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SHARP BOUNDS ON THE ABSOLUTE MOMENTS OF A SUM
OF TWO LLD. RANDOM VARIABLES

By Davip C. Cox AND J. H. B. KEMPERMAN'!

Battelle Memorial Institute and University of Rochester
We determine the exact optimal bounds A, and B, such that
AJE|X|? + E|Y|"] <=E|X + Y|’ < B,[E|X|*+ E| Y|*],

(p = 1), whenever X, Y are i.i.d. random variables with mean zero. We give
examples of random variables attaining equality or nearly so. Exactly the
same bounds A, and B, are obtained in the more general case where it is only
assumed that E(X|Y) = E(Y|X) =0.

1. Introduction. We determine the exact optimal bounds A, and B,, such that
A, <E|X+Y|P/{E|X|”+ E|Y|’} = B,,

(p = 1), whenever X, Y are i.i.d. random variables with mean 0. Onehas0 <A, <1 =< B,.
It is shown that A, = 1 for p = 3; B, = 2?2 for p = 2, while A, = 2°"*for 1 < p < 2. A more
complicated formula (2.8) holds for A, with 2 < p < 3. A similar formula (2.11) yields B,
with 1 < p < 2. The latter constants A,, B, are very close to 1. Exactly the same bounds
A, and B, are obtained in the more general case where it is only assumed that E(X|Y)
= E(Y|X) = 0. We note that Esseen (1975) obtained related bounds for the third moment
E|X + Y|? in the ii.d. case.

2. The results. In the sequel, p will be a fixed constant, 1 < p < . We are interested
in the best possible constants A, and B, such that

(2.1) AJE|X|P+E|Y|P]=E|X+ Y|”P<B,[E|X|’+E|Y|"]
for each pair of random variables X and Y satisfying E| X |? < o, E| Y |? < o and
(2.2) E(Y|X)=0;, EX|Y)=0.

The inequalities (2.1) remain sharp when (2.2) is strengthened by requiring in addition
that X and Y are ii.d. For, it will be shown that the equality signs in (2.1) are either
assumed or nearly assumed, depending on the value of p, by suitable non-zero pairs X, Y
of i.i.d. random variables with mean zero. On the other hand, these same inequalities (2.1)
remain valid when (2.2) is weakened to

2.3) E{X(sgn Y)| Y|""" + Y(sgn X)| X[*"') = 0;

(sgn x = —1, 0 or +1, depending on whether x < 0, x =0 or x > 0, respectively). Namely,
it will be shown that there exist real constants ¢, and d, such that

(2.4) [x+y[P= A {|x|” + |yIP} + co{x(sgny)|y|P~" + y(sgn x) | x|*~'}
and . .
(2.5) [x+y|°=Bp{|x|” +|y|"} + dp{x(sgn y)|y|*~" + y(sgn )| x|~}

for all x, y € R. For example,
(x + y)® < 16(x® + ¥°) + 16(xy® + x%y); = (x® + y°) + 6(xy® + x°y).
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(2.6) THEOREM. Inequality (2.4) holds with the following constants A, and c,.
Moreover, A, is the best possible constant in (2.1), subject to condition (2.2). First

2.7 Ap=2°"% ¢,=2""% jfl=p=2.

Next, if 2 <p < 3 then

(2.8) Ap = infoe,<1[2°7 Mz + 277") + (1 — 2)P)/[(A +2)(1 + z°7Y)]
and ¢, = 277! — A,. Finally,

(2.9) A,=1; c,=p if3=p<o,

(2.10) THEOREM. Inequality (2.5) holds with the following choice of the constants B,
and d,. Moreover, this constant B, is the best possible constant in (2.1) subject to
condition (2.2).

If1=p=<2then

(2.11) B, = supo<:<1[2°"'(z + 2°7") + (1 — 2)P)/[(1 + 2)(1 + 2°71)],
while d, = 2°~' — B, Moreover,
2.12) B,=2"%andd,=2°"? if2<p<c.

(2.13) REMARK. The constants A, for 2 < p < 3 and the B, for 1 = p = 2 are extremely
close to 1 as Table I shows.

TaBLE L.
The Constants Ap, 2 <p < 3, and B,
l=p=<2
p A4, p B,
2.1 0.99586 1.1 1.02300
22 0.99285 1.2 1.03292
2.3 0.99102 1.3 1.03551
24 0.99038 14 1.03374
2.5 0.99085 1.5 1.02938
2.6 0.99228 1.6 1.02363
2.7 0.99441 1.7 1.01729
2.8 0.99685 1.8 1.01098
29 0.99900 1.9 1.00511

(2.14) REMARK. Note that, for p = 2, inequality (2.5) with B, = 2”72 implies that
|2+ 5P+ |2 = y|P < 2B, (|x |7 + |y17) = 2°7X(| x|” + |y ).

This is exactly the well-known Clarkson inequality.
In the sequel, for convenience, we assume that p # 1, p # 2, p % 3. The cases p = 1, 2
or 3 are rather trivial anyway. When p = 1, the inequalities (2.4), (2.5) become

“B{|x|+|y|+x(sgny) + y(sgnx)} <|x+y| = |%| +|y].

The left equality sign holds if and only if either y = —x or xy = 0; the right equality sign
holds if and only if xy = 0. When p = 2, (2.4), (2.5) reduce to the simple identity

(x + )7 = (x* +5°) + (xy9+ yx),

and (2.1) (with A, = B, = 1) always holds with the equality sign, (even if only E(Y|X) =
0). When p = 3, (2.4) reduces to

|x+y>={|x]°+|y]|°} + 3{x(sgn y)y* + y(sgn x)x*},
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which holds with the equality sign if and only if xy = 0. Further, (2.5) with p = 3 becomes
lx+y|°=2(]%]> +|y]°} + 2{x(sgn y)y* + y(sgn x)x*},
where the equality sign holds if and only if y = +x.

(2.15) From now on either 1 <p <2 or 2 <p <3 or p > 3. Let further A4,, B,, ¢, and d;,
be defined as in the formulation of the Theorems 2.6 and 2.10. In the Sections 3 and 4 we
will establish the inequalities (2.4) and (2.5). Obviously, they imply that (2.1) holds for any
pair of random variables X, Y satisfying (2.3).

We first show that the constants A,, B, in (2.1) cannot be improved by requiring that
X and Y be independent (possibly with different distributions). It suffices to prove that the
inequalities (2.1) can hold with the equality sign in a non-trivial way; (the trivial way would
be to take X = Y = 0). Let S, and S/, respectively, denote the set of points (x, y) at which
(2.4) (or (2.5), respectively) holds with the equality sign.

Assuming that (2.4) has been established, it is obvious that a pair of random variables
X, Y satisfying (2.3) will satisfy the lower bound (2.1) with the equality sign if and only if
the distribution of (X, Y) is carried by S;. Hence, in order to show that the lower bound
(2.1) is optimal for the independent case, it suffices to show that there exists a pair of
independent random variables X and Y, not both zero, such that P((X, Y) € S;) =1 and
EX=0,EY=0.

Similarly, the upper bound (2.1) is optimal as soon as P((X, Y) € S;) = 1 holds for
some non-trivial pair of independent random variables X, Y, each with mean zero.

(2.16) EQUALITY. As will be shown, the set S}, is as follows.

(i) If 1 < p < 2 then S}, consists of all the points (x, x) and (x, — x), (where x is an
arbitrary real number). Hence, in this case, S} supports the pair (X, Y) with X, Yii.d. and
PX=1)=PX=-1)=%

(ii) Let 2 < p < 3. Then S}, consists of all points (x, x), (x, —20x) and (x, —x/2,); here,
2o is the unique value at which the infimum in (2.8) is attained, 0 < 2z < 1. Hence, S,
supports the pair (X, Y) with X, Y iid. and P(X = —20) = 1/(1 + 20); P(X = +1) =
Zo/ 1+ 2o).

(iii) If p > 3 then S, consists of all points (x, 0) and (0, x). In this case one may take X
=0 and Y as an arbitrary random variable with mean zero.

The set S, will turn out to be as follows.

(iv) Suppose 1 < p < 2. Then S} consists of all points (x, x), (x, —20x) and (x, — x/20),
with z, as the unique value at which the supremum in (2.11) is attained, 0 < zo < 1. Thus,
S} supports a pair (X,Y) with X, Y ii.d. such that P(X = —2¢) = 1/(1 + 2) and P(X = 1)
=2o/(1 + 2p).

(v) Suppose that 2 < p < o, p # 3. Then S; consists of all points (x, x) and (x, —x).
Thus, S, carries the distribution of the pair of ii.d. random variables X and Y with
PX=1)=PX=-1)=%

Finally, we note that, except for A;, B; and A,, p = 3, the examples given above
establish the sharpness of (2.1) for the i.i.d. case also. The exceptions are taken care of by
considering a distribution taking the values 1, —a, with mean zero, and letting a — 0.

3. Proofs. Note that the infimum in (2.8) and the supremum in (2.11) involve a
strictly positive valued continuous function on [0, 1]. It follows from the definitions of A,
and B, (letting z = 0 in (2.8), (2.11)) that

(3.1) 0<A,<1=<B,<o.

In particular, (2.4), (2.5) hold when x =0 or y = 0.
In proving (2.4) and (2.5), because of the obvious symmetry in x and y, one only needs
to consider the case that 0 < |x| = |y|, y # 0. Dividing by |y|” and introducing z =
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(sgn xy)| x/y| = x/y, it suffices to show that

3.2 [1+2z|P=A,(1+|2|°) + cp(sgn 2)(| 2| + | 2|"7")
and
(3.3) [1+2|P=B,(1+|z|°) +dy(sgn 2)(|z| + | z|"7"),

whenever -1 < z=<+ 1.

Let Z; (and Z,, respectively) denote the set of values z € [—1, +1] such that (3.2) (or
(3.3), respectively) holds with the equality sign. Observe that S, (or S;, respectively)
consists precisely of all points (x, zx) and (zx, x), where x € R is arbitrary,while z € Z}, (or
z € Zj, respectively).

(3.4) We conclude that in proving the Theorems 2.6 and 2.10, as well as the assertions
(i)-(v) in 2.16, it only remains to prove the following results. Here, the variable z can take
any value with -1 < z < +1.

(I) Suppose 1 < p < 2. Then

(3.5) (1+2)?=2°"2[1+ |2z|" + (sgn 2)(| 2| + | z|*"1)].

Moreover, the equality sign in (3.5) holds if and only if either z = —1 or z = +1.
(IT) Suppose 2 < p < 3. Then

(3.6) Q+2P=A,0+|z”)+(2°' = A,)sgn 2)(| 2| + | z|P71).

Here, A, is defined by (2.8). Moreover, the equality sign holds in (3.6) if and only if either
z =1 or z = —2¢, with 2z as the unique value at which the infimum (2.8) is attained. One
has 0 < 2o < 1. This as well as the uniqueness of z, remains to be shown.

(ITI) Suppose p > 3. Then

3.7 (1+2)?=1+|z|” +p(sgn2)(|z]| +|z[P7Y).

Here, the equality sign holds only at z = 0.
(IV) Suppose 1 < p < 2. Then

(3.8) (1+2)”=<B,(1+|z|") + (2°"' = B,)(sgn 2)(| z| + | 2|"7Y),

with B, as defined in (2.11). Moreover, the equality sign in (3.8) holds if and only if either.
z =1 or z = —z, with 2z, as the unique value at which the supremum (2.11) is attained.
One has 0 < zp < 1. This and the uniqueness of z, remains to be shown.

(V) Suppose 2 < p < w0, p # 3. Then

@9) (1+2)? =277°[1 + | 2|" +(sgn 2) (| 2| + | 2|*"1)],
where the equality sign holds if and only if either z = —1 or z = +1.
(3.10) ProoF oF (I) AND (V). Let —1 <z < +1 and put w = (sgn 2)|z|*"". As to (3.5)
and (3.9), observe that
1+|z|°P+ (sgn2)(Jz|+ |27 =1+ 2)(1 + w).

Dividing by 1 + z, one must show that

+2\"7 1+
@11 - <1 z) 212"’ fl<p<2,

2

and also the opposite inequality when p > 2.

" However, these two inequalities are equivalent as may be seen by raising (3.11) to the
power ¢ — 1, where ¢ > 2 is defined by p™' + ¢g™' = 1. Note that (p — 1)(g— 1) = 1; z =
(sgn w) | w|*".

As is well-known, if Z = 0 is a non-constant random variable with moments 8; = EZ*
then B} is strictly increasing in ¢ > 0. Hence, if 0 < z < 1 then (% + %2z°)" is a strictly
increasing function of ¢ > 0. This proves the case z = 0 of (3.11).
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As to the case z = —x < 0 of (3.11), it suffices to observe that
1—x)P1=1—xP"1>2P7%1 — xP7Y),

when 0 = x <1 and 1 < p < 2; (after all, the excess in the first inequality is a concave
function equal to 0 at x = 0 and x = 1). It also follows from the above remarks that (3.5)
and (3.9) hold with the equality sign if and only if z =1 or z = —1.

(3.12) ProoF oF (III). Let p > 3. It suffices to show that g(z) > 0 and A(z) > 0, for 0
< z =1, where
g()=(1—2)"—1—2°+pz+pz"~Y;
h(z) = 1+2?P-1-27 - pz _pzp—l.

The first follows from (1 — z)” > 1 — pz and pz”~' > z”. The second follows from A(0) =
0; h’(0) = 0 and the strict convexity of the function 4. The latter follows from

h"(2)=p(p— 12" {1+ )P = (p—2)t—1} >0,
where t =1/z.
(3.13) REMARK. This completes the proof of the lower bound (2.1) with A, = 1 in the
case p > 3. More generally, (2.2) implies that
(3.14) EUX+Y)=EUX) + EU(Y),

when U is a (not necessarily even) function on R having a convex second derivative U”
and such that U(0) = 0; U’(0) = 0; U”(0) = 0; (example: U(x) = x* if x = 0; U(x) = | x|°
if x = 0). We assume that all needed expectations exist.

It suffices to prove that

(3.15) Ux+y)=Ux) + U(y) + xU'(y) + yU'(x),

for all x, y € R. Let x be fixed and let f(y) denote the difference between the two sides of
" the inequality. One must prove that f = 0. Since f(0) = 0 and f/(0) = 0, it suffices to show
that fis convex. In fact,

() =U"(x+y) = U"(y) —xU"(y) =0,
by the convexity of U”. Here f” and U” denote the right hand derivatives of f* and U”,

respectively.

4. Proof, second part. The proofs of assertions (II) and (IV), (see(3.6) and (3.8)), are
somewhat harder. We need the following two lemmas.

(4.1) LEMMA. Consider the function
(4.2) ¢(2) =1 +2)P—1+2°)— (2= 1)(z + 2°7").

Here,0 < z=<1 and p = 1. Note that $(0) = 0; ¢(1) = 0, while $(z) =0ifp=1,20or 3. We
assert that

4.3) ¢(2)>0 if 0<z<1l and 2<p<3
and
(4.4) #(2)<0 if 0<z<1l and 1<p<2 or p>3.

(4.5) PROOF. Observe that ¢(0) = ¢(1) = ¢’(1) = 0. Moreover,

¢"(2) =p(p — D[ + 2)P7% — 2772 — ¢zP7%]
(4.6)
=p(p—-12" A +¢t)P2—1—ct],
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where ¢ = (2°"' — 1)(p — 2)/p and ¢ = 1/z. In particular,
¢”(1) = (p— 1)8(p) with 8(p) = 4 —p)2*~2 - 2.

Since (2) = 6(3) = 0 and 6’(p) changes sign only at po = 4 — (log 2)™' = 2.557 (from
positive to negative), one has that

¢”"(1)>0 if 2<p<3;
<0 if 1<p<2 or p>3.

Consider first the case 2 < p < 3. Then the function (1 + £)?~2in (4.6) is strictly concave.
Hence, ¢”(z) might possibly have a (—, +, —) type of sign change somewhere (as z moves
to the right) but not a (+, —, +) type of sign change. Since ¢”(1) > 0, the sign of ¢”(z) can
actually change only once, for z € (0, 1), and then only from negative to positive. Since
¢”(0) = —oo, it follows that ¢’(z) first decreases and then increases toward its final value
¢’(1) = 0. Consequently, if ¢’(20) = 0 with 0 < 2o < 1 then ¢’(2) is decreasing near z. In
particular, ¢ cannot have any interior local minimum. Since ¢(0) = ¢(1) = 0, one must
have ¢(2) >0for0 < z< 1.

The proof for the case 1 < p < 2 or p > 3 is entirely analogous. In this case ¢”(1) < 0
while the function (1 + £)?~2 in (4.6) is strictly convex. Also using ¢’(1) = 0, it follows that
¢ cannot have any interior local maximum in (0, 1). This proves (4.4).

(4.7) LEMMA. Consider the function
(4.8) Y() =1 —2)? — (a+ bz + cz’' + dzP),

where 0 < z < 1. Further, a, b, ¢, d denote arbitrary real constants.

We assert for the cases 0 < p <1 and 2 < p < 3 that the function Y can have at most
one (interior) local minimum in (0, 1). Similarly, ifp <0or1<p<2orp>3then ycan
have at most one local maximum in (0, 1).

(4.9) PROOF. Suppose first that 0 < p <1 or 2 < p < 3. One has for 0 < z < 1 that
Y"(2) =p(p — 2"t — )" = c't- d'},

where ¢’, d’ are constants and ¢ = 1/z. Presently, the function p(p — 1)(¢ — 1)~ 2 is strictly
concave. It follows that ”(2) cannot have a (+, —, +) type of sign change anywhere, which
implies that ¥/(z) cannot have two (or more) local minima in (0, 1).

If instead p <O or 1 <p <2 or p > 3 then Yy”(z) cannot have a (—, +, —) type of sign
change, hence, y cannot have more than one local maximum.

(4.10) ProoF oF (II). Let 2 < p < 3. In order that (3.6) holds in the interval —1 < z
= 0, it is necessary and sufficient that ¢ = 0 on [0, 1]. Here,  is defined by

(4.11) YR)=1—2)P+2° " z+2"") — A, (L +2)(1 + 2°71).

And ¢ = 0 is indeed true because of the definition (2.8) of 4,.

There is at least one value z, € [0, 1] at which the infimum (2.8) is assumed.
Equivalently, there is at least one value 2, € [0, 1] with (z) = 0.

Since (1) = 4(2°7% — A,) > 0, we have 2, < 1. If z is small then

W(2) = (1 — A,)(1 + 2) — v(p)z + O(zP7Y),

where v(p) = p + 1 — 2°7! > 0; (namely, the function v(p) is strictly concave while v(3)
=0, v(0) > 0, hence, v(p) > 0 for 0 < p < 3). Since Y(z) = 0 on [0, 1], it follows that A, <
1, thus, ¢(0) =1 — A, > 0, hence, 20 > 0.

We have shown that any zero 2, of Y must be an interior zero and thus an interior
minimum. It follows from Lemma 4.7 that 2, is unique. Moreover, —z, is the unique value
z € [—1, 0] at which (3.6) holds with the equality sign.
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Next, we must show that (3.6) holds when 0 < z < 1. This is equivalent to
(4.12) () + (1 —A,)1-2)1A -2 =0,

for 0 < z < 1, where ¢ is defined by (4.2). In fact, (4.12) is obvious from A, < 1 and the
conclusion (4.3) of Lemma 4.1. In fact, we see that z = 1 is the only value in [0, 1] at which
(4.12) holds with the equality sign. This completes the proof of (II).

(4.13) ProorF oF (IV). This is completely analogous to the proof of (II).

5. CONCLUDING REMARKS. Let p > 1, p # 2, and consider n = 2 random variables X,
o+, X, with E| X;|? < 0. Put S = X; + --. + Xj. For n = 3, it is an open problem to
describe the best possible constants A, (n) and B,(n) such that

(5.1) Ap(n) Y1 E| X;|P = E|S,.|” = By (n) Yi-1 E| X [P,
under the condition that
(5.2) EX:|Xj)=0fori#j, (@,j=1,---,n).

Similarly for the stronger condition that the X; be independent, or even i.i.d., with mean
zero. Unlike the case n = 2, it is doubtful that the latter conditions are equivalent to (5.2)
for any n = 3 in determining the optimal constants A, (n), B, (n).

A related problem is to determine the best possible constants A, (n) and B, (n) such
that

(5.3) A}(n) Y1 E| X < E| S|P < By (n) 301 E| X P,
under the condition that
(5.4) E(X;|Si-1)=0 fori=2,3,.--,n.

These constants, and their asymptotic behavior for large n, were determined in Kemper-
man and Smit (1974). It turns out that the inequalities (5.3) remain sharp when (5.4) is
strengthened to the full martingale condition

(5.5) EXi| Xy, -+, Xi1) =0 fori=2,...,n.
Note that neither of the conditions (5.2), (5.5) implies the other (and similarly for (5.2) and
(5.4)).

For n = 2, the constant A, = A, (2) is precisely the largest constant for which one can
find a constant c;, such that

(5.6) [1+2z|P=A,(1+|2|?) + cpz forall z.

Similarly, B, = B,(2) is the smallest constant for which one can find a constant d » such
that

(5.7) |1+ 2z|P=B,(1+]|z|°) + dpz forall z.

These are the analogues of (3.2) and (3.3), respectively. For example, A} = (5 — V17 ) /2
= 43845 while A, = 1. Further, B, = (5 + v17)/2 = 4.56155 while B, = 4. Simi-
larly, B3 = 2.169773708 while B; = 2.
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