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APPROXIMATING IMRL DISTRIBUTIONS BY
EXPONENTIAL DISTRIBUTIONS, WITH APPLICATIONS
TO FIRST PASSAGE TIMES'

By MARK BrowN
City College, CUNY

If is shown that if Fis an IMRL (increasing mean residual life) distribution
on [0, ) then:

max {sup:| F(t) — G(t) |, sup:| F(t) — e~ |, sup;| G(t) — e |,

() — e 6|} = _r =1- »

sup:| G(¢) — e e[} oE1 1 o

where F(t) = 1 — F(¢), p = ErX, 2 = ErX? G(t) = p~' [§ F(x) dx, pc = EcX

= p2/2p, and p = po/2u* — 1 = p/p — 1. Thus if Fis IMRL and p is small then

F and G are approximately equal and exponentially distributed. IMRL distri-

butions with small p arise naturally in a class of first passage time distributions

for Markov processes, as first illuminated by Keilson. The current results thus
provide error bounds for exponential approximations of these distributions.

1. Introduction. The exponential distribution satisfies p = |p2/2u> — 1| = 0 where
p= EX and p, = EX”. In general a small value of p does not in itself imply approximate
exponentiality. For example the binomial distribution with n = 1 and p = % has p = 0. It
is reasonable to conjecture, however, that within certain classes of distributions a small
value of p does imply approximate exponentiality. In these cases, given the class and the
first two moments of the distribution, it would be desirable to obtain bounds on the
distance from exponentiality.

The above problem for the class of completely monotone distributions (mixtures of
exponential distributions) has received some recent attention. The motivation for this
interest is that completely monotone distributions with small p arise naturally in first
passage time distributions for Markov processes, as first illuminated by Keilson ([11]-
[14]). Keilson and Steutel [15] suggested p as a measure of departure from exponentiality
within this class. Keilson [11], using results of Heyde [8], derived

(1.1) d(F, pe) = sup | F(x) — e™™/*| < ko'/*

where £ is bounded above by 4.41. Heyde and Leslie [9] improved the right hand side of
(1.1) to 3.74p and Hall [7] obtained a further improvement to 2.77p.

This paper considers IMRL (increasing mean residual life) distributions, a class consid-
erably larger than that of completely monotone distributions. (IMRL distributions are
defined and discussed in Section 2). Defining G(x) = w5 F(s) (the stationary renewal
distribution), be as an exponential distribution with mean b, ¢ = EcX = p12/2u, 0> = VarpX,
d(Fy, Fp) = sup|Fi(t) — Fx(t)| and d*(Fy, F2) = supg|Fi(B) — Fz(B)| where B is the
collection of Borel subsets of [0, »), we obtain:

2 2 2
1.2) dF, )<L =1 - By 2 _0 K
p+1 ] pz 0+

* o
(1.3) d*(F, G) = o1
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o
14 * =—
(1.4) d*(G, .Uf€)<p+ T

o
(1.5) d(G, pee) = Pt

Since F' = G if and only if F is exponential, one would expect that for small p, F and G
are approximately equal and that G is approximately exponential. Expressions (1.2)-(1.5)
give error bounds for these approximations.

The inequalities (1.2) and (1.3) are shown to be sharp even within the subclass of
completely monotone distributions. Thus p/(p + 1) is the best upper bound for both
d(F, pe) and d(F, G) (for F IMRL, d(F, G) = d*(F, G)).

The current results thus extend the domain of applicability from completely monotone
to IMRL distributions, improve the upper bound for d(F, ue) from 2.77p to its best value
p/(p + 1), apply to distributions of the form G(x) = u~' [§ F(s) ds, with F IMRL, without
requiring knowledge of EcX? (which may be infinite), and bound the distance between F
and G.

The inequalities (1.2)-(1.5) are derived along with related results in Section 4. The
sharpness of (1.2) and (1.3) is discussed in Section 5. Further bounds for the completely
monotone class are derived in Section 6. It is remarked in Section 7 that the results
immediately apply to the mixtures of distributions from proportional hazard families. In
Section 8 the above inequalities are applied to the class of first passage time distributions
considered by Keilson ([11]-[14]) which, as mentioned above, motivated much of the
interest in this problem.

2. IMRL and related distributions. A distribution F is defined to be IMRL on
[0, ) if p = [ x dF(x) < o, F(0—) =0, F(0) <1land EX — t|X > ¢t) = ([? F(x) dx)/F(t)
is increasing in ¢ = 0. A distribution F is defined to be DFR on [0, «) if F(0—) = 0, F(0)
<land Pr(X>s+ t|X>¢) = F(s + t)/F(t) is increasing in ¢ = 0 for each s > 0. In our
work below all IMRL and DFR distributions will be on [0, x) as defined above and we will
leave out the phrase “on [0, ©)” in referring to them.

Since stochastic ordering implies ordering of means, F DFR and y < « implies F IMRL.
However, it is easy to provide examples in which F is IMRL but not DFR.

Define G(¢) = p~" [§ F(x) dx, the stationary renewal distribution corresponding to F.
Note that G is absolutely continuous with failure rate function hg(t) = F(t)/uG(t) =
[E(X — t|X > t)]". Therefore F IMRL < G DFR. It follows that if F is DFR with
F(0) = 0 and f(0+) < o« (F is necessarily absolutely continuous with its pdf f possessing a
version which is decreasing) then F is the stationary renewal distribution corresponding to
the IMRL distribution with survival function L(x) = f(x)/ f0+).

If F is IMRL then hg is decreasing. Defining ¢ = F(0) we thus have:

(2.1) ho(t) = he(0) = g/p < 1/p.
It immediately follows that:
(2.2) G(t) = e/ = g7n,

A consequence of (2.2) is that for all decreasing functions ¢:

2.3) f £(t) dG(t) = ! j C@)F(t) dt < ut f £(t)e ™ dt.
Since G(t)/F(t) = py'E(X — t| X > t) it follows that for F IMRL:

(2.4) G(t)/F(t) is increasing.

Furthermore since G(0)/F(0) = ¢7, it follows from (2.4) that:
2.5) G(t) = q7'F(t) = F(@).
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3. Distance between distributions. Suppose that X ~ F;, and Y ~ F,. Then:
(3.1) suplF_'l(t) - Fz(t)‘ = sup,;l Fl(B) - Fz(B) l = PI‘(X # Y).

Thus given two distributions F, F, we try to construct random variables X, Y with X ~ F;,
Y ~ F; and Pr(X # Y) small. Then (3.1) is invoked to show that F; and F; are close. This
is the approach of Hodges and LeCam [10] in their study of Poisson approximation to
sums of independent Bernoulli variables. The construction for X, Y is found in Lemma 3.3.
The author employed a similar construction in [6].

If F,, F; are absolutely continuous with respect to u, with Radon-Nikodyn derivatives
fi, f> then:

(3.2) j'ﬂ—ﬁ'dﬂ=2J' (fi — f2) du = 2 supg| F1(B) — F2(B)|.
h>f

Thus if Pr(X = Y) is small then f3, f» are close in L:(u) norm.

(3.3) LEMMA. Sluppose that F\, F, are distributio_ns wiéh support [0, »), F5(0) = 0,
H;(t) = —Ln(Fi(t)|FA0)) i = 1, 2 are continuous, and F5(¢)/Fi(t) is increasing in t. Then:

00

(3.4) sup|Fi(B) — F2(B)| =1 —J Fi(t) dH,(2).

0

Proor. Construct two independent non-homogeneous Poisson processes, {N(t),
t=0}i=1,2, with EN:(¢) = Hs(¢) and EN,(t) = Hi(¢) — H,(¢). Note that F,/F, increasing
implies H; — H, is increasing. Define Y; to be the first event epoch from process i, i = 1, 2.
Construct p independent of the two Poisson processes with Pr(p = 0) = p = Fy(0),
Pr(p = 1) = F1(0). Define X = p min(Y3, Y2) and Y = Y. Now Pr(Y; > ¢) = Pr(Ni(¢) = 0)
= 70 = Fy(t) thus Y ~ F,. Similarly, Pr(X > ) = Pr(p = 1)Pr(Ni(¢) + No(¢) = 0) =
ge ™ = Fi(¢), thus X ~ Fy. Finally:

Pr(X=Y) =Pr(p = 1)Pr(Y: < Y,)

(3.5) o

- qJ e~ O-HA) o —HoO) GET. (£) =J' Fi(t) dH,(2).
0

The result now follows from (3.1) and (3.5)
Given two distribution functions Fi, F. define d(F, F;) = sup| Fi(t) — Fa(t)| = sup| Fi(¢)
— Fa(t) [

(3.6) LEMMA. Suppose that for each t either Fs(t) = max(Fi(t), Fa(t)) or Fs(t) =
min(Fi(t), Fo(t)). Then d(F1, F») < max(d(Fy, Fs), d(F, Fs)).
Proor. The above condition immediately implies that
|Fi(t) — Fo(t)| = max(|Fi(¢) — Fs(t)|, | Fa(¢) — Fs(t)|) forall ¢
Taking the sup of both sides gives the result.
4. Inequalities. Recall that d(Fy, F:) is defined to equal sup | Fi(¢) — F2(¢)|. Similarly

define d*(Fy, F3) = supg|F1(B) — F3(B)| where B is the collection of Borel subsets of
[0, ). Let be denote an exponentiality distributed random variable with mean b.

(4.1) THEOREM. Assume that F is IMRL with p < o, G(x) =u™" [5 F(s) ds, p = F(0)
and ¢ =1 — p. Then:
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; N PR N [ el
@) d"(F,G) = Ly =1-m=1-—m =
(i) F(t) = G(t) = F(t) +—2>— forall ¢
p+1
. P
(iii) d*(G, M)S—p .
(iv) e < G(t) < e+ L forall t
p+1
P
(v) d(F, pe) Sp 1
o

(vi) 4G, by <lpr1 T BEbSH

1—pb™ for b=pe.

In particular d(G, pce) < pL

+1
(vii) supe| F(t) — ge~| < ‘i)"—:{-
(vii) 4*(G, ") <2 21D
(ix) e~ < G(t) = e~ + % forall t=0
e — (p/q)

or g lusb=<
(x) d(G, be) << p+1 for a~w fe

1—u(bg)™ for b=pe
(xi) Assume that F is DFR with F(0) = 0 and f(0+) = a < «. Then
d*(F,a %) =1— (ap)'
-(xii) Under the conditions of (xi), e * < F(t)<e ™™ +1— (ap) ' forallt =0
(xiii) Under the conditions of (xi):

1—(ap)™? for a'=b=upu

d(F, be) = {1 —(ba)™* for b=p.

Proor. (i) By (2.4), G(t)/F(t) is increasing. Therefore Lemma (3.3) is applicable with
F; = F, F, = G. Using the Cauchy-Schwartz inequality and Lemma (3.3) we obtain,

L] o — 2 =
d*(F, G)sl—J F(t)ha(t) dt=1—“_GJ (M) G®) .
0 ), \G®/) pe

0 = =~ 2
B YT
pl)y G@) pe p+1

(i1) follows from (i) and (2.5).
(iii) By (2.1) and Lemma (3.3):
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3

4.2) d*(G,pe) =1-— f e*he(t) dt.

0

Since A is decreasing it follows from (2.3) that:

4.3) J e "ha(t) dt = J' F(t)he(t) dt.
0

0

The result now follows from (4.2), (4.3) and the inequality [ F(¢)hc(t) dt =1/(p + 1),
derived in the proof of part (i) of this theorem.

(iv) follows from (iii) and (2.2).

(v) From (2.2) and (2.5), G(t) = max(F(¢), e /*). The result now follows from Lemma
(3.6) and parts (i) and (iii) of this theorem.

(vi) For b = p, e/ = e™"* thus by (2.2), e™/* < min(G(¢), e ) for all ¢ = 0. By
Lemma (3.3), d(ue, be) <1 — pb~’; thus by Lemma (3.6) and part (iii) of this theorem:

P _
44 d(G, be) = max(—2—, 1 — ub' ).
(4.4) (G, be) max(p ! ub )
For b < pg, =1—uug' =1 — pb " and for b = p¢ the inequality reverses.

p+1
(vii) K(¢) = ¢"'F(t) is the survival function of an IMRL distribution with

pr = q ur, Mok =¢q 'por and px+ 1=q(pr+1).
Thus from (v):

0
_PE __ q
PK+1 PF+1.

Now multiply both sides of (4.6) by g to obtain the desired result.

(vii) K(t) = g"'F(¢) is the survival function of an IMRL distribution with the same
stationary renewal distribution as F and the same failure rate function as F. Simply apply
(iii) using px = ¢ 'pr and pox = ¢ '

(ix) follows from (viii) and (2.2).

(x) This result follows from (vi) using the distribution K as in (viii).

(xi) Take a version of f for which f(0) = f(0+) = a. Set L(x) = f(x)/f(0), x = 0.

Then L is the survival function of an IMRL distribution on [0, ). Moreover F is the
stationary distribution corresponding to L, ur = 1/f(0) = 1/a, and pr = pt2r./2u . The result
now follows from (iii).

(xii) Since Ar(¢) < hr(0) = a, F(t) = e”*. The result thus follows from (xi).

(xiii) Follows from (vi) using a similar argument as in (xi). 0

(4.6) sup, | K (t) — e™%r| <

(4.7 REMARK. The inequality cited in the summary follows from (i), (iii), (v) and (vi)
of Theorem (4.1).

(4.8) REMARK. If, in addition to u; and ps, p = F(0) is known then the approximation
F(¢) = ge " is suggested. Part (vi) of Theorem (4.1) gives an error bound of (go — p)/
(p + 1) for this approximation.

(4.9) REMARK. If Fis DFR than its failure rate function, 47 (¢), has a limit as ¢t — oo.
Call this limit y. Consider the case y > 0. Noting that Ar = y and applying Lemma (3.3) we
obtain:

(4.10) d*(F,y %) =1— yu.
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It is easily shown that Ag has the same limit as Ar, and thus applying Lemma (3.3) to
G we obtain:

(4.11) d*(G, vy 'e) =1 — yue.

Note that 1 — ype = 1 — yu. Since Ln(e”F(¢)) = Ln(q) + [ (y — hr(s)) ds, it follows
that e F(¢) is decreasing. Call its limit ¢; ¢ = 0 with equality if and only if [§ (hr(s) — 7)
ds = o,

When ¢ > 0, y > 0, the approximation F(t) =~ ce " will be preferable to e " for ¢
sufficiently large.

Note that since F(¢) = cre™, G(t) = cge™, and lim, .. (F(¢)/G(t)) = p lim, o hg(t)
= yu, it follows that cr = yuce.

(4.12) REMARK. Let F be a distribution on [0, ») with failure rate function 4. Define
v to be the essential infimum of %, and assume that y > 0. Then by Lemma (3.3):

1
555
1
sup m

(4.14) REMARK. F is defined to be NBUE (new better than used in expectation) if
E(X —t|X>t) = EX < o for all £ = 0. This is equivalent to F stochastically larger than
G, where G is the stationary renewal distribution corresponding to F. Since hq(¢) =
[E(X — t|X > ¢)]"' F NBUE implies that hg(t) = p~' = hg(0) for all ¢£. Thus (4.13) applies
with F replaced by G and 1 — yu by p.

(4.13) d*(F,y'e)=1—vyu=1-

where sup(1/h(x)) is the essential supremum.

(4.15) REMARK. In Brown [6], Theorem 2, it was shown that if Z(¢) is the forward
recurrence time at ¢ for a renewal process with IMRL interarrival time distribution F, then
Fz), the distribution of Z(t), is stochastically larger than F and stochastically smaller
than G. Thus:

_P_

(4.16) max(d (F, Fzw)), d(Fze), G)) = d(F, G) = ot 1

Since G(x) = max(F§),), e */*) it follows from Lemma (3.6), Theorem (4.1) and (4.16)
that:
_r

(417)  d(Fze), pe) = max(d(Fzq), G), d(pe, G)) < max(d(F, G), d(ue, G)) = et

(4.18) REMARK. If a < b then d(ae, be) = (1 — a/b)(a/b)*¥** In various bounds
derived above (Theorem (4.1) parts (vi), (x) and (xiii)) the upper bound, 1 — a/b, rather
than the exact distance was used. Thus the results can be somewhat strengthened at the
cost of extra computation.

(4.19) REMARK. Suppose that Fis DFR. The following inequality will be derived:

(4.20) F(t) = e “/w* for t=0.

It is known (Barlow and Marshall [2] page 1267) that F(¢) < e™* for 0 < ¢ < p, so (4.20)
leads to:

e W < Bty =e ™ for 0=<t=p.

To prove (4.20), let m denote the renewal density for a renewal process with interarrival
time distribution F, A(¢) the renewal age at time ¢, A the failure rate function of F, p =
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F(0) and g = F(0). Since m(s) = g 'Eh(A(s)) with &| and A(s) < s, it follows that:
(4.21) m(s) = g 'h(s).
Integrate (4.21) from O to ¢ to obtain:

t

(4.22) M(t)—q'=q"! j h(s) ds.

0
Thus from (4.22):
(4.23) F(t) = qe™ 0% = gg=(aMO=D,

From Brown [6] Lemma 2:
(4.23) F(t) = ge~Thds > go=GaMo-1,

Thus (4.23) and (4.24) yield:

(4.25) qe—(qM(n—n = e—(t/u"'p)[qep'(t/u+u2/2u2)].

Finally for F DFR with F(0) = p, F(t) = gK (t) where K (¢t) = ¢"'F(¢) is DFR. But then
px =0 and pr = ¢ 'px + p/q = p/q. Thus qe”**" = ge”’? = q(1 + p/q) = 1. Therefore the
quantity in brackets in (4.25) is at least 1, and (4.20) follows.

5. Sharpness of bounds. Given p and g, a convenient IMRL distribution with these
parameters is the one with survival function:

— 1
. F(t) = —— e Wi,
(5.1) (t) o1 e
The stationary distribution G corresponding to F is exponential with parameter
1/(p + 1)p. It follows that:

* — | _ ~ = p
(5.2) d*(F, G) = |F(0) — G(0)| o+l

~ P
(5.3) d(F, pe) = |F(0) — 1| = AT

Since Fis IMRL, (5.2) and (5.3) demonstrate that the inequalities in parts (i) and (v) of
Theorem (4.1) are sharp.

The distribution F is a mixture of two exponentials, one with mean zero (failure rate
o) and the other with mean (p + 1)u. The class of completely monotone distributions
consists of mixtures of exponential distributions. It is not clear whether a degenerate
distribution at {0} is allowable as an exponential distribution (with failure rate «). Thus
depending on which definition of completely monotone is employed, either F (defined in
(5.1) above) is completely monotone or else is the limit in distribution of a sequence of
completely monotone distributions. Either way it follows that p/(p + 1) is the best upper
bound for d(F, pe) and d*(F, G) as F ranges through the class of completely monotone
distributions.

6. Further results for completely monotone distributions. It is instructive to
look at the bounds of Theorem (4.1) for the class of completely monotone distributions.
Represent a completely monotone random variable Y by Y = Ue = A~!¢ where U and
¢ are independent, A = U™, and ¢ is exponential with parameter 1. A failure rate of o (a
mean of 0) corresponds to a degenerate distribution at {0} while a failure rate of 0 (a mean
of o) corresponds to a degenerate distribution at {oc}. Note that:
ol

(61) ' p = W
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Thus p is the coefficient of variation of the random mean U. Therefore (v) of Theorem
(4.6) can be expressed as:

2
U
Suppose that F(0) = 0 and f(0+) = EA = EU™! < «, Then (xi) and (xiii) of Theorem
(4.1) give:

(6.3) d*(F, (EA) ') =1 — (EAEU)™

1— (EAEU)™ for (EAN)'=b=<EU
(64) d(F, be) = {1 — (BEA)"  for b=EU.
7. Proportional hazard families. Consider a family of distributions on [0, ») with
survival functions:

(7.1) Rt = (F@e)Y

where A > 0. If F is continuous with R (¢) = —LnF (¢), and « is exponential with parameter
1, then Y, = R} (A7) is easily seen to have the distribution F, of (7.1).

Suppose now that the parameter A is random with distribution H. We are interested in
bounding the distance between the mixture [ F\ dH(A) and F}, a distribution with fixed
parameter. Note that:

sup | Pr(R™Y(A™%) > ¢) — Pr(R™}(b7%) > ¢) |

=sup|Pr(A7%e > R(t)) — Pr(b”"e > R(¢)) |
(7.2)

= sup | Fa-1.(x) — ™|

=d(A7 %, b7%).

Consequently the desired distance is equivalent to the distance between the completely
monotone distribution of A’ and the exponential distribution with parameter . Therefore
the bounds (6.2)-(6.4) apply.

8. Application to first passage times. Keilson [11] page 133 writes “If a system is
modeled by a finite Markov chain which is ergodic, the passage time from some specified
initial distribution over the state space to a subset B of the state space visited infrequently
is often exponentially distributed to good approximation. ... For engineering purposes, it
is essential to quantify departure from exponentiality via error bounds. When one is
dealing with time reversible chains, e.g., systems with independent Markov components,
the complete monotonicity present permits quantification and the error bounds needed.”

Keilson’s interesting approach defines two special (meaning specific distributions gov-
erning the initial state) first passage times, T'v (the ergodic sojourn time) and T (the
ergodic exit time). For finite state ergodic Markov processes in continuous time Keilson
([11], Theorem 6.7A) derives:

(8.1) F"E(t)=i f Fu(s) ds
B J,

where Fg, Fy are the cdf’s of Ty, Tv and uy = ETv. Thus Fg is the stationary renewal
distribution corresponding to F'y.

If in addition the process is time reversible Fr and Fy are IMRL, thus Theorem (4.1) is
applicable with F = Fy and G = Fg. We thus obtain:

82)  max(d*(Fv, Fg), d(Fv, uve), d*(Fg, pve), d (Fz, ppe)) < ’%1 —1- Z_V
E

Note that the exponential approximation to Fx is obtained without requiring knowledge
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or finiteness of ET%. This latter quantity is needed to apply the bounds of Keilson [11],
Heyde and Leslie [9], and Hall [7].

(8.3) ExamMpPLE. Consider a system with three i.i.d. components. A component alter-
nates between exponential visits to state 1, with parameter y = .01, and exponential visits
to state 0 with parameter p = 1. Of interest is the first passage time to B = {(0, 0, 0)}. In
the language of reliability theory, we have a repairable three component parallel system
with component failure rate .01 and component repair rate 1. The time to first system
failure is the first passage time to B. Since B is a rarely visited set (the stationary
probability of B is (101)~®) we anticipate approximate exponentiality for T, Tv. Now

(Brown [5])
1 (101)® s [3) (100) .
ETz = ol ((11T> Py ( ) = 345,181.85;

furthermore ETv = ((101)® — 1)/3 = 343,433.33, thus p = .005091 and p/(p + 1) = .005066.
Therefore by (8.3) Fy(t), Fz(t) ande " are all within a distance of .005066 for all ¢.
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