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The fluctuations of an infinite system of unscaled branching Brownian
motions in R? are shown to converge weakly under a spatial central limit
normalization when the initial density of particles tends to infinity. The limit
is a generalized Gaussian process M which can be written as M = M’ + M",
where M is the fluctuation limit of a Poisson system of Brownian motions
obtained by Martin-Lof, and M¥ arises from the spatial central limit normal-
ization of the “demographic variation process” of the system. In the critical
case M! and MY are independent and M” coincides with the generalized
Ornstein-Uhlenbeck process found by Dawson and by Holley and Stroock as
the renormalization limit of an infinite system of critical branching Brownian
motions when d = 3. Generalized Langevin equations for M, M’ and M" are
given.

1. Introduction. Let N = {N,, ¢ = 0} denote a random field of particles in R?
(d = 1) such that at time ¢ = 0 it is a homogeneous Poisson field, and each initial particle
generates a branching Brownian motion where the particle lifetime distribution is expo-
nential and the branching law has finite second moment. N; is the point process determined
by the locations of the particles in R¢ at time ¢.

In recent investigations (e.g. [4], [5], [6], [10], [12]) on asymptotic behaviors of such
systems, scalings have been used where the initial density of particles tends to « and the
mean particle lifetime goes to 0 (and possibly other scalings). Of particular interest are
limits in the critical case, i.e. when the mean of the branching law is 1. In these models the
branching structure originated by each initial particle disappears in the limit due to the
time scaling which makes the mean particle lifetime tend to 0. In this paper we study the
asymptotic behavior of N when the initial density tends to « but all other parameters of
the process remain unchanged. Since the branching structure is preserved, this model
portrays an infinite noninteracting branching particle system where the particles undergo
many more scatterings than fissions.

We show that the random field N7, where the initial Poisson field has intensity 7' > 0,
obeys a law of large numbers and a functional central limit theorem when 7' — . The
weak limit M = {M,, ¢ = 0} of the fluctuation process is a generalized Gauss-Markov
process which has continuous paths and satisfies the generalized Langevin equation

aM/ot = LAM + oM + W, t=0,

where M, is the standard Gaussian white noise on R¢, « is the Malthusian parameter of
the branching process and # is a certain space-time noise.

M has the decomposition M = M’ + MY, where M is the high-density fluctuation limit
of a Poisson system of Brownian motions obtained by Martin-Lof [15], and M is the
fluctuation limit of the “demographic variation process” of the system, which traces the
excess or defect of Brownian particles due to reproduction and deaths in the population
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with respect to the “basic population process” where there are no reproduction and deaths.
M" and M™ are continuous generalized Gauss-Markov processes satisfying a system of
generalized Langevin equations, and in the critical case (a = 0) they become independent.

In dimensions d = 3 and the critical case M coincides with the generalized Ornstein-
Uhlenbeck process found by Dawson [4], [5] and by Holley and Stroock [12] as the
renormalization limit of an infinite system of critical branching Brownian motions. This
coincidence is interesting in view of the fact that the same limit arises from two qualitatively
different scalings: renormalization with scaled time and central limit normalization with
unscaled time.

Section 2 contains the limit theorems, the descriptions of the processes M, M’ and M”
and the generalized Langevin equations they satisfy. The proofs form Section 3. We refer
to [1] for the theory of branching processes and to [8] and [14] for the theory of generalized
random fields.

This work owes a great deal to ideas of Martin-Lof [15], and Holley and Stroock [12,
13].

2. Results. The special branching random field of particles NT = {N7, t = 0} in R*
(d = 1) considered in this paper is described as follows: the initial field N{ is a homogeneous
Poisson field on R with intensity T' > 0, each initial particle generates an independent
branching Brownian motion in R? such that the particle lifetime distribution is exponential
with parameter V, and the branching law { p,} -0 has mean m; and finite second factorial
moment m. The Malthusian parameter is then « = V(m; — 1). The case m; = 1 (or a = 0)
is called critical. N7(A) represents the number of particles of N7 in the Borel set A C R*
at time ¢. The existence of such a process on a probability space (£, &, P) is established
e.g. in [6] and [12]. Our objective is to study the behavior of N7 as T'— oo.

Since the fluctuation limit of N will be a generalized random field, we regard N7 as
taking values in &%’(R?), the Schwartz space of tempered distributions on R% this can be
done because NY is a random tempered Radon measure on R% Let ¥ (R?) denote the
Schwartz space of (rapidly decreasing infinitely differentiable) test functions on R“ whose
topological dual is #’(R?), and (, ) the canonical bilinear form on &’(R%) X & (R¢). When
p € ¥ (RY is a (signed) measure, then (u, &) = [¢ du, ¢ € L (R?). We recall that a
nuclear space topology on # (R“) is defined by a sequence of norms || - o< | - |1 < -++ <
[l +llp=---,and|| - |-, denotes the operator norm on the dual space of the || - || ,-completion
of ¥ (R?). We will use the norms

¢ ll» = maxosip<psupsx [T5-1 (1 + | x;])?| D*p(x) |, x= (x1, «- -, Xa),

where & = (ki, -+, ka), |k| = ki + - -+ + ka, and D* = 9*/0xt ... oxh (see [8, 9]).

The process N” has mean E(N/, ¢) = Te™ [ ¢(x) dx and Var(N7, ¢) is of order T (see
Corollary 1, Section 2).

The first result is a law of large numbers for the system.

THEOREM 1. For each t =0 and ¢ € ¥ (R?),

T YNT, ¢) — e J’ ¢(x) dx in mean square as T — o.

Now we consider the fluctuation process M” = {M7, t = 0} defined by
MT =T '2NT — Te**)), t=0,

where A is the Lebesgue measure on R<.

In the following we denote by = weak convergence of probability measures and W is
the standard Gaussian white noise on R (i.e. the &’(R?¢)-valued random variable whose
characteristic functional is exp{—% [ ¢$%(x) dx}).

The fluctuation M7 has the following asymptotic behavior.
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THEOREM 2. There exists an &'(R%)-valued centered Gaussian process M =
{M,, t = 0} with covariance functional

Cov((M;, ¢), (M, ¥)) = e J J S (XY (y)e 1F W29 (90 (¢ — §))™%2 dx dy

o Vewj j @) J eI g (¢ — 5+ 20)) Y dr dx d,
0

& YE F(RY), s=t,

and M"= M as T — .

The process M is Markovian, has a norm-continuous version (i.e. for each T € (0, )
there is an integer p > 0 such that M, is | - ||-p-continuous on [0, 7] almost surely), and
viewed as a space-time process it satisfies the generalized Langeuvin equation

oM/ot =AM+ oM+ W, t=0, Mo=W,

where W'is a generalized space-time centered Gaussian noise with covariance functional

Cov({(¥#5, ¢), (Wi, ) = 8(s— t)e”‘{J Vo (x) - Vi(x) dx + (m V — ) f ¢ (0 (x) dx} ,

6, ¥ € F(RY)
(- denotes inner product).

From the branching random field N7 we now form another process N*7 = {N?7, ¢ = 0}
as follows: when a particle in N7 splits into n > 1 particles we leave only one of them and
remove the other n — 1, and when a particle in N7 dies without leaving descendants
(n = 0) we resuscitate it and let it live forever without reproducing doing its Brownian
motion. N*7 is then a Poisson system of independent Brownian motions; such systems
have been investigated by Martin-Lof [15]. In the present case N is a stationary process,
N!7T being distributed as the initial Poisson field N for all £. We call N*” the basic

population process of the system.
We also define the process N*T = (N®T ¢t = 0} by

T
N{*""=N{ - N7, t=0,

and call it the demographic variation process of the system because it traces the excess or
defect of Brownian particles due to reproduction and deaths in the population with respect
to the basic population N7,

Clearly M7 can be written as

MT = MI,T + MII,T
where
1T = T~VYNET — T))

and

MPET = TV2(NET — (e*'— 1)TA).

The following theorem concerns this decomposition.

THEOREM 3. The process M of Theorem 2 has the decomposition
M=M +M",

where M’ and M" are generalized centered Gaussian fields satisfying the system of
generalized Langevin equations
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aM’/ot = eAM' + w!
aM /ot = LAM™ + a(M' + MT)y + w1, t=0,
Mi=W, M{ =0,

where W' and W' are independent generalized space-time Gaussian noises with
covariances

Cov((#5, &), (W1, ) =8(s — ¢) j Vo (x) - VY (x) dx
and

Cov((W3, &), (Wi, ) = 8(s— t){(e‘” -1 J Vo (x) -V (x) dx

+ e*(my V — a) fqb(:c)x[z(x) dx} .

M" and M" are Markovian, have norm-continuous versions, and their covariances
are

Cov((M{, ¢), (M{, ¢)) = f f SEY(y)e N2 9n (¢ — 5)) 2 dx dy, s=t,

Cov((M{, ¢), (MT, y)) = e*(1 — e™) f j SY(y)e 1= M2ED (9 (¢t — 5))~Y2 dx dy

+ (mzveat _ 0((1 + ea(t—s))) IJ’ ¢(x)¢(y) f ear—||x—y||2/2(t—s+2r)
0

<27t —s+2r))"?drdxdy, s=t,
and

Cov((M3, ¢), (M{", ¥))
-
(ea(t—s) -1 f J’ ¢(x)¢(y)e—llx—y||2/2(t—s)(2,”(t _ S))—d/z dx dy

= <+ qe*® J’ J’ & (x) Y() f e NN (9n (t — 5 + 2r)) 2 dr dx dy, s= ¢,
0

t
«a J’ f S (X)W (y) f e XA /26=t (90 (s — ¢ + 27)) Y2 dr dix dy, s=t.
L o

In particular M" and M" are independent if and only if « = 0 (the critical case).
Finally, M"" = M’ and M™"T = M" as T — .

REMARKS.
1) The laws of large numbers for N*7 and N7 are

TYN!T, ¢) — J o (x) dx
and
TN, ¢) — (e — 1)f¢(x> dx as T— o

in the mean square.
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2) The limit M#7 = M/ for each ¢ and the properties of M’ were proved by Martin-Lof
[15].

3) In the critical case (a = 0) and in dimensions d = 3 the process M” coincides with
the renormalization limit of the infinite system of critical branching Brownian
motions. In the renormalization scaling the initial field is also Poisson with intensity
T, but there is a space-time scaling of particle motion under which the mean particle
lifetime V' is replaced by (VT%?)™! and the normalization is 772" Y4NT — T)).
This limit was obtained by Holley and Stroock [12] (using binary branching) and
independently by Dawson [4], [5] (with particles doing a symmetric stable process).
In the terminology of [12] the limit process M with a = 0 is the generalized
Ornstein-Uhlenbeck process with characteristics %A and (m, V)/*I starting from 0.
In the present paper this process arises from the spatial central limit normalization
of the demographic variation process N LT without space-time scaling of particle
motion and it holds for d = 1.

4

~

In the critical case (« = 0) and dimensions d = 3 the process M has an invariant
random field M. which is the generalized centered Gaussian field with covariance
kernel

8(x —y) + mVI(d/2 — )(dm) Y| x — y|**% x,y€E R .

i.e. the same as for the generalized Ornstein-Uhlenbeck process above plus an
independent standard Gaussian white noise.

5) M" and in the critical case M are both self-similar. Indeed, given any constant
k > 0 the distribution of M’ is invariant under the transformation (k~%2M}s,
¢(%71.)), and when a = 0 the distribution of M¥ is invariant under the transformation
(B~ M™%, $(k7'-)). Hence M is never self-similar but in the critical case it is a
sum of two independent self-similar processes with different similarity transforma-
tions.

6) Remarks 3 and 5 lead to the following observations. In the critical case and d = 3 it
can be shown that the renormalization limit of N7 is the generalized Ornstein-
Uhlenbeck process, and since that of N*7 is 0, then the renormalization limit of N7
is also the generalized Ornstein-Uhlenbeck process, thus agreeing with the results of
Dawson, and Holley and Stroock. The process N™>7 has the generalized Ornstein-
Uhlenbeck process as a limit under two different scalings: renormalization, and
spatial central limit normalization with unscaled motion.

7) Here we have restricted our attention to Brownian particles in order to bring out the
main features of the model in a relatively simple case. By a more elaborate analysis,
but essentially the same approach, similar results can be obtained for infinite systems
of branching random motions with particles performing other Markov processes, or
systems where for each initial particle the corresponding branching motion process
converges under a scaling to a branching diffusion, as in [11] for example.

3. Proofs. Due to deaths in the population, N7 will contain some terminated (Brown-
ian) trajectories w: [0, ©) — R<. It will be convenient to consider all trajectories as being
infinite. In order to achieve this we add a point 1 to the state space and denote B¢ = R?
U {f}; {1} is the cemetery where dead particles live, and every trajectory w in N7 will
belong to the space 7 of right-continuous functions x: [0, ©) — B¢ with the property that
x(t) = t implies x(s) = 1 for all s > ¢. Test functions ¢ € & (R?) are extended to B¢ by
¢(1) = 0. This is a device to take care of dead particles in order to make the following
definitions precise.

We will consider N7 as an %’(R%)-valued stochastic process and also as an
&'(R? x R")- valued random field. Let {w,} 2 be the set of all trajectories in N7. Given
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¢ E F(RY), let
1) (N7, ¢) = ¥21 ¢(wi(t), t=0.

Then {N7, t = 0} is a random element of the Skorohod space D([O ), ' (R?)). Given
¢ EF(R*X R™), let

2 (x) =j o(x(t), t) dt, xE Z,
0

and define N7 on & (R X R*) by

0

3) (N7, ¢) = 31 (1) =J (NT, (-, 8)) dt.

0

Thus N7 is N7 viewed as a linear functional on & (R X R*), and we will verify later that
it is an &’(R? X R*)-valued random field. The norms defining the topology on % (R?)
were given in Section 2. For & (R X R*) we use the norms

|6 |l» = maxosisi<pSupzsupso [[F=1 (1 + | ;) (1 + £)7e*’| D*¢ (x, t)|, p=01 ...

if @ > 0, and without the e if « < 0, where D* involves differentiation with respect to x
and ¢; the induced topology is nuclear (see [8, 9]).

Before proving the theorems, we need to establish some basic results about N7.

Since N7 = Y%, N*, where {x;}% are the points of the initial field NJ and N* =
{N7?, t = 0} denotes a branchmg Brownian motion as described in Section 2 with a single
initial particle starting from x € R% and since N{ is Poisson with intensity measure T dx,
it can be seen from (1) that the random vector ((N7, ¢1), +++, (N7, ¢n)), 1 <t < +++ <
t., has characteristic function

E exp{i Y1 (N7, ¢,)} = exp{Tf [E exp{i X} uj( N, ¢;)} — 1] dx} ,
4)
ul)""uYLER) ¢1,---,¢ne.7(Rd).

Similarly, from (3), N7 has characteristic functional
(5) Eexp(i(N",¢)} = eXp{TJ [E exp{i(N*, ¢)} — 1] dx}, ¢ E LR X RY),

where N* is N* as an &’ (R® X R*)-random field.
From (4) with n = 1, 2 follows that

(6) E(N/,¢)= TfE<Ni‘,¢> dx, ¢ € #(R),
and
(7 Cov((NT, ¢), (N7, ¢)) = TfE<N:,¢>(N?,¢> dx, ¢,y € F(RY).

The process {N{} is Markovian with infinitesimal generator & given by
Lf (s d)) = (1, 6)) (1, 38) + 3" ({1, 6)) (u, [V |?)
8
® Vj p(dx) Yr=o Pul ({1, @) + (n = D (x)) — F({p, 6))],

where f € C3(R) (functions with bounded continuous derivatives of up to second order),
u is a point measure on R? and ¢ € #(R?), and

0



380 LUIS G. GOROSTIZA

is a right-continuous martingale with respect to the o-fields generated by { (N7, ¢), s < ¢,
¢ € #(R?)}, t = 0. This is shown as in [12].

We define the semigroup
(10) I =e"T, t=0,

where 7° = 7 is the Brownian semigroup
Tip(x) = J ¢ (y)e 1= (Qrg)=92 dy, t= 0.

7 has infinitesimal generator

(11) A =3A+a t=0,

and
t t

(12) .%"‘qb—¢=j TP ds=J A TP ds.
0 0

The following lemma contains basic calculations.

LEmMa. For ¢, ¥ € C3(RY) U #(R?),

(13) J’E(Ni‘,rb) dx=e"‘J’¢(x) dx, t=0,
and

(14) IE(Nif,rb)(N?,\l/)dx=C(s,¢>;t,\P),

where

C(s, o6 ¢) = e“‘{J ¢ (%) Te-s¥ (x) dx + M2V J’ j e Tord (x) drIi—si (x) dx}
0
(15) = e““{f & (%) T2 d(x) dx

+ mgVJj e IRP(x) drT2 P (x) dx}, 0=s=<{
0

if these expressions are finite.

ProoF. By a renewal argument,

E(Nf’ ¢) = e_Vt j (l)(y)e_"y_xuz/2t(2,”t)—d/2 dy

t
+ j Ve v j e V=3 1125(905) =42 $ p E ¥y ( N2, ) dy dis,
0

where N7*,(-) is the number of particles in - coming from the ith offspring of a particle
reproducing at position y, at time ¢ — s after its birth, and since

E YL (N, ¢) =nE(Ni_, ¢),
we have

E(Nf’ ¢) = e—Vt J ¢(y)e—lly—x||2/2t(2ln_t)—d/2 dy
(16) :
+ my J’ Ve Vs J E(N7_, ¢) e—lly—xllz/28(2ﬂs)—d/2 dy ds.
0

Define
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(17) F(s t) = j j E(Ni., &)¥(y)e W57 0n5)792 dx dy, 0<s=<t.
Multiplying (16) by ¢/(x) and integrating we see that F (s, ¢) satisfies
t

F,¢t) =eV'F (¢, t) + my J’ F(s, t) Ve ds,
0

and one can verify that the solution of this equation is
(18) F(s,t) =™ J J $ ()Y () e P 2me)= dx dy;
in particular, for s = 0 and ¥ = 1 we have from (17) and (18)
J'E<N$‘, ¢) dx = e f ¢ (x) dx,
proving (13) (this proof can be done more directly; the reason for introducing (17) is in the

next part).
We will now prove (14) with s = ¢ first. Again by a renewal argument,

E(N?, ¢)(Nf, ¢y =e™" J SNV (y)e =2t o ey-ar2 gy

t
(19) +f Ve_ste_lly_x|'2/28(277'3)_d/2znpn
0

-E YN, ¢) Ti( N, ) dy ds,
where N7 is as above, and using independence,
E ¥y (N, ¢) it (N, )
=nE(Ni_s, $){Ni_s,¥) + n(n — DE(NI_;, ¢) E(Ni_;,¥),
hence, integrating (19),

J E(N:,$)(Ni, ) dx=e"" J’ ¢ (x)y(x) dx
(20) + m,J Ve“"‘jE<Né‘_s,¢)(Ni‘-s,xp) dx ds
(1]

t
+ mg J’ Ve‘vs f E(N?—s, ¢)E(N?—s; ‘P) dx ds.
0

In order to obtain a functional equation for [ E ( N%, ¢)(N%, ¢) dx we must first compute
the last term of (20). From (16) we have

J' E(Ni, $)E(Ni,¢) dx =" JJ S(W(2)e 14 (4nt) " dy dz

+ mle‘V‘J’ Ve~ v* JJ (@ (Y)E(Nis, ¢)
0

@1) + W) E(Ni, ¢))e 2492 (¢ + 5))™* dy dz ds

t t
+m%f f Ve Ve " “’ E(N%,, ¢)E(Ni,, )
0 Jo

e 1222090 (s + 1)) "Y2 dy dz ds dr.
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Using (17) and (18) in the second term of the right in (21) and performing integrations in
s, we obtain

J’ E(N%, o) E(Ni, §) dx = e (2e"™" -1) Jf (YW (R)e 4 (4rrt)~*2 dy dz

(22) + mi J J Ve V*Ve™"" J J E(NZ, ¢)E(Ni_,, )
0 Jo :

7120 9n(r + 5))~Y dy dz ds dr.

Let
G(r,s, t) = IJ E(Nl_,, ¢} E(Ni_,, ) e W20+ 0n(r 4 5)) 42 dy dz, 0=<r,s=t,
so (22) becomes
G(0,0,t) = e 2V (2e"™' —1) G(¢, t, t) + m] Jt J’t Ve Ve V'G(r, s, t) dr ds,
0 Jo
and one can verify that the solution of this equation is
G(r, s, t) = e JI oW (2)e P A4 4n )2 dy dz, O0<r, s< ¢t
in particular, for s = r = 0 we have the solution of (22):
(23) f E(N%, ¢) E(Ni, ) dx = & j j S (Y(2)e =4 4 )™” dy de,
and bringing (23) into (20) we obtain a renewal equation for
H() = J' E(NZ, ¢) (Nt,¢) dax,

namely:

! t
H(t) = e“"(f o(x)¢Y(x) dx + meJ VeV@m—1s
0

t
. f f o(Y(2)e =274 (4m5) %2 dy dz ds) +m J H(t - s)Ve ¥ ds,
0
whose solution is

H(t) = e"“( J o(x)¥(x) dx + mszf e J’ f e (2)e P/ (4rr)y 2 dy dz dr)
0

proving (14) with s = ¢.
To prove (14) in general we use the fact that
t
(NZ, ) — J’ (N, %Ay + ad) dx, t=0, ¢EF(RY),

0
is a martingale (as in (8) and (9) with f(x) = x); hence for s < ¢, (see (11)),

E[(NZ, ) |[(NF, ¢), r<s,¢ € L(RY)]

t
= (N, ¥) + E[f (N7, )dr| (NFp), r < s, ¢E=9’(Rd)],\
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and therefore
t
(24) E(N;, ) (Ni,¢) = E(N;, ¢) (NZ,¢) +f E(N;, ¢ ) (N7, Y )dr.

Define (see (10))

(25) W(x) =T Y(x), t=0;
hence Y = y. We will verify that the solution of (24) is
(26) E(NS, ) (NF, b)) = E(NS, ¢)(N;, Ye—s), s=t.

Indeed, assuming (26),

j E(N{, &) (N7, &) dr = E(N§,¢)<N§,J A Yy-s dr)

t—s
= E(NJ, ¢) (NS, J LT 2 dr)
0

=E<N:’ ¢)(N:’ \Pt—s_\P) (using (12))

= E(NJ, ) (N7, ) — E(NS, ) (NI, ¢),
which gives (24). Then from (14) with s = ¢, (25) and integrating (26) we obtain (14). O
COROLLARY 1.

(27) E(N{,¢)= Te“‘f¢(x) dx, t=0.

(28) Cov((N{, ), (N7, ¥)) = TC(s, ¢; t,¥), 0=<s=<1{,
with C(s, ¢; ¢, ¥) given by (15).
Proor. (6), (7), (13) and (14).0
CoROLLARY 2. N7 defined by (3) is a &' (R* X R*)-valued random field.

Proor. To see that (5) is indeed the characteristic functional of an &’ (R¢ X R™)-
random field, by the Bochner-Minlos Theorem [9] it suffices to note that (5) is 1 at ¢ = 0,
positive-definite, and continuous. The continuity follows from

|log E exp{i(N", ¢)} — log E exp{i(N", )} |

= Tf E(N" |¢ - ¥|) dx
= TJ JE<N?, |-, 8) =¥(-, £)]) dx dt (by (1), (2), (3))
0

= TJ J | o(x, ) — Y(x, t)| dx dt (by (13))
0

= T sup; supe=o [[-1 (1 + | %;])2(1 + £)%| ¢ (x, £)

© d ©
—Y(x, t)|(2 f 1+ dx) J Q+02dt
0 0

=Kl ¢ =¥l
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where K is a constant. [
We can now prove the theorems.

Proor oF THEOREM 1. By (27) and (28),

E|TYN{,¢) — e~ f¢(x) dx|*
¢ 2
= T—2{Te“‘ J’[qb(x) + msV J e Torp(x) dr]qb(x) dx + T2e2“‘<J¢(x) dx) }
0

2
- e“‘(ﬁp(x) dx) —0as T— .0

PrOOF OF THEOREM 2. We will show that M = M (as &’ (R?)-valued processes) by
proving weak convergence of the finite-dimensional distributions and relative weak com-
pactness. This procedure is simpler in the present situation than the Stroock-Varadhan
martingale problem method because of technical complications with the martingales in
the non-critical cases (a # 0). Some special martingales will be used however to establish
relative weak compactness.

By (4), (13) and (14),

E exp{i 37— (M{,¢,)} = exp{—% Y. wusC(t, ¢; t, d1)}
. exp{fT[E exp{i ¥, TN, ¢;)} = 1 —iTV* T, wE(N;, ¢,)
+ T ¥x wur E(N;,¢,) (N3, ¢>k)] dx},

where the integrand converges to 0 as T'— o and is bounded by K ' ; u?E(Nij , &,)%, with
K a constant (see [3]). Hence by the dominated convergence theorem,

limr_,. E exp{i }; uj(Mg, &)} = exp{—"% Y .» wurC(;, ¢j; tr, d2)},

and therefore by Lévy’s continuity theorem (M'f‘ s D1)y oo, (Mf, , ¢n) jointly converge
weakly to corresponding centered Gaussian random variables with covariances C(t;, ¢;; t&,
¢x). Thus we have the weak convergence of the finite-dimensional distributions as
T — oo,

We will prove relative weak compactness by means of a general theorem of Holley and
Stroock (Theorem (1.2) in [13]). Our calculations are similar to those in [12], with some
different technicalities due to the non-constant centering (¢*’) in our case.

We have the right-continuous martingale ((8) and (9) with f(x) = x)

t

(29) (NzT,¢)—J (NI, (%A + a)¢p) ds, t=0,
)

and since (A, A¢p) = 0, then

t
(NF—e“T\, ¢) — J (NT — e*T\, (%A + a)¢) ds
0

t

=(NzT,¢)—J (N, (A + a)¢) ds—Tf¢(x)dx, t=0,

0
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is also a right-continuous martingale, and therefore

t
(30) (MF, ) — f Yie(s) ds, t=0,
0
is a right-continuous martingale, where
(31) Yie(s) = (M7, (%A + a)$), s=0.
By (28),

t 2 t 2
E((anb)—J' (N7, (‘/2A+a)¢)d8) <°°andE((M:T,¢)—J Y14 (8) dS) <
0

0

for all ¢; therefore the martingales (29) and (30) have Doob-Meyer decompositions [17].
The increasing process of (29) is

f Hy((N{, ¢)) ds where Hy(x) = (£f* — 2f<f) (x),
0

with £ given by (8) and f(x) = x. Hence,

Hi((N, ¢)) = 2(NJ, ) (NI, %A¢) + (N7, |Vo|?)
+2a(NJ, ¢)° + V(mg — my + 1)(NI, ¢°) — 2(NT, ) (N7, (%A + a))
= (N7, |Vé|* + V(m; — my + 1)¢°),

SO

t 2 t

((NtT,¢) —J (NT, (%A + a)g) dS) —J' (NS, Vo> + Vime — my + 1)) ds, =0,
0 0

is a martingale, and since (29) is a martingale, then

t 2
((N?— “‘T)x,tb)—f (NT — e=TA, (1/2A+a)¢)ds)

0

t

—J (NI, |Vo|* + Vimy — my + 1)¢?) ds

0

t 2 t
=<<N‘T’¢)_J (N7, (%A+a)¢>ds) —J (NS, |V |* + V(my — my + 1)¢%) ds

0 0

2 t
+ T“’(h(x) dx) - 2(<N?,¢> —J (NT, (%A + a)¢p) ds)qub(x) dx, t=0,
0
is a martingale, and therefore (see (31))

t 2 t
((MtT,sb)—f 114 (s) ds) —f Yis(s)ds, t=0,
(1] (1]

is a martingale, where
Yie(s) = TH(NJ, |V | + V(ms — mi + 1)¢2), s=0,

giving the Doob-Meyer decomposition of (30).
By Theorem (1.2) in [13], {M"} 1=, is relatively weakly compact in D([0, ), &’ (R?)) if
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for each € (0, ) there is a constant ¢(r) such that for all $ € #(R?),
(32) suprsiE supo=e< (M7, ) = c(r)(|| ¢ 17 + | A¢ [I7)

for some p > 0 (since our & (R“-norms are equivalent to those in [13], this implies
condition (1.3) of the theorem), and if for each 7 € (0, ) and ¢ € ¥ (R 9,

(33) Supr=1E supoi< (YH(0): <o, i=1,2.

(Notice that {(MJ, ¢)}r=1 is tight).

Instead of checking the condition in the theorem which ensures continuity of the limit,
we will prove continuity directly later on.

Doob’s inequality applied to (30) gives

¢ 241/2 . 291/2
[E SupOsts‘r((MtTy o) —f YT6(5) ds) ] = 2[E((MTT,¢) —J y1a(s) ds) ]
) o

. 291/2
< 2[E(MT, ¢)%]"* + 2[E<f yis(s) ds) ]
0

T N 1/2
=2E(MT, ¢)* 1 + 271/2[ f E (y14(s))® ds] .
0
Now, by (27) and (28), and showing that [ | ¢ (%)% (x)| dx < |||} f [T5=: (1 + | ;)™ dx,

2
E(M{, ¢)* = T'I[E(NtT, $)2 — 2e“TE(N/{, ¢) J’¢(x) dx + ez"“Tz(f ¢ (%) dx) ]

= e“‘[f ¢ (x)? dx + mszf j e T (x) dr ¢ (x) dx]
0

= e[l + maV(e* — 1)/a]||¢ B K,
where K is a constant; similarly, for (31)

E(T(5)? = e[l + mV(e** — 1)/al||%A¢ + as [} K,
SO

t 2q1/2
[E supogsf((MzT, o) — f Y14(s) dS> ]
0

= 2e*"[1 + maV(e* — 1)/a]"?|| ¢ || K>
+ 2012 (e — 1) o + ma V(e — 1)/@)*/21 (1A /2 + | a| 6 VK.

Therefore,

¢ 291/2
[E Sup05ts-r<MtT, ¢)2]1/2 = Z[E Sup05ts‘r(<MtT, o) — J’ ‘Yf@(s) ds) ]
0

T 1/2
+ 271/2[ J' E(Ty(s)? ds] < 4e[1 + mV(e* — 1)/a]"| ¢ K2
0

+ 477[(e*" = 1) /a + mV((e*” — 1)/a)?/2]"*(|| Ad [2/2 + | a | | & l2) K2,
which yields (32).
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It is clear that the same type or arguments prove (33).
We have proved that MT = M, where M is a generalized centered Gaussian process
with
Cov((M;, ¢), (M, ) = C(s, ¢; ¢, ¥)

given by (15). Note that this covariance coincides with the expression given in the theorem
(use the Chapman-Kolmogorov equation).

The existence of a norm-continuous version of M can be shown by an extension of the
Dudley-Fernique theorem due to Mitoma [18]: to prove the norm-continuity of M it
suffices to show that {(M,, ¢ )} has a continuous version for each ¢ € & (R¢), which can be
done by the ordinary Dudley-Fernique theorem.

Let 7 € (0, ). Then for 0 = s = £t = 7 we have by (27) and (28)

E(M, ¢) — (M, $))> = E(M, ¢)*>+ E(M,, ¢)? — 2E(M,, $){(M,, $)

= J o (x)[p (x)(e*° — e*') — 2e*(Tr—s¢p (x) — ¢ (x))] dx

s t
+ mgVJ ¢(x)[(e"‘“ —e*) | e T (x) dr + e"“f e Tord (x) dr] dx.
0 s

Using (12) with a = 0, and the facts that 7 is contractive and e* is Lipschitz on [0, 7] we
see that there is a constant K such that

E(<Mt’¢> _(Ms’d)))ZSK(t_s), OSSStST,

whence follows by Theorem 7-1 in [7] that {(M,, ¢), 0 < ¢t = 7} has a continuous version.
But 7 is arbitrary.

The Markov property of M follows from (14) upon integrating (26) in the proof of the
lemma, because for a generalized Gaussian process M the Markov property is equivalent
to: given f, < t and ¢ € L (R?) there is a ¢ € #(R?) such that

E((M,,¢) = (My, $))(M,, ¥} =0 forall s=t andy € F(RY;

in fact we have ¢ T i, ¢ in this case.
In order to obtain the Langevin equation we regard M” and M as generalized space-
time random fields. Let

(M7, ¢) = T‘”“’((ﬁ Toy—T f f e (x, t) dt dx), ¢ € (R X RY),

with N7 defined by (2) and (3). (Note that E (N7, ¢) = T [[3 e“(x, t) dt dx).
Since N7 is an &/(R% X R™)-random field with characteristic functional given by (5),
then M isan ¥ (R*X R *)-random field with characteristic functional (similarly as above)

E exp{i(M", ¢)) = exp{~ %C (9, $)) eXp{j T[E exp(iT~*(N*, ¢)}

—1— T 2E(N*, ¢) + T 'E(N*, ¢)2} dx} ,

where
(34) 6(¢’ \b) = J' J’ C(S, ¢(', S); t’ ‘P('; t)) dS dt’ ¢"l/e y(Rd X R+),
0 0

with C(s, ¢; ¢, ) given by (15). The integrand in the exponential converges to 0 as
T — « and is dominated by an integrable function (as before); therefore

limr_E exp{i(M7, ¢)} = exp{— %C (s, $)}, ¢ E AR X R"),
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and then by Lévy’s continuity theorem for nuclear spaces [16] we may conclude that
M7= M as T — o, where M is a centered Gaussian field on ¥/ (R¢ x R*) with covariance
functional C(¢, ¥), provided that such a random field exists. To show that M exists we
must have that C(¢, ) is bilinear, positive-definite and continuous (see [9]). Bilinearity
and positive-definiteness follow from

Cov({NT, ¢), (N7, ¢)) = TC(¢, ¥),

and it is not hard to show that

|C, ) | = Kl g2l ¥z

where K is a constant, which implies the continuity. We have explicitly

Cov((M, ¢), (M, ) = J' dtJ’ ds e“‘{J [¢>(x, $)Ti-s(x, t) + Y(x, $)T—st(x, t)
0 0
(35) + mZVJ ew(%rd’(x’ s)%—s\b(x, t)
0
+ TorP(x, $)Ti—sd(x, t)) dr] dx} , ¢,YE LR X R").

REMARK. The process M = {M,, t = 0} can also be constructed from # by a method
like Martin-Lof’s [15] (page 214).

Now we prove the Langevin equation. We define a noise # so that the equation is
satisfied in the space-time sense, i.e.

(36) (#,¢) = — (M, 3p/dt + d¢ + ad), ¢ € AR X R*);

hence #'is a generalized space-time centered Gaussian field, and we must show that it has
the right covariance. It suffices to compute E (¥, ¢)2 Using (10), (11) and (35) we have
(notation: ¢; = d¢p/dt)

00 t
E(#,¢)*=2 J' dtf ds e“{f [(¢t + AP) (x, 8)T i-s (p: + L) (x,t)
0 (]
+ m2Vf e " Tor(pe + HP) (%, 8) dr T (e + L¢) (x, t):l dx} .
)
We will first show that for ® € #(R™),

© t 0
(38) J dtf ds e“®(s)T s (p: + LP)(x, t) = —f @ (t)o(x, t) dt.
o 0 o

For the moment we write ¢(t) = ¢(x, ¢).

00 t o t 00
f dt f ds e°®(s)T A p(t) = —f dtj dsf du e°®(s)T {— sl *P: (u)
) ) ) 0 t

= —fm du fu ds e*®(s) Ju dt T .ol “$: (1)
0 0 s
= —f: du Jm ds e ®(s) (T u-s¢: — ¢e)(u) (by (12)),
)
and integrating by parts,
fw du Ju ds e“®(s)¢; (u) = —Jw du ¢(u)e™®(u).
0 0 0

Combining these results we obtain (38).
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For computing (37) we apply (38) with

Di(s) = (¢ + L°¢)(x,s) and D (s) =f e T8 (b + A%)(x, s) dr.

0

Computation with ®;:

o t
S(@,) = J' dtJ ds e @, (s)T &5 (s + %) (x, 1)
0 0

= —J e“p(x, t) (P + AP + ad)(x, ) dt
0
(integrating by parts the first term)

= —J e“e(x, t) 1 Ad(x, t) dt — & J e*o(x, t)2dt +l ¢ (x, 0)%.
A 2 2 2

0

Computation with ®,:

o t
S(@;) = J dtf ds ey (s)T s (pr + AP (x, t)
0 0
o t
=- f e“¢(x, t) J e~ T 5 (¢ + L °P)(x, 8) dr dt
0 0

3 2t
=_% J 4 (x, t) J e 2T (b + %) (x, ) ds dt
0 0

(integrating the inner integral by parts and using (12), and then performing some more
integrations)

= lj eat¢(x’ t)2 dt _lf ¢(x) t)fgt(b(x, t) dt
2 0 2 0

0 t 00 t
- gf e“p(x, t) f e T So(x, t) ds dt —J e (x, t) J e T % (x, t) ds dt.
0 ) 0

0

Taking ¢ € AR X R™) of the form

(39)  o(x, t) =¢(x)f(t), €EARY) and f€FR*) such that f e’f(t)* dt=1

0

we get
1 o 2 1 2 2
S@) = = (6(x) 5 Ab(x) +3 6(x)*) +5 6(x) 7 (0)?,
and integrating by parts the last integral in S(®.),
1
S(®,) = 3 o(x)2
Collecting results in (37) we find

(40) E(F ¢f)2=—-2 f o(x) %A¢(x) dx+ (mV—q) J &(x)? dx + f(0)® f ¢(x)? dx.
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Now, from the relation (34) between the covariances of the g’(R 9).valued Gaussian
process {M;, t = 0} and the &' (R? X R*)-valued Gaussian field M it follows that the two
are related by

©

(41) (Mt, ¢) =f (Mt) ¢(')t)) dt) ¢ey(RdXR+)‘

0

The same as (41), the ¥/ (R? X R*)-valued Gaussian field # defined by (36) and the
&' (R%-valued Gaussian noise {#, t = 0} described in the theorem should also be related
by

(42) (#; $) =f (¥, 9(-, 1)) dt, $ € F(R?XR"),
0

at least for ¢ of the form (39). To prove (42) note that the covariance of {#;, t = 0}
including the initial condition M, = W of the Langevin equation is given by

Cov((#s, o), (7, ¢)) = 8(s — t)e"'{ —J' ¢(x)A¢p(x) dx + (m V — a) j ¢(x)2dx}
(43)
+ 82(s, ¢) J o(x)’dx, ¢ €L (RY),

where 8, is the delta function on R? centered at the origin. It is then easy to see from (40)
and (43) that for ¢ of the form (39),

E(W, ¢f)* = J' f F(S)f (£)Cov((#;, ), (Wi, $)) ds dt,
0 0

which implies (42).

ProoF oF THEOREM 3. M"T = M’ and M™T = M" can be proved the same way as
M7T = M in Theorem 2, as well as the Markov property and the norm-continuity of M’ and
M*. The covariance and the Langevin equation of M’ are known [15]. The Langevin
equation for M is the difference of those for M and M”. We only have left to obtain the
covariances of the limit processes.

Let B* = {Bf, t = 0} denote Brownian motion in R starting from x € R?. Consistently
with our previous notation we view B* as an &'(R%-process N* defined by (N7, ¢) =
¢(Bf), ¢ € ARY). Thus N*T = Y, N*, where {x;} 21 are the points of the initial Poisson
process with intensity measure Tdx.

Just as in Theorem 2 we find

Cov((M, ¢), (M7, ) =IE(N§—N 5e)(Ni—N £, ¢) dx
=JE<N:,¢><N2‘,¢> dx+fE<N:,¢><Nf,¢> dx
(44) - f E(N3, $)(Ni, ¢) dx — f E(N3, $)(Ni, ) dx
=C(s, ¢ t,¥) + f f (RN (y)e 1=N72¢=9 (97 (t — $))"4/2dx dy

—f E(N%, $)(Ni, ¢) dx —J E(N3,¢)(Ni, ) dx, s=<t,

where C(s, ¢; ¢, ¥) is given by (15) and the second term is the known covariance of M’ [15].
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Similarly,

Cov((Ms, ), (M', ) =JE<1‘7§,¢><N5‘—N?, ¥) dx

(45)
= f E(R%, 6)(N, ¥) dx — f f SEW(y)e 1= 0 (¢ — 5))Vdx dy, s t.

Hence we need only compute [ E(NZ, ¢) (N7, ¥) dx. Since this is similar to the proof of
the lemma we will only give a sketch.

H(p, s t) = H(t) = J’ E(NZ, ¢) (N7, ¢) dx
satisfies the renewal equation

H(t)=e™" f o(x)¥(x) dx

¢ t
+ ae* f (x) j e V™ T g(x) ds dx + J’ H(t — s)Ve "ds,
(] 0

whence
t
(46) H(p, 4 t) = f o(x)Y(x) dx + & J o(x) J’ e Z(x) dr dx.
0
Using the martingale (8)-(9) one shows that
E(N%, Jiip) (NF, 9, t<s,
E(NS’ ‘»b) (Nt ’ ‘l/) = E(N:, ¢) (N:, ea(t—S)g;_s‘p), s=<t,
hence
. H(T-, ¥ 0), t<s,
47) J’ E<N§’ ¢)(N'tt» "P) dx = H(¢, ea(t—S)g:_s‘p; S), s<¢t

Substituting (46) and (47) into (44) and (45) we obtain Cov((MZ, ¢), (M¥, y)), and
Cov({M{, ), (MY, })) as given in the theorem. [

Remark 4 follows from

limt—woCOV((Mt’ ¢>’ (Mt» \b))
- J’ o(x)W(x) dx + mV f f d(xW(y) f e 1= (4ar) =2y dx dy
0

= J’ o(x)Y(x) dx + me VI'(d/2 — 1)(4m) " J’ f d@xW(y) |l x =y *dx dy

when d = 3.

Remark 5 can be verified by inspection of the covariances.
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