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We identify a representation problem involving the Radon transforms of
signed measures on R of finite total variation. Specifically, if p is a pointwise
translate of » (i.e., if for all # € S*~! the projection Ko 1s a translate of vg), must
u be a vector translate of »? We obtain results in several important special
cases. Relating this to limit theorems, let X1, - -+, X, be a u.a.n. triangular
array on R and put S, = X,y + - -+ + Xnp,. There exist vectors v, € R such
that £(S, — v.) — vy iff (I) a tail probability condition, (II) a truncated
variance condition, and (III) a centering condition hold. We find that condition
(ITI) is superfluous in that (I) and (II) always imply (III) iff the limit law y has
the property that the only infinitely divisible laws which are pointwise
translates of y are vector translates. Not all infinitely divisible laws have this
property. We characterize those which do. A physical interpretation of the
pointwise translation problem in terms of the parallel beam x-ray transform
is also discussed.

1. Introduction. Let {X,;, ..., X, } be a u.a.n. triangular array of independent
d-dimensional random vectors with partial sums S,,. When d = 1, the classical central limit
theorem is of the form: given an infinitely divisible law y, there exist v, € R such that
L(S, — vp) — v iff (I) a tail condition and (II) a truncated variance condition hold. By
contrast, when d = 2, the form of the classical central limit theorem is: given an infinitely
divisible law v, there exist v, € R such that (S, — v,) — yiff (I), (II) and (III) a centering
condition hold. Sometimes condition (III) holds automatically in the presence of (I) and
(IT). This is certainly true when d = 1; but it also holds when y is multivariate normal or
even stable of index a # 1. However, condition (III) is required for some stables of index
1. We investigate the general problem: when does every triangular array satisfying (I) and
(IT) automatically satisfy (III)?

Theorem 2.8 shows that conditions (I) and (II) are equivalent to tightness of
{L(S, — v,)} for some v, € R together with the property that for any weak subsequential
limit 7 and any direction 8, 7(t8) = 7(tf)e*“? for some constant c(f). If ¢ () = (b, 8) for
some b € R? then letting ¥, = v, + b, #(S, — 0,) — 7. Consequently, for (III) to be
superfluous, the only infinitely divisible laws n whose 1-dimensional projections on lines
through the origin are translates of those of y must be of the form n = y*§,, and conversely
(Theorem 2.9). (Here 8, denotes a unit point mass at b.)

The determination of which y have this property is a special case of a more general
problem. A description requires some notation. Let M(R? be the algebra of signed
measures on R which have finite total variation. Z(R%) will denote the Borel subsets of
R4, If A\, \s € M(R? then the convolution of A; and ). is defined by A*Az(E) =
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I M(E — x)As(dx) for any E € #(R?). Let S*' be the unit sphere in R, S*!
= {x € R% |x|| = 1}.

1.1 DEFINITION. If § € S ! and A € M(R*) then the 1-dimensional projection Ay of
A on the line {t8: t € R} is defined by

M(B) =A(x € R* (x, 8) € B)

for every B € #(R). The mapping § — A\s: S ' — M(R) is called the Radon Transform
of A.

1.2 DEFINITION. Let ), 0 € M(R?). o is called a pointwise translate of A if there exists
a function ¢: S?! - R such that the Radon transforms of A and o agree up to translation
in each direction by c(8), i.e., for every 8 € S,

09 = Ag*0c(0)-

The collection of all pointwise translates of A will be denoted by ..

Whenever Ay # 0, the translation function ¢: S%~! — R is continuous at §. However, if
Ao = 0, ¢() is not even uniquely defined. ¢ may be extended to all of R“ by setting c (¢6)
=t¢c(f) fort € Rand § € S 1.

1.3 DEFINITION. Let A € M(R?) and let ./ denote any subset of M(R?). The signed
measure A is said to have the pointwise translation property with respect to /4 (PTP(4))
if MOy C (A+8p: b € RY). (PTP(4)) will denote the set of all A € M(R? which have
the property PTP(#). Thus, interchangeably we can say either A has PTP(#) or
A E(PTP()).

A having PTP(.#) then means that every o € .# which is a pointwise translate of A is
actually a vector translate of . So A € (PTP(#)) iff A € (PTP(# N #)). With this
terminology, the general problem is

1.4 ProBLEM. Given a nonempty subset .# of M(R?), characterize (PTP(.#)).

With respect to our centering problem for u.a.n. triangular arrays, we take .# = .%,, the
set of all infinitely divisible laws on R? Theorem 2.9 then says that condition (III) is
superfluous iff y € % N (PTP(4)). (Unless needed for clarification we write #rather than
Sa.)

Problem 1.4 can be thought of more generally as a recognition problem. For example,
let A € M(R? and suppose that for every § € S?~, Ay = 8.(4. Thus from every direction
A appears to be a point mass. Must A actually be a point mass 6, (b € R?) or might A be a
signed measure with positive and negative mass arranged so that cancellation occurs
properly in every direction? If all Ay are 8, on R, it follows easily from uniqueness of the
Radon transform (vide infra) that A = 8§ on R“. Theorem 5.1(i) asserts that, even if Ag is
8.6, A must be a §-function.

More generally, if o € .4, but A € (PTP(0) ), then from projections one might “recognize”
o as A modulo translation, when in fact it is not. This type of recognition procedure has
practical applications. Section 6 contains a brief discussion of the implications of this
concept for the computerized tomographic scanner.

Our discussion of Problem 1.4 is organized as follows. Section 3 contains characteriza-
tions of #N (PTP(#)) (Theorems 3.2 and 3.5) in terms of conditions on the Levy measure.
In order for an infinitely divisible law y with Levy measure p to have a pointwise translate
which is not a vector translate it is necessary and sufficient that there exist a non-zero
Levy measure » with the following properties: (i) » < y; (ii) there is a set A disjoint from
—A with »(A°) = 0; and (iii) » is a symmetric Levy measure on R\{0} for all § € S**
(Corollary 3.20).
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No such » exists if y is stable of index « # 1; consequently, y has PTP(#). On the other
hand, if y is stable of index 1, u € S9! and r > 0, then dr(ru) must be of the form I'(du)
X dr/r? and condition (iii) can be replaced by the simpler condition fe-1 u I'(du) = 0
(Theorem 3.11). The fact that there are stables of index 1 without PTP(.#) was first
noticed by A. deAcosta (see Remark 3.15). (An earlier version of this paper claimed that
if &, is the set of stable laws of index «, then %, C (PTP(%)) for 0 < a < 2. This is not true
for a = 1. See Remark 2.11 for the source of the error. At the end of this paper we have
included a list of several published statements which are incorrect because of this mistake.)

Example 3.16 shows that the spherically symmetric Cauchy on R? does not have
PTP(#).

Propositions 3.21 and 3.22 help to elucidate in more concrete terms some of the
probability laws in #N (PTP(#)). This set is weakly dense in .% but so is its complement
#£N (PTP(¥#))° (see Proposition 3.24).

Section 4 uses the results on spherically symmetric stables to sharpen the main theorem
in Hahn and Klass (1980b) and to correct an error in Hahn and Klass (1981a). This
application inspired the present work.

The focus of the previous sections was on infinitely divisible laws. In Section 5 we
consider the pointwise translation problem in a broader context. We solve a few special
cases. As indicated previously, we show that §, € (PTP (M ( R%)), asis every other element
of M (R*?) which is invertible under convolution.

Another result (Theorem 5.3) shows that if

&= {AEM(R"):J | x| |A| (dx) <oo}
R‘d

then A € & with A(R?) 5 0 implies A € (PTP(&)). Interestingly, the assumption that
A(R9) # 0 is essential, as shown by examples due to L. Shepp (see Example 5.3).

Finally, in Section 6, we discuss our definition of the Radon transform of a measure and
the implications which the pointwise translation problem has for computerized tomo-
graphic scanning. Also, in Section 6 we reinterpret Example 3.16 to obtain a distinct
counter-example to the “hole” problem considered by Perry (1977) and Quinto (1981).

CONVENTIONS AND NOTATION. Let
M (R? = {o-finite signed measures on R%}
*(RY) = {\ € M(RY):\ = 0)
M(R% = {\ € M (R%:\ has finite total variation}
M*(R%) = {\ € M(R%):A = 0}.

Unless specified otherwise, all signed measures will be defined on %Z(R¢), the Borel subsets
of R% For A, o0 € M(R?), we write A < ¢ iff \(A) < ¢(A) for all A € B(R?). Define Aby
MA) = A(—=A) for all A € Z(R?) and let A* = A+A. Thus, if £(X) = A then X° has law A°.
AT=AVv0,A7=-Ay0, and [A] = A" + A". The vector integral [p« x A(dx) of course
means (fR, x1 A(dx), --- ,f xq A (dx)).

For A € M(R?), the Founer transforms of A and A, are related by

A(29) =f , €xXp (20, x))A(dx) =f , xXp(its)ho(ds) = M) (2).
R R

When A is a probability measure, of course, this formula X(tﬂ) (No)(t) relates the
characterlstlc functions. As is well known, the map A — Nis1-— 1; moreover, (A+o)(t) =
A)s(@t).

An infinitely divisible law y on R“ is uniquely determined by its Levy representation.
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We may therefore write y ~ [a, ®, u] where the characteristic function of y has the form

7(x) = exp{i(a, x) —%CI)(x, x) +J ) (ei“’") -1 —%) ,u(du)} .

In this representation, a € R“, ® is a covariance, and p is a Levy measure. The collection
of all Levy measures M7 (RY) is

Mt(RY = {,L € M*(R“): u({0}) = 0 and J min(1, || x[|)u(dx) < oo}.
Rd

Projections have so far been defined solely for A € M (R?) (Definition 1.1). The definition
extends to A € M*(R?), in which case Ay may no longer be o-finite. However, if A is a Levy
measure, Ay will be o-finite on R¥\{0}. By convention we then set Ay({0}) = 0 so that
0 — Ao takes S to M7 (R).

We will reserve p, » for Levy measures; v, n for probability measures; £ for a difference
of two Levy measures (see Section 3); I', A for finite measures on S?°%; and A, ¢ for
elements of M (R?).

2. Centering and the pointwise translation problem. The existence of centerings
in 1-dimensional central limit theorems is guaranteed by tail and variance conditions. This
is not, however, the case in higher dimensions where an additional constraint must
sometimes be imposed. The need for this constraint is governed by whether the limit law
has PTP(¥), a property which trivially holds in 1-dimension.

Let X1, ---, X, be a u.an. triangular array of rowwise independent d-dimensional
random vectors with sums S, = X1 + -+ + + X1, Given v, € R¢, there are three conditions
necessary and sufficient for convergence of #(S, — v,.) to an infinitely divisible law y ~ [a,
®, u]. These individually correspond to each of the three parameters a, ® and u. The
continuity points of y will be denoted by %,.

Recall that when d = 1,

(2.1) there exist constants v, such that #(S, — v,) — vy iff
(i) for every y >0 with +y € &,
limy e | Bf21 P(Xnjz y) — p([ 3, ®)) | =0,
lim, ... | j21 P(Xoj < =y) — p((—o0, —=y]) | =0

and

(ii) lim, jolim supn_.. | Y721 Var(X,Ix, <o) — ®(1, 1) | = 0.
The constants v, are then governed by the relation

(iii) lim, .| Un — 7itn (1) + @,| =0 forsome 7>0 with +r€& ¥, where

M (1) =Y %1 EXplxy1<» and

(2.2) a.=a+ f u®/(1 + u®)u(du) — J’ u/(1 + u?)u(du).
lu|=T

|u|>7

(Reference: Gnedenko and Kolmogorov (1968), pages 116-117, 84).
For d > 1, given v, € R?, #(S, — v,) — v iff for each § € §"!

(2~3) g((sn_vn’a))_)')/li-

A continuity argument shows that it suffices to check (2.3) for a countable dense set of
@’s. The Levy representation for vy is given by [a), @), e ] where for § € 8971,
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wo (E) = pg(E\{0}) for E € Z(R)
(2.4) Dy (L, t) =t*®6,0) for tER

ag = (a, 8) + r.(0)
where

r.(0) = J (0, u) (1 + (0, u)®) ™ = (1 + [|u|?) "Hp(du).
Rd

With this background and terminology, the d-dimensional result can be stated in the
following manner:

(2.5) d-DIMENSIONAL TRIANGULAR ARRAY THEOREM. Letting y ~ [a, ®, pu] and v, €
R?, #(S, — v,) — v iff the following three conditions hold for all 6 in a countable dense
subset © of S~

My limpe | 2 P((Xey, 0) = y) — pa([y, ) | =0 forall y €%, withy>0;
(e lim, ;o im supp—.« | ¥ 121 Var((X, 8) I xu.010 ) — ®(6, 8) | = 0;
(D)o, if ritn (0, 1) = X k2 E( Xy, 0)1x,,0)=n, then for some T > 0 with £ € Nycob,,,

1imn—>eo| (Un, 0) — Ny (0, T) + a-r(Y’ 0) I =0,
where

a.(y,0) = ap +f

luj=1

u?/(1 + u®)pe (du) -—f u/ (1 + u®)ue(du).

luj>7

2.6 REMARK. It can and will be assumed that © contains the standard orthonormal
basis {e;, - -, es}. Then since v, is a vector, (III) may be reexpressed in the equivalent
form :

Mo, limaw|Yi1 (6, €) (iin(e), 7) — a.(y, &) = 1ia(0,7) + a, (y,0)| =0

for some 7>0 with =7 &€ Nyeo¥,,.

2.7 REMARK. If all the py are continuous then the above three conditions can be
replaced by

Dy limaasupyo=1 | 221 P((Xey, 0) = y) — po([y, ®))| = 0 for all y € C,, with y > 0;
(Mo lim, jolim sup.—supyey=1|Y 21 Var((X,;, 0L x,;,0 <0 ) — @6, 6) | = 0;
(I, lim,, ,wsupyg=1| (Vn, 8) — 1, (0, 7) + a.(y, 6) | = 0.

This is a consequence of the fact that (2.3) holds iff it holds uniformly in 6 (see Lemma 1,
Hahn and Klass, 1980b).

The higher dimensional statement is not quite analogous to that given in R'. Conditions
(I) and (II) clearly imply the existence of 1-dimensional centering constants v, (§) satisfying
(III) (with v, (f) replacing (v., 8)). However, centering in R requires a vector; so when is
Un() forced to be asymptotically linear in §? Equivalently, when do (I) and (II) imply
(ITII)? The answer turns out to depend only on the limit law v.

An understanding of the function of conditions (I):and (II) in proving weak convergence
is required. For a triangular array of rowwise independent d-dimensional random vectors
with row sums S,, conditions (I) and (II) may be expressed in the following two equivalent
forms:

2.8 THEOREM. The following are equivalent:

(A) (@), and (1) hold.

(B) For each 6 € 8%, there exist centering constants v, () such that £( (S,, ) —
Un (0)) - Ye.
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(C) There exist centering vectors v, for which {£(S. — v,)} is tight and such that all
weak subsequential limits are in M, N 5.

PROOF. As already noted above, (A) < (B) is merely the 1-dimensional result.

Now assume (A) and (B) and let w, =2f=1 vr(e;)e;. Since ZL((S, — wa, €;)) —7,, , the
sequence {#(S, — w,)} is tight. Any weak subsequential limit 7 is obviously infinitely
divisible. Moreover, for each § € S%~', the Levy measure »; of 7y must equal i because (I),
holds along a subsequence. Similarly, the Gaussian parts of ny and vy, agree. Therefore, the
Levy representations for 7y and vy, differ only in their translation part. Hence n € .4, N .4,
establishing (C).

Finally, assume (C). Let p(-, ) denote the Prohorov distance between two measures.
Fix 8 € S¥! and let p, = inf,ep p(L({(S,, ) — v), y¢). Take any sequence (n’) C (n). It
suffices to show that there exists a subsequence (n”) C (n’) such that p,» — 0. By (C),
there exists (n”) C (n’) and a law n € #, N S such that L(S,» — vn-) — 1. Thus, there
exists ¢(6) such that ny = y,+8.5. Hence, pnr < p(L({(Sp~, 8) — ((vn, §) + ¢(8))), vs) — 0.

O

Suppose (I), and (II)¢ hold. Then by slightly modifying v, if necessary, we may assume
that £((S, — s, €)) = ¥, for j =1, ..., d. Now if every pointwise translate of v is a
vector translate, then, using (C), every weak subsequential limit of #(S, — v.) equals y.
Hence £(S, — v,) = v. )

We have thus proven sufficiency in the following theorem.

2.9 THEOREM. Let y ~ [a, ®, ] on R In order that (1), and (I)g imply (IIT'), for
any u.a.n. triangular array of rowwise independent random vectors, it is necessary and
sufficient that y € PTP(9).

ProoF. (Necessity). Assume (I), and (II)e imply (III), . Let n € 4, N 4 Thus, there
exists ¢(6) such that ng = y*8.¢ for all § € S~ Let [b, ¥, »] be the Levy representation
for 7. Since 7 € .4, there exist rowwise i.i.d. random vectors X,i, - - -, X, and ¢, € R? such
that #(X. + -+ + Xun — ¢2) — 1. Hence (I),, (II)y and (Ill)a.) hold (for some > 0).
Since 1 € A,, v = pg and ¥ (4, 6) = ®(, §), whence Nyco 4, = Moo b, and both (I), and
(II)¢ hold. By our hypothesis, it follows that (III),.«) holds. Therefore, using the same 7,
we have for \ =npand A =yand all § € O,

(2100 lima. | T (0, €) (ftn(ej, 1) — @, (N, &) — 17200, 7) + @ (A, 0) | = 0.
Consequently,
X1 (0, ¢)(a-(n, ¢) — a: (v, &) = a: (0, 0) — . (v, 6).
Direct calculation shows that
a.(n, 0) = a.(y, §) + c(0).

Therefore, c(f) =Y %, (8, e;)c(e)) as required. 0

2.11 REMARK. Conditions (I), and (II)o make sense for families of 1-dimensional Levy
measures {¢():0 € ©} and families of constants {®(6, §):0 € O} without presupposing the
existence of a Levy measure p and a covariance ® from which they are derived. In fact,
their existence can be inferred. (The argument is essentially sentences 2-6 in the proof of
Theorem 2.8.) However, this is not to say that a Levy measure u when restricted to R\ {0}
is determined by its Radon transform on R\ {0}. This would be the case if u were a finite
measure. (Such a supposition for o-finite measures led to an erroneous proof that every
infinitely divisible law has PTP() in an earlier version of this paper. We are grateful to a
sharp-eyed referee for questioning this point.) Were it true in general, then any two
infinitely divisible laws y and 5 which are pointwise translates would have the same Levy
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measure. Since their Gaussian component is determined by projection, it follows that y
and n must be vector translates. We show in Example 3.16 that this need not be the case.
In the absence of a given Levy measure u and covariance ® from which the families
{w(6):0 € 6} and {®(6, 0):0 € O} are derived, we write (I) and (II) as (I),4 and (ID)e@),
respectively.
It being unnecessary to assume the existence of y at the outset, we can state a slightly
stronger form of Theorem 2.9.

2.12 THEOREM. Let {u(9):0 € O} and {®(0):0 € O} be families of o-finite Leuvy
measures and positive constants, respectively. For all u.a.n. triangular arrays of rowwise
independent d-dimensional random vectors satisfying (I)ue and (I)eq, there exist
centering vectors v, (depending on the triangular array) and a law to which £(S, — v,)
converges weakly iff some (and hence any) possible weak subsequential limit of £(S, —
vn) has PTP(Y), in which case there exists a unique Levy measure p and a unique
covariance ® with projections u(8) and ®(0) respectively.

Proor. Sufficiency is an immediate consequence of Theorem 2.9.

For necessity, tightness follows as in Theorem 2.8. Now take y € #which does not have
PTP(S) (the existence of such vy is shown in Example 3.16). Then there exists ¢ (f) non-
linear and n € #such that ny = y¢*8.9. yo and 1y have the same one-dimensional Levy
measure ((f) and the same Gaussian part ®(0). Let {X,i, :-+, X»n} be a triangular array
of rowwise i.i.d. random vectors such that #(S., — v2;,) = v and L(Sen+1 — V2n+1) = 1.
Now clearly, (I)ug and (II)e@ hold. However, (III') must fail since #(S, — v,.) does not
actually converge weakly. [

2.13 REMARK. Assuming that {X},}, rather than {X,,}, is u.a.n. may appear to lead
to a slight generalization in each of the above theorems. This is, however, not the
case. For any random vector X, if P(|X°| > &) < 8 then there exists a € R? such that
P(|X — a| > ¢) < 4. Thus if {X,,} has the property that {X7;} is u.a.n. then there exist a,,
so that {X,; — a,;} is u.a.n. In this case the above theorems apply to the array {X,; — a.,}
rather than {X,;}. Gnedenko and Kolmogorov (1968) call such arrays asymptotically
constant.

3. Characterizations of ¥ NPTP(#). Let the infinitely divisible laws y and n have
Levy representations [a, @, p] and [b, ¥, »] respectively. When are y and n pointwise
translates and when are they vector translates? Clearly, n € .#, iff ¥(6, §) = ®(6, ) and the
measures vy and pg agree on R\ {0} for all § € S¥~! (use (2.4), the representation of the
projections). Two Gaussian components with the same projections are equal, so in fact,
¥ = ® whenever 7 € .#,. Finally the pointwise translates n and y are actually vector
translates iff in addition, » = pu.

When 1y = yg*8c9), ¢ (0) is given by

(3.1) c@) =(b—a,8)+r,@) —r.0)
where for A € .71 (RY),

n(0) = f d (x, (1 + (x, 07" = (1 + || x> HA(dx).
R
To verify (3.1) it suffices to assume ¥ = ® = 0. Using (2.4),

exp{it((b, ) +r.(0)) +f (e —1—ity/(1+ yz))w(dy)} = () (t) = (o) (¢)exp(itc @)
R

= exp{it(<a, 0) +r.(0) +c() +J’ (e —1—1ity/(1 +y2))pe(dy)} .
R

Since vy = g on R\ {0}, solving for c(f) gives (3.1).
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Owing to our representation of c(f) it is possible to determine whether 7 € ./, is a
vector translate of y without directly verifying that » = p. Clearly ¢ is a vector translate of
v iff there is ¢ € R? such that ¢(6) = (¢, ). This in turn is equivalent to (r, — r,)(d) being
linear. In actuality, (r, — r,)(f) is non-linear iff r, # r,. To see this, first note that r, # r,
implies » # p, whence n and y are not vector translates. Second, if » # u (but v, = y, on
R\{0}), then since n and y are not vector translates it follows that (r, — r,)(6) is non-linear
and so r, — r, # 0. Thus, we have proven the following theorem.

3.2 THEOREM. Let y have Levy representation [a, @, u]. Then y & (PTP(9)) iff there
exists a Levy measure v such that

(i) vs = s on R\{0} for all 6 € S*!
and

(i) r, #ry.

In general, it is not easy to check whether r, = r,. Seeking an alternative method for
determining whether y € (PTP(#)), we consider the difference between two Levy meas-
ures. To insure that this difference is well defined and not indeterminate, we restrict the
sets on which these measures act.

Let 4% = Uz_1 #({x € R%:|| x| = 1/n}) and M7 (R?, ¥% = {ﬂ:ﬁ is the restriction of a
Levy measure p to %}. The restriction map F with Fu) = u is 1 — 1 and linear from
M?(R? to M} (R? #%). The set 4= {(u, »): wv € Mt (Rd)} is endowed with a natural
equivalence relation: (i, v1) ~ (uz, v2) iff fu — o1 = fip — 7s.

3.3 DEFINITION. A Levy s-measure £ is a signed measure on (R ¥\ {0}, ¥¢) defined by
¢ =7 — 7 for some (u, ») € 4 M.(R?\{0}, ¥%) will denote the vector space of Levy
s-measures on (R?\{0}, ¢¢).

Since the same Levy s-measure ¢ is obtained for each element of a single equivalence
class in %, we may always assume that (u, ») is the unique representative in which p and
v are mutually singular and we then write £* =fi and {~ = # and let | £| = £* + £~. Notice
that ¢ is not a o-algebra and in general £ cannot be defined on % (R?) unless F~'¢* (R?)
A F¢7(R?) < o. In the latter case, £, ¢~ and |¢] all agree with their customary
definitions.

We interpret integration with respect to ¢ as follows: for

fe L\(F-1¢gt) U L(F-'¢), j fdg= J fdF-igt — J fdF-1¢.

In actuality, this definition of integration extends the domain of a Levy s-measure
to all Borel sets E in R? for which F7'¢*(E) A F7'£(E) < ». Besides being a
vector space, M;,(R?\{0}, ¥?) is a Banach space with the norm of ¢ defined by
1£1= 5@ Al=I?) |£](d). )

The Radon transform of a Levy s-measure ¢ is the map § — £:8%"' — M..(R\{0}, €*)
defined by & = (£%)s — (¢7)s. Notice that for E € €', &(E) = (F'¢%)g(E) — (F7'¢7)(E).
Consequently, since (F7'¢%), and (F7'¢7), are o-finite measures on R\{0} and
#(R\{0}) is the o-algebra generated by %', we see than

(3.4) £ =0 (on €") iff (F~'£*)y = (F~'£7)y on R\ {0}.

Moreover, a computation verifies that (¢; + &)s = (£1)s + (£2)0.
A characterization of #N (PTP(.#)) can be given in terms of Levy s-measures.

3.5 THEOREM. Let y have Levy representation [a, ®, u] on R®. Then there exists an
infinitely divisible pointwise translate of y which is not a vector translate iff there exists
a non-zero Levy s-measure £ on R*\{0} such that

(i) ¢9=00n %" forall € S*!
and

(i) & =g



POINTWISE TRANSLATION 285

PrOOF. Suppose y & (PTP(#)). Then there exists n ~ [b, ¥, v] with » # p and vy =
we on R\{0}. Since (v, u) € %, a Levy s-measure is defined by letting £ = ¥ — [i. Clearly &
#0and & = 0 on %' for all § € S* . Furthermore, £ = (3 — i) = (i — )" < [i.

Conversely, suppose there exists a non-zero Levy s-measure ¢ satisfying (i) and (ii). By
(i), i + £ = (i — £7) + £* is a non-negative Levy s-measure. Hence v = F7'(ji + £) is a
Levy measure. Using the commutativity of F and projection on {t0:t € R}, together with
linearity, (v))™ = (¥)s = (o + £o = ()5 = (1s)~ (on € ). Since the restriction map on R" is
1— 1, »s = g on R\{0}. Consequently, if 5 ~ [0, ®, »] then n € .#,. However, 1 cannot be
a vector translate of y since » # p. 0

Define the vector space %, = {£ € M. (R% ¢ %) :£,=00n ¥ 'V # € S*'}. By Theorem
3.5, y €E (PTP(¥)) iff £~ = ji for some £ € Z,\{0}. Whether a Levy s-measure is in 2, can
be determined by integration:

3.6 PROPOSITION. Let § € M1.(R%, € 9).
() ¢€ Zyiff [ (e — 1 —it(x,0)/(1+ (x,0)?))&(dx) =0 foralltE Rand € S*".
(ii) £=0iff £ € 2y and r¢(0) = r;+(0) — r;—(8) = 0 (see (3.1)).
(ili) ¢ € &, implies £7(E) = £ (—E) for all E € ¥ ® and there exists A € B (R? such
that AN (—A) = ¢ and F7'¢Y(A°) = 0. As a consequence, if £ € Zyand £~ =0,
then £ = 0. )

ProoF. (i) For each ¢, the integrand is in L'(§*) N L'(¢7). If ¢ € Z4, & =0 on €' so
by change of variables and (3.4) the integral is 0. The converse follows from the fact that
two Levy measures p and » on R coincide iff [ f.(y)u(dy) = [ f(y)v(dy), V t € R, where f.(y)
=e" — 1~ ity/(1 + %) and from the commutativity of F with projection on the direction
0. ’

(ii) A uniqueness argument as in (i) shows that £ = 0 iff [ g,4(x)£(dx) =0 forallt € R
and § € S*! where g.4(x) = e*“® — 1 — it(x, 8)/(1 + ||x|). Since [ go(x)é(dx) =
I fi{x, 8))&(dx) — itr:(9), the conclusion follows immediately from (i).

(iii) Let ¢ € 2. Since 2 is a vector space, £, = £ + £ is also in ;. The linearity of ¢
— r¢ shows that re=r; +r; = r; — r; = 0. Hence, by (i), £* = 0. So, 0 = £ + £ = £* — £
+ £* — £7, which implies

3.7 e Er=t+ &

Now suppose there exists E € 7 such that £*(E) 5 £ (—E). Without loss of generality we
may assume £*(E) > £~ (—E). There are disjoint sets C and D with C U D = R such that
F'£*(D) = 0 and F~'¢7(C) = 0. So using (3.7),

FENC)=EE)>E(-E) = (- (ENC)
={ENC)+E(—(ENC)=(ENC)+EENC)
z{"ENC),

a contradiction. Thus, £*(E) = ¢ (—E) for every E € € ¢, which establishes the first part
of (iii). Let A = C N (=D). Then A N (—A) = ¢ and F ¢ (A°) = FtY(A°N C) =
F"((-=D)*NC)=F %" ((-D)NC)<F %Y (=D°) = F £ (D) =F ' (D°N D) =0.
Thus (iii) holds. 0

As an application of the above results, we characterize those stables having PTP(.#).
Recall that vy is a stable measure on R? of index «, 0 < a < 2, iff there exist vectors b, € R*
such that for every positive integer %,

(38) ‘?k(t) — ?(k l/at)ei(t,b»)‘

The case a = 2 corresponds to a multivariate normal, which, having a degenerate Levy
measure, has PTP(#) by Theorem.3.5. We therefore restrict our attention to 0 < a < 2.
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The Levy measure u of a stable of index a, 0 < a < 2, has a special form. If » = | x|, »
= x/|| x|| € S*', then the polar decomposition of y is given by

w(dx) = T'(du) X dr/r'*e, r>0,

where T is a finite measure on S, T" is called the spectral measure and is determined
from p via the formula

(3.9 TA) =p{xER:x/|x|EA,|x||=1} forany A€ #(S™?).

Kuelbs (1973) observes that the linear spans of the supports of I" and y are the same.

The most general stable y of index a # 2 has Levy representation [a, 0, u] = [a, 0, I'(du)
X dr/r'**]. After integration of the radial component, the characteristic function of y
acquires the following form (ref. Kuelbs, 1973),

(3.10) y(x) = exp{i(a, x) —f
Sd-1

| (x, u)|'T(du) + iwr(a, x)}

where

tan—— | (x, w)|(x, w)|*'T(du), if a1,
2 Sd-1 N
wl‘(a, x) =
2
—j (x, u) In |(x, u)|T'(du) if a=1.
Sd-1

K

The above representation will be called the Levy spectral representation for y.

Moreover, for each 0 < a < 2, every finite measure I" generates a Levy measure p by
setting u(4) = [[a\('(du) dr/r'** To show that such a I' is the spectral measure of some
stable, let y ~ [a, 0, u]. Then upon integrating the radial component, ¥ satisfies (3.10). Any
such ¥ is easily seen to verify (3.8), consequently y is stable. Furthermore, for each q,
distinct I’s correspond to distinct Levy measures by (3.9). Hence, unicity of Levy measures
implies that each stable law has a unique spectral measure.

Kuelbs (1973) proves that ¢ (x) = exp{[s+ |[(x, ©)|*A(du)} is the characteristic function
of a symmetric stable law y of index a, 0 < a < 1 or 1 < a < 2, whenever A is a finite
measure on S, In our terminology, ¢ is the Levy spectral representation of y iff

j (x, u)|[(x, u)|* "A(du) = 0.
Sd—l

Thus, uniqueness of the spectral measure implies that (A + A)/2 is the spectral measure
of a symmetric law with characteristic function ¢.
We are now ready for the characterization of those stables which have PTP(.#).

3.11 THEOREM. Let y be a stable measure on R® of index a, 0 < a < 2, with spectral
measure I' if o # 2.
(@) Ifa#1ord=1,y € (PTP(¥)).
(b) Ifa=1and d =2,y & (PTP(¥)) iff there exists a Borel set A C S and a non-
zero positive measure A on S%* such that
i) AN (-4) =¢;
ii) A(A°) =0;
iti) fs ul(du) = 0;
iv) A=<T.
In this case, if 1 is stable of index 1 with spectral measure A =T — A + \ then nis a
pointwise translate of y but not a vector translate.

PrROOF. We may assume 0 < a < 2 and d = 2. It suffices to consider y ~ [0, 0, I'(du)
X dr/r'**1 and any n € 4, N % Thus 17y = ys*8.) for § € S ! and some c¢(§) € R. Since
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an infinitely divisible law is stable of index « iff all of its 1-dimensional projections are
stable of index a, 7 is stable of index « (see Giné and Hahn, 1982). Hence n ~ [b, 0, A(du)
X dr/r'**] for some finite measure A and some b € R®. Without loss of generality, we may
assume b = 0.

(a) If o # 1, letting x = ¢6, in (3.10) where § € S%* and ¢ € R, we see that

exp{— | t |"J’ [€8, u)|*A(du) + it | ¢ |* 'wale, 0)}
Sd-1
= o(t) = Jo(t)e™®

= exp{itc(0) -t I“J 1€, u)|*T(du) + it | ¢ |* 'wr(a, 0)}.
Sd-1

Varying ¢, the coefficients of ¢ in the two characteristic functions must be equal (similarly
for those of | ¢|* and ¢| ¢|*™"). This requires ¢(d) = 0 = (0, §). Thus y € (PTP(¥)).
(b) Ifa=1andd =2,

exp{— 11 [ 146, w) A + i% tf

gd-1

(6, u) log] ¢ | +logl<6, u>|>A<du>}

Sd-1

= fo(t) = F5(t)e™® = exp{itc(0) —1tl| K8, u)T(dw)

Sd-1

+ i-f—;tj (6, u)(log]| ¢ | + log](#, u)l)r(du)}-
gd-1

Varying ¢, it follows that for each (and hence all) § € S¢7,

(3.12) c(8) = % J’ (8, u)log|(6, w)|(A — T)(du),
Sd-1
(3.13) j (0, u)(A —T)(du) =0,
gd-1
and
(3.14) f [€0, u)|(A — T)(du) = 0.
Sd-1

Suppose first that y € (PTP(#)) and that 5 is not a vector translate of y. Then by
uniqueness of the spectral representation, A  I'. Hence, the restriction to ¥ ¢ of
(A — T')(du) X dr/r? is the polar decomposition of a non-zero element of Z,. It follows
from (iii) of Proposition 3.6 that A = (I' — A)" satisfies (i), (ii) and (iv) since A= (T -
A)~. Moreover, since I' — A = A — X, (3.13) implies that

0= J u(A = A)(du) = 2J’ ul (du)

which gives (iii).

Conversely, if there exist A and A such that (i)-(iv) hold, let A be defined by A(E) =
T(E) + AN(=E) — A(E) for all E € #(S%™"). By (iv), A is a finite measure, hence the
Levy spectral measure of some stable law 7 of index 1. Since, by (i) and (i), A(—A) =
T'(—=A) + A(A) = A(—=A) =T'(-A) + A(A) > T'(—A), n is not a vector translate of y. From
(iii) it follows as above that :

f (0, u)(A = T')(du) =0,
Sd-1
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verifying (3.13). Finally, since

j |(0,u)|d7\(—u)=j <6, u)| dA(w),
Sd-1

Sd-1

we may conclude that (3.14) holds. Hence 7s(t) = ¥4(t)e'“®, where c(8) is given by (3.12).
Since n € .4, but 7 is not a vector translate of y, the conclusion is that y € (PTP(4)).

3.15 HisToricAL REMARK. A. deAcosta (private communication) was the first to
provide examples and methods of constructing stables of index 1 on R* without PTP(#).
He considered non-symmetric finite measures I' on S' with vector mean 0 and A =
(T + 1)/2 for which ra_r(8) # 0. ra—r(6) # 0 whenever " % A, whence the pointwise
translation function c is nonlinear. In fact, this construction works in R¢. DeAcosta’s note
was the catalyst for the above theorem.

Even the spherically symmetric Cauchy on R fails to have PTP(.#), as we now indicate.

3.16 ExampLE. First consider d = 2. The spectral measure m. of a spherically
symmetric stable of index 1 is uniform on S' with m,(S') = 27. Define I'; on S' by I'»(E)
= my(E N A) where

A= Ui {(cost, sint) : 2k 7—; =t<@k+1) %}

I'; is nonsymmetric with vector mean 0 on S' and clearly satisfies both (I'; +T'2)/2 = ma
and 7, # 0. Hence, the spherically symmetric Cauchy on R? is one of the deAcosta-type
examples which does not have PTP(#).

Next assume d = 3. In polar coordinates a vector u € S%* may be written as

u = (cosb,, sinficosby, - - - , sinf; - - - sinfy_2c0804-1, Sinb; - - - sinfa_1),

where 0, € [0, 7] and 8, € [0, 27] for 2 < k < d — 1. Define the positive measure I" on 8!
by

7T 2n 27
J f@W)I'(du) = J’ f cee j f(cosb:, --- ,sinb; .. sinfys_1) dba_; --- db..
0 0 1]

T is the spectral measure of a spherically symmetric stable y of index 1. We will construct
a positive measure A on S°! and a measurable set A C S%' which satisfy (i)-(iv) of
Theorem 3.11. Let

3

B=losto<m2:sino=1-10]T=0<3"! and 4= (wes 9,en.
J2 2 4

Now A N —A = ¢ since u € A = 6, € B whence 7 — 6; & B and therefore — y, which has

first coordinate —cosf; = cos(m — 1), is not in A. Define A(E) = I'(E N A). Then A(A°) =

0 and A = I'. It remains only to verify (iii).

2m 27
J’ ul (du) = J J cee J’ (cosby, siné; cosby, - -+ , sinf; - - - sinfy_1) dbg—1 - -- db:
ga-1 B Jo )

= (27)42 J’ (cosfy, 0, -- -, 0) dé, = 0.
B

Whence, Theorem 3.11 implies that y € (PTP(¥)).0

There are, however, stables of index 1 which do have PTP(.%).
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3.17 EXAMPLE of a stable of index 1 having PTP(#). LetT = Py a:b,, where uy, - -+,
ug are linearly independent unit vectors and a;, - - - , aq are all positive. We will show that
there is no non-zero measure A on S ! satisfying (i)-(iv) of Theorem 3.11.

Suppose such a A does exist. Then there are ¢; = 0 with A = Y%, ¢:8,. Since, by
assumption (iii),

0= j ul (du) = i1 e,
s~

linear independence of uy, « -+, ug implies that ¢; = ... = ¢4 = 0. Consequently, A =0, a
contradiction. 0

The fact that the Levy measure alone governs whether an infinitely divisible law has
PTP(#), partitions all infinitely divisible laws into two sets of equivalance classes. Let

#y = {u€ Mi(R% :[0,0, ] € (PTP(¥))),
() = {yE £: v~ [a, D, p] with p € #}

HNa={p€ MR :[0,0,p] € (PTP(#))},
(M) = {yEF: vy~ [a, ®, u] with p € A5).

{(#;) and (A;) are partitioned into equivalence classes via the Levy measures in J; and
N respectively. Clearly, (3#;) = #N (PTP(#)) and (A5) = #\(PTP(#)), both of which
are non-empty by our previous examples.

As a result of Theorem 3.5, the Levy s-measures in Z,; determine which Levy measures
lie in #; and which in ;. For instance, Theorem 3.11 characterizes all £ € Z; which can
be used to produce pointwise translates of stables of index 1. This subset of 2, consists of
{(A = A)(du) X dr/r?:\ satisfies (i)-(iii) of Theorem 3.11}. In fact, a simple set of properties
characterizes all elements of Z;.

3.18 THEOREM. ¢ € %,\{0) iff there exists a non-zero Levy measure { on R* and a
measurable set A C R? such that
i) AN (-4A) =
i) {(A°) =0;
iii) {g is symmetric about 0 for all § € S*%;

v) £={-(D.

ProoF. Let ¢ be a non-zero Levy measure on R which satisfies (i)- (iv). Then {is a
non-zero Levy s-measure. Applying (i), (ii) and (iv), £s= (§7)s — (£7)s = ( 9o — (§o which
is 0 by (iii). Thus ¢ € 25\ {0}.

For the converse, let ¢ € #,\{0} and { = ¢*. By Proposition 3.6(iii) there is a set A C R?
withA N (-4) = F1t*(A°) = 0 and F ¢ (—A) = F'¢(A). Therefore, {(A°) =0 and
§' ¢ s0 §'and A satlsfy (i), (ii) and (iv). By Proposmon 3.6(iii), £ = §' §' and §' # 0.
H~ence $#0, (§')a ({)9 = ¢ = 0 and so for any E € 4/, ({)g(E) (§)0(E) ({)g(E)
($)¢(—E), whence (iii) holds. Necessity of (i)-(iv) is therefore proven. 0

3.19 REMARK. If {is a Levy measure on R such that {j is symmetric about 0 for all
0 € 8% then ¢ = f - f is in Z;. It follows that ¢ is also non-zero iff { # {. Furthermore,
¢ = £* iff conditions (i) and (ii) hold for a measurable set A C R“. Similarly, (i) and (ii) in
Theorem 3.11 can be replaced by A # A,

Theorems 3.5 and 3.18 can be combined.

3.20 COROLLARY. Let y have Levy representation [a, ®, p] on R?, Then y & (PTP(#))
iff there exists a non-zero Levy measure \ with the following properties:
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A=y
ii) there is a measurable set A C R*\{0} with A N —A = ¢ and A\(A°) = 0;
iii) A is symmetric about 0 for all § € S*.

We now identify further properties of elements of Z; which may aid in their construction.
Some of these properties will subsequently be applied to identify various subclasses of
(#a) and (Aa).

3.21 PROPOSITION (properties of Zg).

i) %.is a Banach space with | £ || = [re A A | x |P)] € |(dx).

ii) (Closure under operators.) If A is an invertible bounded linear operator on R*,
then A%; = %, where A£(E) = £(A'E) for E € %°.

iii) £ € 2.\{0) = F'¢* (R = 0 = F'¢"(RY).

iv) £ € 2u\{0} = [jeea || x || | € [(dx) = 0.

v) If E is a j-dimensional hyperplane which does not pass through the origin
0O=j=d-1)and ¢ € Z,\{0}, then £(E) = 0.

Proor. (i) Let {£)} be a Cauchy sequence in 2. By completeness of M, (R%, it
converges to a Levy s-measure £ To see that £ € Z; note that

&1l =1(E)s—Edl =& — E)oll =16 — £l > O.

Hence & = 0 for all § € 897, ~
(i) If A is an invertible bounded linear operator on R? and £ € %, then A¢ € M. (R°,
%%.For E € ¢!

(Af)o(E) = At (x € R?: (x,0) EE) =¢(A7'x: (x,0) EE)
A*f
=£(y:(Ay,0) €E)=¢ly: {y,———VYEE || A*0 |
£(y:(Ay 0) EE) £<y <y "A*0">€ Ia*6 )

=¢aupara(E || A% =0

since £ € 2. Hence A§ € Z,.

For { € %4, A7 € Fys0 { = A(A7'}) € A%, Thus, A%, = Z,.

(iii). Let £ € 2,\{0}. Suppose F'£*(R% < . By Proposition 3.6(iii), F'¢ (R") =
F7t*(—R% < . Moreover, (F7'¢%)y = (F7'¢7)s on R\{0} and (F7'¢"),({0})) =
Fi¢* (x € R?: (x,0) =0) = F'¢ (—x € R%: (x, 8) = 0) = (F'£7)4({0}). Hence (F'£"),
= (F7'¢7)s on R. Uniqueness of the Radon transform on M(R) implies F~'¢* = F7'¢".
Since Fis 1 — 1, ¢* = ¢7, so that £ = 0, a contradiction. Similarly, F~'¢~(R?) = co.

(iv). Let ¢ € %,\ {0} and suppose, to obtain a contradiction, that [j=1 || x| | {|(dx) <
. Lety; = F7¢* and o = F'¢ 7. If X;, i = 1, 2, are random vectors with Levy representation
[0, 0, u], then X, is a pointwise but not a vector translate of X,. Hence, there nonlinear
¢(0) such that for § € ST, L((X1, 8)) = L({X,, §) + c(8)). Our assumption insures that
the characteristic function of each (X, 8) is differentiable at ¢ = 0. Therefore, E [(X;, §)|
< for i =1, 2 and § € S%*, Hence c() may be identified as c(f) = E (X; — Xz, §) which
is linear in 6, a contradiction.

(v). Suppose there exists £ € Z,\{0} such that for some hyperplane E in R*\{0},
£(E) #0. Then E may be chosen to be maximal in the sense that for any hyperplane H in
R*\{0} with dim(H) > dim(E) we have £(H) = 0. Since {,=00n ¢ ! it is obvious that f
= dim(E) =< d — 2. There are uncountably many (f + 1)-dimensional hyperplanes F' on
R\ {0} which contain E. For any two such, F; and F3, Fi\E and F,\F are disjoint and
have measure

§(FAE) = £(F) — §(E) = —§(E) #0.

Hence, | £| is not o-finite, which gives a contradiction. Consequently, £(E) = 0 for any
hyperplane E in R%\{0}. In particular, £ has no atoms. 0
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The properties of % aid in identifying certain subsets of Levy measures which lie in
Ha.

3.22 PROPOSITION (Sufficient conditions for membership in #3). Let p, p1 € Mi(RY).
i) p(RY) <= p € H.

i) p atomic = p € ;.

iil) 1 € 5 and p < 1 = p € Hy.

iv) pu° € # = p € #; where p*(E) = (WE) + p(E))/2.

v) pu € H#, and A an invertible bounded linear operator on R* = Ap € #; (in fact,
Ay = #; and similarly AN = N3).

Vi) [ || % || p(dx) < o0 = p € Ha.

ProOF. To obtain a contradiction for (i)-(iv), suppose that p & 5#; and therefore there
exists £ € Z,\ {0} with §~ < [i.

i) If M(R’d) < o, then F7¢(R?% < o, which contradicts Proposition 3.21(iii). Hence

uE Hy.

ii) If u is atomic, then either £~ is atomic, contradicting Proposition 3.21(v), or £~ =0

which by Proposition 3.6(iii) implies £ = 0, again a contradiction.

iii) If p; € #; and p < pi, then £~ =< [i; contradicting . € 4.

iv) If u* € #, then (27'¢)” = (n°)” contradicting p° € H%.

v) Let u € #; and let A be an invertible linear operator on R*.
Let [0, 0, »] be a pointwise translate of [0, 0, Ap]. Calculations as in the proof of Proposition
3.21(ii) show that for E € % (R\{0}),

(A7)4(E) =v(y: (3, A0/ A0 ) € | A0 |'E)
=Ap(y:{(y, A‘1*0/|| A‘1*0||) €| A71*6 ||‘1E)
= po(E).

Consequently, [0, 0, A™'»] is a pointwise translate of [0, 0, u]. Since p € 5#, it follows that
A7'9 =y and therefore » = Ap. Hence Ap € 54, so A#y C Ha.

Now if p € #; then A~y € # and thus p = A(A™'p) € As#t;. Hence #y = Ay Similar
reasoning shows AAG = A;. i

vi) For any random vector Z on R? (Z, 8) = Y91 (0, ¢)(Z, ¢). By linearity of
expectations E(Z, 0) is linear in § whenever E |[(Z, ;)| < o for eachj =1, ..., d. Let
X ~ [0, 0, ] where p satisfies (vi). Then E || X || < c as in (iv) of Proposition 3.21. Let Y be
a pointwise translate of X. Then there exists a continuous c(f) such that £Z((Y, 8)) =
L(X, 8) + c(0)). Since E|| Y| < », c(§) = E(Y, ) — E(X, 6) is linear in 6. Thus,
[0, 0, p] € (PTP(¥)), which yields p € 5.0

3.23 REMARK. Analogous to (iii), if 1 € 47 and p = ; then p € 5. The implication is
that whenever an infinitely divisible measure y has a convolution factor n € (A44a), then
y € (A3) also. In this sense, (4a) is absorbing. However, (#;) is not absorbing.

For example, let 7, i = 1, 2, be spherically symmetric stables on R of indices a; and
a respectively with 0 < a; < 1 < a3 < 2. By Theorem 3.11, each y; € (#2). There exist
positive constants c; so that the Levy measures p; corresponding to 1, are of the form

pi(dx) = r*t dr X ¢T'(du)

where T is Lebesgue measure on S®. Let 0 < ¢ < ¢; A co. There exists £ € 2,\{0} such
that d|£|(x) = r™2 dr X cI'(du). If y = m*n» then p, = p1 + p2, hence §~ < ji,. Thus, by
Theorem 3.5, ., € A which implies y € (Aa).

We have seen that (#) and (%) are both nonempty. In fact, each collection is sizable.

3.24 PROPOSITION. () and(Aa) are each weakly dense in 9.
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Proor. First we show that (#;) is dense. Let y € 4, so y ~ [a, ®, p]. Define
Yn ~ [, ®, pn] where p,(E) = p(E N {x :|| x| =n""}). Each y, € (#) by (i) of Proposition
3.22. Moreover, y.(t) = y() V t € R? so by the Levy Continuity Theorem, y, — y weakly.

Next we show that (A7) is dense. Let y € %, so y ~ [a, ®, u]. We know there exists a
non-zero { € A;. In view of Remark 3.23, v, ~ [a, @, p + n7'{] € (Az). Since vy, — v
weakly, (A7) is dense in .4,;. 0

3.25 REMARK. There are examples of y € .% but such that y; € 4 for all § € S (see
Linnik-Ostrovskii, 1977). This suggests that .#, may not be contained in .%;, in which case
Ja N (PTP(A)) # (PTP(A)).

4. Application to spherically symmetric stable limits. We utilize the results in
Section 2 and Theorem 3.11 to refine a limit theorem for affinely normed random vectors
in Hahn and Klass (1980b).

Let X, X, X5, « - - be i.i.d. d-dimensional random vectors with law . (X) and nth partial
sum S,. Whenever {(S,, 8)} has greatly varied growth rates along at least two different
unit directions 6, affine transformations are required to normalize S, in such a way that
the weak limit distribution is full (i.e., concentrated on no (d — 1)-dimensional subspace).
See Hahn and Klass (1980a), (1980b), (1981a), (1981b) or Hahn (1979) for further discussion
and examples. This situation leads naturally to the following definition: X is said to be in
the generalized domain of attraction (GDOA) of a full law y if and only if there exist
affine transformations A, such that ¥ (A4,S,) — v.

The GDOA of every spherically symmetric law, which is of necessity spherically
symmetric stable, has been characterized.

4.1 THEOREM (Hahn and Klass (1980b, Theorem 1) and (1981a, pages 212-217)). lf)t
X, X1, X5, -+ be iid. full d-dimensional random vectors. If E | X || < © assume EX =0.
Let S, = X1 + «+. + X,,. Then there exist a full spherically symmetric law v, linear
transformations T,, and vectors v, such that

g(Tn(Sn - Un)) —>Y
iff there exist orthonormal bases {0,1, « + + , Ona}n=1 Such that

(A) there exists 0 < a < 2 such that

PUX,0)>1) 2-a o
E(X, 0)2A£) 4 |7

(B) lim,_,«supges*| a2(0)/(X9=1 (8, 0,,)’a%(0.)) — 1| =0

where a,(8) = sup{a: c'nE((X, )* A a®) = a?} for some ¢ > 0;

lim,_, »Supges*

and
(C) lim,,_msupaesd—' | mn(9) - Z§=l <0, anj)mn(enj)l/an(o) =0
where m,.(0) =nkE (X, 0)[(|(X,a)|5an(o)).

Moreover, whenever (A)-(C) hold, v is spherically symmetric stable of index a. (This
dependence will be denoted by writing y®.) Thus for all unit vectors 0, (v*)(t0) =
exp(¢|t|*) where

cI'3 —a) TQ

- = 3f <
3 a1 cos2 if 0<a<l orl<a<?

(1)
I

C
- if a=1

for some ¢ > 0. When the constant ¢ determining ¢ is the same as that determining a,(6)
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(see (B)), the linear transformations T, and vectors v, may be chosen to satisfy
(D) Tox = Y% ({X, 02)/n(Bn))) e, (Uny Onj) = mn(6n) for j=1,...,d.
Furthermore, (A)-(C) hold iff they hold with 0,; chosen in the following manner:

(E) @n(bn) = infscst an(8), an(Bnj+1) = infoery an(d) for j=1, ..., d — 1, where
T} ={0E€5"7:(6,0u) =0 for k=1,.--,j}.

4.2 REMARKS. Condition (A) expresses the fact that the usual 1-dimensional conditior;.l
must hold uniformly in every direction. For the standard multivariate normal limit, this
condition alone is necessary and sufficient (see Hahn and Klass, 1980a). However, if
0 < a < 2, Example 4 of Hahn and Klass (1980b) shows that Condition (B) must be
assumed. Condition (B) basically insures that at stage n, the 1-dimensional growth rates
of (S,, 8) for various directions 6, as expressed by the 1-dimensional norming constants
a,(0) are determined from those along a preferred orthonormal basis {,1, - - , 6nqa}. This

is automatically the case when a = 2.
Finally, Condition (C) concerns centering. Reflect for a moment on 1-dimensional

centering when considering convergence to a 1-dimensional symmetric stable of index «,
call it A, Now A” symmetric implies that a, = 0 (see (2.2)). Thus by Condition (2.1)(iii),
the 1-dimensional centering constants v, must satisfy lim, | U, — mi.(7)| =.0. Recall that
1, (1) = nE (X/an)I(xisrq,). This quantity tends to 0 for a # 1, thus no further centering is
needed. However, if a = 1, ri,(r) may not go to 0, in which case centering is required.
These 1-dimensional considerations suggest that for d = 2 no centering condition is
required iff a # 1.

(In Hahn and Klass (1981), Theorem 5.4, page 210, is incorrectly stated, omitting
Condition (C) in the case a = 1. This is due to the false claim in the earlier version of this
paper that all symmetric stables are in PTP(#). See the parenthetical discussion in
Remark 2.11. However, Theorem 5.4 contains a correct proof that Condition (B) only
needs to be checked for the preferred orthonormal basis constructed in (E). That the same
is true for Condition (C) is proved in the Appendix.)

Our proof requires several facts from Hahn and Klass (1980b).

4.3 Facr (pages 72-73). Condition (A) implies both
lim,.supsese1| nP(X, 0) > ya,(0)) =5 2 —a)y™ | =0

and
lim,jolimsupy_,«supsesi-t | ¢ 'nE(((X, 8) /an(0))* A %) — Iy=3 | = 0.
4.4 FAcT (pages 70-71). Suppose there exist orthonormal bases {01, - - - , 6,4}»=1 and

functions b,(0) with b,(8) = (291 (8, 0,;)?b%(8,,))/, such that for any sequence of unit
vectors Yy,

ZL((Sn = U, ¥n) /ba(Ya)) = A@).
Then
4.5) lim,,_,supyg=1 | @=(6)/b.(8) — 1| = 0.
Moreover, (A) and (B) hold if in addition to (4.5) both

lim,csupt-1 | RP((X, 6) > ya,(6) — 5 (2 = a)y™| = 0

and

n

220) =0

lim,olim sup,_..supjgj=1

Var((X, o)I(l(X,a)ISEa‘.(o))) - CI(D,=2)
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4.6 THEOREM. Ifa # 1, any random vector on R? satisfying (A) and (B) satisfies (C).
Ifa = 1 and d > 1, there exists a random vector on R satisfying (A) and (B) but not (C).

PRrOOF. o = 2 is known (see Remark 4.2). First assume X satisfies (A) and (B) with «
# 1 or 2. Defining Thx = ¥4, (x, 8,)ej/a(0,), (B) implies that
lim,,_msup“o“-ll " T,;"“0||/a,, @ -1 | =0.
Now utilizing in order Fact 4.4 and then Fact 4.3,

. c _
lim ., wsupsesi-i|n P((T.X, ) > y)— y 2—-a)y™|

. - _ ¢ -
= lim,.asup,est-t|n PUT.X, T /I Ty > y) =7 @ = @)y

_al

. _ C
= lim,osup,es|n PUX, v) >y | T2y ) =7 @ — @)y

C
= lim,_,»supyes-1|n P((X, y) >y an(y)) -1 2-a)y™|

= 0.
Thus, (I), holds where ps ([ y, ©)) = (¢/4)(2 — a) y™*. Similarly,
lim.jolim sup,—«supses?'n E ((T.X, ) N £%)
= lim,jolim supswsup,esi-n E(ToX, T v/ T2y )2 A €)
= lim,|olim sup,—«sup,es*-in E(((X, y)/a.(y))* A &%)
=0.
Thus, (II)g-o holds.

Since v € (PTP()) if a # 1, it follows from Theorem 2.12 that there exist v, € R¢
such that (T, (S, — v,)) = . Consequently, by Theorem 4.1, (A)-(C) must hold. Thus,
(A) and (B) = (C).

Now consider a = 1. Let #(X) ~ [0, 0, A X dr/r?] and y*® ~ [0, 0, I" X dr/r?] where A

and I are the measures on S¢~* defined in Example 3.16. Now, #(X) = L1 Xi/n) and
the Levy measures s for (X, ) are all continuous. So, by Theorem 2.8 and Remark 2.7,

lim,_, esUpygj=1 =0.

n P((X, 0) > yn) —:—iy‘l

and

X, 6
n Var<< n )I(I(X,6)|sw)> ‘ =0.

lim,;olim supr_,.supygj-1
By Fact 4.4,
lim,,_, - supygy=1| @~ (d)/n — 1| = 0.

Thus (A) and (B) hold. It therefore remains to show that (C) fails.
Suppose (C) holds. Then Theorem 4.1 implies the existence of v, € R such that

v =limy e 2’(% - v,,) = lim,_0 X — vn).

This can only occur if lim,_,., exists, call it v. Then, #(X — v) = y*, which contradicts
the fact that A #I". 0
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5. The pointwise translation problem for signed measures. Heretofore, we
have confined our attention to infinitely divisible laws which are pointwise translates of a
given (infinitely divisible) probability law. We now expand our investigations to signed
measures. For certain classes of signed measures A we find that .4, is no larger than the
collection of vector translates of A.

5.1 THEOREM. (i) M5, = {8s:b € R?}, s0 8 € (PTP(8,)). (ii) If y has an inverse under
convolution in M(R*), then M, = {y*8,:b € R?}, so y € (PTP(A4,)).

ProOF. Part (ii) clearly reduces to (i). Thus we prove (i). The result is trivial for d =
1. Suppose d = 2 and A € ;,. There exists a continuous function ¢:S9~! - R such that
A¢ = 8.5 Note that A(20) = (A\y)(¢) = | ej“‘o‘cw) (ds) = exp(itc(8)), whence (A\)(¢6) = A(—tf)
= exp(—itc(f)). Therefore, (\+A)" = 1 = & which implies AxA = 8. If A were continuous it
would be impossible to convolve it with another signed measure to obtain a non-zero
discrete measure. Hence there exists b € R* such that A({b}) # 0. Replacing A by Ax§_, if
necessary, it suffices to assume that A({0}) # 0.

For each § € S¢7, let Ay = {x € R*\{0}:(x, ) = 0} and put @ = {# € S**:A(4y)
= 0}. Since d = 2, A is an uncountable family of disjoint sets. By the o-finiteness of A,
S'\Q is at most countable; thus, @ is dense in S*. For 6 € @, A has an atom at zero. But
in fact, Ay = e Thus c(6) = 0 for § € Q. By continuity of ¢, we may conclude that ¢ (6)
=0, whence A = 1 and A = 8. The case d > 2 follows from the case d = 2 by means of the
following lemma.

5.2 LEMMA. Let A, 6 € M(R?, d = 2, with 05 # 0 for every 8 € S~ Assume that for
every one- or two-dimensional subspace V C R*, there exists Bv € V such that PyA =
(Pvo)*8g,(Pyv is the operator denoting perpendicular projection onto V). Then A is a
translate of o.

PrRoOF. Whenever V = span{6}, § € S?~!, write B8v = c(6)d. Define B = c(e;)e; + - - -
+ c(ea)esand let K = {z € R%:c(z/||z||) = (B, z/| z||) for z # 0}. A calculation, together
with the observation that the only translation invariant signed measure in M(R) is the
zero measure, show that K is a linear subspace. Since e; € Kforj=1, - - , d, K = R®. This
shows that for all 6 € S?7', ¢(6) = (B, 6). Consequently, A and o*8; possess the same
Radon transform, so the result follows. O

Many of the signed measures observed in applications are either bounded or have at
least a first moment. By linearity of expectations, probability measures with finite mean
have PTP(M*(R?)). Perhaps surprisingly, the pointwise translation property can fail to
hold for signed measures A with A(R?) = 0 even if [« | x|*|A|(dx) < o for all £ = 1.

5.3 THEOREM. Let & = {y € M(R): fp+|x|*| v|(dx) < »}, and let &n =NF=1 &.
i) If y € & with y(R?) # 0, then & N M, = {y+8s:b € R} so that y € (PTP(&)).
ii) There exists a non-zero y € &, with y(R?) = 0 but M, N &, # {y*85:b € R?}. Thus,
vy & (PTP(6%)).
ili) There exists y € &. and 1 € My N E. such that n* & M, and 1~ & M.

Proor. (i) Let y € & with y(R% # 0 and # € & N 4,. Then 75 = ys*8us. Direct
computation shows that

f (%, O)n(dx) = f
Rd

(%, 0)y(dx) + c(@)y(R?)
Rd

so that

c(d) = (Y(Rd))“f (x, 0)(n — y)(dx).
Rd
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Hence c is linear which implies y € (PTP(41)).

(iii) follows from (i) and (ii). Just take a y having the properties in (ii). Since y # 0 and
Y(R%) =0,y (R? = y~(R? # 0. Moreover, y € & so both y* and y~ are also in &. Let o
€ ., be such that 7y = y4+8.s With ¢ non-linear. Since 1§ = y§ *8.¢ and 15 = ys *0.(, the
nonlinearity of ¢() implies that n* & .#,+ and n~ & #,-. Hence (iii) holds provided (ii)
holds.

The fact that there are examples satisfying property (ii) is a consequence of Example
5.4 below.

The class of examples to be constructed was derived by simply abstracting the ideas in
the construction of a specific example due to Larry Shepp (private communication). The
proof of this generalization is essentially identical to Shepp’s original proof.

Let ¥ denote the j times continuously differentiable functions on [0, 27].

54 ExampPLE. Fixk € (1,2, ..., ©}. Let Y(w) be any real function on [0, ©) which
satisfies

(@) y€ "7

(b) ¢© = (d*/dw)y € L([0, ), w dw) for i=0,.-.-,k+3;

(c) YyP0)=0 for i=0,.--,k+1;

(d) ¥ (w) # 0 on a dense subset of [0, x). .
Let 9 = {c=c(0):0<0 =27, c € G, c(@ +7) = —c(f)}. For c € €%*? define

(5.5) Ye(w, 0) = Y(w)e™®  wel0,0), 0=<60=<2m

Then there exist two signed measures p. and yo on R? with finite £th moments for which
fte (W0) = Y (w, ) and jio(wh) = Y (w). Furthermore, if c is nonlinear then . is not a vector
translate of po even though (itc)s = (1t0)e*0es) for every 8. Necessarily . (R?) = 0.

Proor. Throughout, polar coordinates will be denoted by (w, 6) and rectangular
coordinates by (x, y) where x = w cosf, y = w sinf. Notice that if ¢ = 0 then y. = Yo = {.
Let

2m o
(5.6) fo(x,y) = J do J w dw . (w, o)eiw(xcos0+ysin0)
0 )

6.7) =J dy'J dx’ e (a', ') "+,

Suppose, for the moment, f. and f are real in L'(R?). Fourier inversion then implies that
Y. and Yo are Fourier transforms of signed measures p. and . In fact,

Ye(x, y) = 2m) f dy’ f da’ f, (', y)mie )

so that du.(x’, y') = (27) *f.(=x’, —y’)dx’dy’. Equation (5.5) then implies that (u.)s =
(1t0)9*8—c(gy. Furthermore, if || (x, y) |*f.(x, ) € L'(R?), then u. has a finite £th moment.
Finally, if ¢ is nonlinear then y. cannot be a translate of uo because if g(x, y) = fo(x — a, y
— b), then

é(w, 0) = ﬁ)(w, 0)e—iw(acos0+bsin0) — (277,) 2\P(w)e_iw(a0030+bsinm

and Y(w) # 0 on a dense subset of [0, «) by (d).

Thus, we must show that (a)-(c) imply that £. is real and || (x, y) ||*f.(x, ¥) € L*(R?.
Note that (c) does imply that u.(R?) = ¢, (0) = 0 as is necessary.

For all ¢c € ¥%*?, f. is real because f, can be rewritten as
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felx,y) =2 J dOJ' w dw Y(w) cos(w(x cosd + y sinf — c(A))).
0 0

For the existence of 2th moments of y, let 1 < p < k& + 3. Integrating by parts p times
on x’ in (5.7) we get for x # 0,

bl bl i(xx +yy')
(5.8) felx, y) = (—l)pj dy'j dx’ DYy (x, y')W
where D? = 8°/(3x’)” provided that D¥y.(x’, y') € L*(R? for k=0, - - - , p. For verification
that this does indeed follow from (a)-(c) we need a few observations.
Utilizing the chain rule
o _wao Mo aw_ 0 8 _ sind
ax’ ox’ow ox’ 980’  ax’ ’

>

ax’ w

a direct calculation shows that D y. = (3/dx’){. is a complex linear combination of ¥ and
Y’ times e 7@ (the coefficients being bounded functions of ¢, ¢’, cosf, sin). In order to
obtain D%y., notice that (9w/dx’)(8/dw) converts ¢ and ¥’ to ' and ¥® respectively.
Furthermore, (36/0x")(d/36) converts ¢ and ¢’ to terms involving ¢, y/w and ¢’, ¥'/w
respectively. ‘

Inductively, this procedure yields for general j = 1, that D4y, is a bounded complex
linear combination of

Yw*,  k=0,-.-,j—1 if ¢#0
(5.9) and
YO w',  r=1,-.-,j and s=0,---,j -1

Integrability of D%y, for 2 = 0, ..., p will therefore follow from integrability of the
terms in (5.9) when j = p. Consequently, consider

27 oo
A= J f |4/ dw db.
0 0

Condition (b) implies the inner integral is finite near o for s = 0 and hence for s = 1. The
Taylor series expansion

YOw) = Yib w0/ + wTYTTE) /(s -, Osésw

and (c) imply finiteness of the inner integral near 0, for 0 <r<=%i2+3and0<s=<k + 3
— r. Thus, utilizing (a) we see that A, < o forO0<r<k+3and0=<s<k+3—r,so (a)-
(c) do indeed imply integrability of the terms in (5.9). (Actually, (b)-(c) are equivalent to
integrability of the terms in (5.9) for y € C**+?)

A similar verification yields

e wxx' +yy')

(5.10) felx,y) = (=1)® J’ dy’ J dx’ Doye (&', ¥') ———
. . (iy)

where DY = 97/(3y’)”.
ForO=p=<=Fk+3,let

= m( [ [ 1w, | [ 1050, [ [ 10201

Then from (5.8) and (5.10), we see that
[fe@w, O) | = |fe(x, ) | S Mpe AN | x| P A |y|™P) < 2°°M, .1 A\ w™)
=N,.(1 Aw™).
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Finally, letting p = £ + 3, || (x + y) ||*f. € L'(R?) since

27 0 27 00
f j w*|f.(w, 0) | w dw df < Nk+3’cJ' f WA A wF?) dw d
0 0 0 0

2m 1 00
= Nk+3,cf [f + f ]wk+1(1 A w3 dw db
0 o 1

2m
= Nm,cf [(k+2)""+1]db
0

= 2Np+3.c(k + 3)/(k + 2) < .

The proof is now complete. 0

5.11 REMARK. Shepp’s specific example uses ¢ (w) = (e~ V*)"") /., k = », and c(6)
= sin34.

6. Applications connected with the Radon transform. The notion of the Radon
transform of a function is widely utilized in tomography and partial differential equations.
For an element f € L*(R*), the Radon transform of fis the function (6, £) — f5(¢):8% ' X
R — R defined by

fo(2) =f f(y)m(dy)
(»0)=t

where m is the (d — 1)-dimensional Lebesgue measure on the hyperplane ( y, #) = ¢ in R?¢
(see e.g. Smith, Solomon, and Wagner, 1977). More explicitly, if Uy is an orthogonal linear
transformation on R taking the vector ez = (0,0, --- , 0, 1) to 6, then since R? = R% ! x
R,

fol®) = Lf(Ue(y + teq)) dy.

Recall that we defined the Radon transform of A € M (R?) as the mapping 6 — As:S%!
— M(R). Since (\s)(t) = X(t0), unicity of the Radon transform follows from unicity of the
Fourier transform. If A has a signed density f € L*(R?), then a calculation verifies that
Ag(A) = [afs(t) dt. Thus, the Radon transform of a measure is a natural generalization of
the Radon transform of a function.

We now proceed to a brief discussion of the physical meaning of Problem 1.4 in the
setting of the computerized tomographic (CT) scanner. Inside the unit disc D in the plane
is placed a two-dimensional object of non-uniform opacity (density) f to x-rays. From the
point p on 3D(=S") a thin beam of x-rays of known intensity I, is directed towards a
detector at another point g on dD. The beam is attenuated from having passed through
the x-ray absorbing object; and the intensity I(pq) measured at g is Iy exp(— [pq fds).
[pq fds is the line integral of f with respect to arc length over the line segment from p to g.
As the line segment pq varies over all parallel lines, —In(I(pq)/I,) gives a projection f; of
the density f on the line £, where 6 is a unit vector perpendicular to the parallel segments
Pq. Thus the x-ray transform permits calculation of the Radon transform of f, which can
be inverted to give f (Shepp and Kruskel, 1977).

If one imagines the density of fto be a section through the head or body of an obtunded
or uncooperative patient, it is not unrealistic to suspect that the introduction of translation
artifacts is a fact of life for radiologists who interpret CT scans made on the basis of the
principle outlined in the paragraph above. They recognize such artifacts as streaks
indicating non-uniform density where uniform density is expected. Translation by a
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nonlinear c(6) relative to a known density can never be a “real” finding; the densities f are
supported on D, so that our discussion of measures with finite first moments applies
(Theorem 5.1(i)). (See also Kolwalski and Wagner, 1977.)

The argument in Theorem 5.1 requires that [p f % 0. Signed measures, however, never
arise in the conventional applications of the CT scanner. One might imagine an x-ray
source within D, such as an a-ray-emitting isotope remaining in the patient’s circulation
from a previous procedure, contributing to the beam detected at q. However, it is easy to
see that this concept leads to a model in which the resulting intensity I(pgq) # I(gp), so
that the result is not a Radon transform of any density at all, even one taking negative
values. It is possible to envision a different model in which an emitter produces a-rays
proportionally to the number of x-rays impinging on it, generating a chain reaction. The
CT scanner would then report f — g, where g is a measure of the distribution of emitter.
However, we know of no practical application in which this type of interaction occurs, so
we omit the details.

Contrasting generalizations of the Radon transform of a measure are possible. Hertle
(1980) uses a definition equivalent to setting [« fdRA = [s+-1 [o f (8, t) dAs(t)m (df), where
again m is Lebesgue measure on S?~*. Thus, RA is a single measure on S%"! X R, rather
than a function on S? ' taking values among signed measures on R. Hertle’s generalization
is natural from the point of view that RA is a function on S¢~! X R, rather than a function
from S¢~! to functions on R. .

We choose to regard the Radon transform as an indexed family of functions or measures.
This usage is in keeping with the mechanical operation of CT scanners in which the x-ray
source and detector assembly discretely rotates or “indexes” around the patient. Our
concept is perhaps more convenient for expressing ideas which pertain to projection on
individual directions. Moreover, our definition easily generalizes to signed measures on
Banach spaces (see Hahn and Hahn, 1981).

The definition of Radon transform naturally extends to o-finite measures which do not
give infinite mass to any (d — 1)-dimensional hyperplane. Levy measures are not generally
of this form. However, if a Levy measure is considered as defined on R%\{0} then p, is a
Levy measure on R\{0}. Hence, the mapping § — ;15:S*' — M% (R\{0}) might be called
the Radon transform of a Levy measure. Example 3.16 shows that the Radon transform
for Levy measures is not unique. This non-uniqueness gives rise to additional counterex-
amples and to a general “hole theorem” for the Radon transform.

Perry (1977) and Quinto (1981) consider the question: If the Radon transform of a
function g is zero on the exterior of a ball centered at the origin, must g be zero outside of
that ball? This “hole theorem” is not true in general. If fr and f, are defined as in Example
3.16, then for u € S %, r € R,

glru) = (fr — fa)w)r=2

is a non-zero function on R%\{0} whose Radon transform is zero outside of every ball
centered at the origin.
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APPENDIX

As explained previously in Problem 1.4 and Remarks 2.11 and 4.2, an earlier unpublished
version of this paper contained a fundamental error asserting that every infinitely divisible
law has PTP(#). As we have seen (Example 3.16), this is false. Consequently, several false
statements appear in Hahn and Hahn (1981) and in Hahn and Klass (1981b), where
reference is made to this result.
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Thus, on page 177 of Hahn and Hahn (1981), Case 5 is specifically contradicted by
Example 3.16 if « # 1 and the generalization of Case 4 is therefore false. Similarly, in the
preceding paragraph on page 177 the discussion requires a 5 1. Theorem 2.6, Remark 2.7,
and Remark 3.3 also rely on Case 4. However, the techniques used in the derivation of
these results may be of some independent interest.

In Hahn and Klass (1981b), Theorem 5.4 on page 210 requires a centering condition if
a # 1. Consequently, the correct statement is as in Theorem 4.1 of the current paper. The
only omission from the proof of that result is verification that if

(I11) lim,_,..supges®=t| mn (0) — Y51 (0, v )M (yn) | /@n () = 0

holds for some ONB{y,,} then it also holds for the preferred ONB{#4,,;} chosen as in (E).
The verification is as follows:
By (III) there exists €, (0) with &, = supges*| e, () | — 0 such that

M (0) = 271 (8, Vi) Mn (v2j) + £0(0) @ (6).
Thus,
[ (8) — 251 (0, 0nj) 1m0 () | = | L1 (8, yi) M (yi) + £2(8)@n (6)
= 251 (0, 60) (Tt (Oniy Yni ) (yni) + €n(0i)@n (1)) |
= | &x(0)@n (0) = X551 (0, Onj)en (6n)an (6)) |
= enl(@n () + (d Tf1 (0, 0ni) 2al (0,)) %)
=< 2d €,a,(0) uniformly in 6 for all n large.

Consequently, (III) holds with 6,, replacing yy,.

We also note the following two misprints in the definitions of the norming constants on
page 198 of Hahn-Klass (1981b):

Line 15 should read:

al(@) = nE (X, 80)2 N aZ(9)).
Line 17 should read:
2a%(0) = 21 E((X3i, 0)° A az(0)).
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