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A STRONG LAW OF LARGE NUMBERS FOR PARTIAL-SUM
PROCESSES INDEXED BY SETS

BY RicHARD F. Bass AND RONALD PYKE!
University of Washington

Let J = {1,2, ---}¢and let {X;, j € J} be iid with finite mean. Let S(nA)
be the sum of those Xj’s for which j/n € A. It is proved in this paper that
S(-) satisfies a strong law of large numbers that is uniform over A € <
where o7 is a family of subsets of [0, 1]¢ satisfying a mild condition.

1. Introduction. LetJ ={1,2, ---}?and let {Xj; j € J} be a family of iid
random variables with E | Xj| < ® and EX; = u. If B C [0, )¢ is Borel measurable,
let | B| denote the Lebesgue measure of B and let S(B) = }jes Xj. A natural
question is, if B, is a sequence of sets (not necessarily nested) with | B,| / o,
will S(B,)/|B.| — u, a.s.? And will this convergence be uniform over a large
family of such sequences? .

We provide answers to these questions by proving the following result. Given
a set B, let nB = {nx: x € B} and let B(5) = {x: p(x, dB) < 4} be the j-annulus
of B, where p(-, -) is Euclidean distance and 9B is the boundary of B.

THEOREM 1. Suppose &7 is a collection of Borel measurable subsets of [0, 1]¢
such that
r(6) = supae | A(8)| = 0as 6§ — 0.
With X; and S(-) as above,

S(nA
SUPAec o7 (:d)—ulAI — 0, a.s.asn— o,

Theorem 1 provides a strong law of large numbers that is uniform over 7. In
Section 3 we show how this uniformity provides an answer to the first problem
posed in the first paragraph. What may be a bit surprising is, that in strong
contrast to most theorems involving processes indexed by sets, &/ need not
satisfy any metric entropy condition. Thus, for example, if o7 were the collection
of convex subsets of [0, 1]% it is easy to verify that o/ would satisfy the
hypothesis of Theorem 1 for any d; however, only for d = 1, 2 are the convex
subsets a small enough collection for most other purposes, including existence of
Brownian processes and uniform convergence results for partial-sum and empir-
ical processes. The particular case of Theorem 1 where o7 is the set of rectangles
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with one vertex at O was considered by Dunford (1951), Zygmund (1951), and
Smythe (1973).

In addition to the strong law of large numbers of this paper, the partial-sum
processes S(-) also satisfy a uniform central limit theorem (Pyke, 1983, and Bass
and Pyke, 1984) and a functional law of the iterated logarithm (Bass and Pyke,
1984). However, for these latter results much stronger conditions are necessary;
in particular metric entropy is crucial.

2. Proof of Theorem 1. First of all, if x = (x4, - - -, x4) is fixed, (0, x] =
{(y;, -+, ¥a):0<y;=x;,1=1, ---, d}, and # denotes cardinality, then by
Kolmogorov’s strong law,

- #(J N n(0, x]) S(n(0, x])
d —3
(1) n™S(n(0, x]) d #J N n(0, x])

Secondly, if A can be obtained by a finite number of unions and differences of

rectangles of the form (0, x], by linearity,

(2) n?S(nA) — |A|u, as.

Now let » = E| X;|and let T(A) = Yjea | Xj|. If m is an integer, let C; =
m™(j — 1, j], and for any A € o let Rn,(A) = Ugcy Cj, Rm(A) = Ugna0Cs.
Thus R,,(A) and R},(A) are inner and outer rectilinear fits of A by cubes of size
1/m.

Since the furthest any point of R;,(A)\R.(A) can be from the boundary of A
is the diameter of a cube of size 1/m, we have by assumption

sUpsco | Rm(A)\RL(A)| = r(d"?/m).

Let #;,, = {Rn(A): A€ o7} and #5 = {RH(A)\R(A): A € o7 }. Since each
A € o/ is contained in [0, 1]¢, it should be evident that # 25, and # 25 are
finite.

We then have, for m fixed,

— (0, x]|p, as.

lim sup, e sew| P78 (nA) — |A| u|
< lim suppomacan™®| S(nd) — S(nRn(A))|
®3) + lim SUPn—w,ae| 1798 (R7(A)) — 1| Ru(A)
+ lim sup,—wac|ul|A\RL(A)| = [+ I, + L.
Clearly, I < | u | r(d*?/m).
I, < lim sup,_,. e 2:| n™*S(nB) — u| B
< lim sup,_,,maxge 5-|n°S(nB) — u|B|| =0, a.s,

since # Z,, < o and every set B € #,, can be obtained by a finite number of
unions and differences of rectangles of the form (0, x], recall (2).
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Finally,
I < lim sup,_,, 4e 0 *T(nR(A)\nRL(A))
< lim sup,,_,,maxpe 2| n7*T(nB) |
< v maxge g | B| < vr(dV?/m), as.

where we used the fact that # %45 was finite and the analogue of (2) for the
partial-sum process T.
Summing, we have from (3)

lim $up,wseo| RS (nA) = |A|p| = (1| + v)r(d¥?/m), as.

Letting m — o concludes the proof. [
3. Remarks.

1. Suppose we are given a sequence of sets B, such that | B,| — o, as in the
first paragraph of the introduction. Let A, = n™'B,, and let o = {A,}. If &/
satisfies the hypothesis of Theorem 1 and | A, | is bounded away from 0, then

S(B,) l
—u
| B.|

lim sup,,_,. l

S(nA)

< lim sup,|A,| ™" lim sup,c,, —nr—ulAl ' = 0.

2. Without further conditions on 27, one cannot say much about the necessity
of E| Xj| < o, as the following trivial example shows. Let d = 1, let &/ consist
of the single set A = {xo}, where x, is irrational. Then S(nA) = 0 for all n, no
matter what the distribution of X is.

3. By requiring E | X;| log* | Xj|¢ ™! < », Theorem 1 can be extended to allow
n — o« in more than one way. That is, one considers lim supse o,|S(n-A)/|n| —
plAl, where n = (ny, ---, ng), [n|| =ny'ny---"ngand n-A = {(my, ---,
naya): v1, - -+, ya) € A}, and the limits over n are as in Smythe (1973). To prove
the extension, replace the use of Kolmogorov’s strong law in the proof of (1) by
the use of Smythe’s strong law.

4. In Pyke (1983) and Bass and Pyke (1984), it was necessary to consider a
smoothed version of the partial sum process. In both cases, S(nA) was replaced
by

Su(4) = %51G — 1,31 N nA| X;.
Only minor modifications are needed to the proof of Theorem 1 to make it

applicable to this case as well.

5. Theorem 1 and the above remark suggest that one could formulate a more
general uniform strong law. That is, let X;, X, - - - be an infinite sequence of iid
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random variables. For each n, let A, be a subset of ; = {(ay, ---): 221 | a;| < oo},
and let

D, = Sup(a;,m)eA,,I Yic1 0:.Xi — p X ail.

It may be verified that Theorem 1 and its extension given in Remark 4 are special
cases of this general formulation. It would be of interest to find the most general
conditions on the A,’s so that D, — 0, a.s. as n — o,
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