cramér-like result. In this section we complete the proof of Lemma 9.1 by
establishing the Cramér-like result (10.30).
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For abbreviation we introduce the notation

Am

(L1 Y (m) = bm(m)/Vm = «/ﬁ(em + —,;)

This should cause no confusion; after all, whenever Lemma 9.1 is applied to the original
convergence rate problem the identification (11.1) is made. In addition, let

(11.2) Zm = z<m>
Vm
with z defined in (6.1) and put
(11.3) O2(m) = 2, + Go(m);
we shall soon tilt from Py, 5(m) t0 Pp.g,m to compute the left side of (10.30). Observe
¥
(11.4) o~ 2,
m
Om
(11.5) O:(m) = — + o(en) = 0,
m
(11.6) Sm(8:(m)) = K (2m) — K (o(m)) — nba(m).
Also note that
‘I’(m) Um
(11.7) EpnomX = ¢pm(@a(m)) = K'(2m) —€m =———€n=—
Im
and that
(11.8) 07 = VarmgmX = ¢ m(@2(m)) = K" (z,) — 1.

We are going to use the Berry-Esséen theorem, and so the third absolute moments

(11.9) pm =Emom | X’ p=E|X|P<o

will arise; dominated convergence gives

(11.10) Pm—> p.
Let
(11.11) Tm = P g m){Sm = am}

denote the left side of (10.30). Putting 8’ = 6,(m), ” = 6;(m), and n = m in (10.22) yields

(11.12) 7 = exp{—m[pm(01(m)) — dpm(f2(m))]} - exp[ (6:(m)
(—o0,am ]

= 02(m))8]Ppm,6,0m { Sm € ds}.
Recalling (10.16) and (11.6) and simplifying,
(11.13)  7n = exp{— m[emzm — K(z)]} exp[(6.(m)

(—o0,am]

— Bo(m) — Zm)S] - Pm,ﬂz(m){Sm € ds}.

If the approximation 7, to =, is obtained from the right side of (11.13) by replacing
P, 6,em{Sm € ds} with the normal distribution P{a,, + m'?0,,Z € ds} with the same mean
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and variance, then (completing the square and rearranging)

Tm = exp[(81(m) — ﬁo(m))am]eXp[% mon(6:(m) — 0z(m))2]

P{Z < —Vmo,(6:(m) — 6x(m)}

‘I'(m)]}
cexpsm| K(zm) — 2Zm-
p{ [ i =

(11.14)
= exp[(6:i(m) — Go(m))am]
-exp[— % ¥2(m) + h(Vmon(6:(m) — 02("”))}
[‘I'a(m) <‘I'(m))]
Xp AM—] |,
Vm Vm
where
(11.15) h(t) = log(e’?. P{Z > t}).
Note
1 ,
(11.16) Wt)=t——e 2 /P{Z>1t) ~ =1/t as t—> .
Vor

So by the mean value theorem

A(Vm0m(B:(m) — B5(m))) — h(JE(em - i"ﬂ))

m

(11.17) =—(1+ o(1))«/ﬁ[a,,,(01(m) — Oy(m)) — <em —%) ]/{\/EGM - %’")}

=o(1),
and hence the second of the three factors on the right side of (11.14) is (1 + o(1)) times

exp[— % Y¥(m) + h(‘/"_’<€’" - %))}
- exp[—% \Ifz(m)]exp[% m<€"‘ - %)Z]P {Z g %(em - %>}

-1
=1+ o(1))<em - &> (2ﬂm)'1/2exp[— 1 ‘I'Z(m)]
m 2

€n + —
= (1+ o(1)) ;” [«/%qz(m)]—lexp{— % \Iﬂ(m)]
€n — —”—l
Om
€m +—
=1+ o(1) ;” P{Z > ¥ (m)}.
n — 22

m
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In light of (2.7) it is now clear that
(11.18) 7m ~ right side of (10.30).
Moreover, integration by parts in (11.13) leads to the error estimate

Pm

Om VI

(11.19) | 7w — 7m | = 2C- . exp[(f:1(m) — bo(m))am]

¥ (m)
* K( m) — fm* :|}
exp{m[ 2 2 T

m

P

where C is the universal constant appearing in the Berry-Esséen bound C- p/(¢°n'/?) on
the error in the central limit theorem (see Feller, 1971, Theorem XVI, 5.1). Comparing
with (11.14) and recalling (11.15), the right side of (11.19) is

(11.20) 2C.— " . 3 exp[— R(Nmom(8:(m) — 85(m)))].
o Vm

But

(11.21) exp[— A(f)] ~ Vort as t— oo,

so by (11.8), (11.10), and (11.21), (11.20) is

(1 + o(1))-2Cp J2'7?<em - ﬂ)ﬁm = 0(#n).
m
Together 7, ~ 7, and (11.18) gives (10.30), completing the proof of Lemma 9.1. 0
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