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A SIMPLE DEVELOPMENT OF THE THOUVENOT RELATIVE
ISOMORPHISM THEORY

By JouN C. KIEFFER'
University of Missouri-Rolla

A simple proof is given of the Thouvenot relative isomorphism theorem
for conditional very weak Bernoulli processes. As a special case, one obtains
a simple proof of the Ornstein isomorphism theorem for very weak Bernoulli
processes.

I. Introduction. For the purposes of this paper, a process is a bilateral
sequence X = {X;}Z . of random variables defined on some common probability
space ((Q, % P), say) and taking their values in a common finite set (4, say),
called the state space of the process. Regarding X as a random sequence mapping
Q into A®, the measurable space of bilateral sequences from A, we let dist X
denote the probability measure on A® into which P is carried by X. A pair process
(X, Y) is a pair of processes X, Y defined on the same probability space ((2, 7
P), say) with possibly different state spaces (A, B, respectively, say). Regarding
the pair process (X, Y) as a map from Q to A” X B>, we let dist(X, Y) denote
the probability measure on A” X B® into which P is carried by (X, Y). The pair
process (X, Y) is said to be stationary (ergodic) if X, Y are jointly stationary
(jointly ergodic) processes. Similar comments apply to processes consisting of
more than two component processes (triple processes, quadruple processes, etc.).

We say the stationary pair processes (X, Y) and (U, V) are relatively iso-
morphic if there is process Z such that

(i) dist(X, Z) = dist(U, V), and

(ii) (X, Y) and (X, Z) are almost surely stationary codings of each other.
(By (ii), we mean that, almost surely, (X, Y) = ¢(X, Z) and (X, Z) = ¢(X, Y)
for some pair of measurable maps (¢, ¥) which commute with the shifts on the
respective sequence spaces.)

Consider a pair process (X, Y) where X is a stationary and ergodic process
and Y is a stationary independent process statistically independent of X. We
state here the solution of Thouvenot ([12], Proposition 3 and [13], Lemma 6) to
the problem of determining which pair processes are relatively isomorphic to
(X, Y). Let (U, V) be a pair process; we say V is U-conditionally very weak
Bernoulli (VWB) if (U, V) is stationary and ergodic and

(1) lim,,_wEd(dist(VT | U), dist(VT| V2, U)) = 0,

where d,, denotes the d-distance between pairs of m-dimensional probability
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distributions [6] and the arguments of d,, in (1) are the random measures such
that when the bilateral random sequence U = u and the unilateral random
sequence V%, = (..., V_;, V;) takes as a value the particular sequence of symbols
(---, v-1, Vo), then dist(VT* | U) equals the conditional distribution of the random
vector V" = (Vy, -+, V,,) given U = u and dist(V]| V%, U) equals the
conditional distributlon of VP given V%, = (---, v_y, o) and U = u. Thouvenot
showed that (U, V) is relatively isomorphic to (X, Y) if and only if

(a) dist U = dist X:

(b) Vis U-conditionally VWB; and

(c) The entropy rates H(X, Y), H(U, V) of the pair processes (X, Y), (U, V)
are equal,

where, as usual, the entropy rate H(X, Y) of the pair process (X, Y) is defined
to be

lim,_.n*[entropy of (X;, X,, - -+, Xn, Y1, Ya, - -+, Yu)l.

(Similarly, one defines the entropy rate H(X) of a smgle process X the entropy
rate H(X, Y, Z) of a triple process (X, Y, Z), etc.)

Note that if in Thouvenot’s result one takes X to be a degenerate process, one
obtains as a special case the solution of Ornstein [6] to the problem of determining
which processes are isomorphic to independent processes. Thouvenot’s proof is
somewhat complex. In this paper we give a simple proof of Thouvenot’s result
by means of a lemma (Lemma 1 of Section III) whose use makes unnecessary
the involved arguments involving the marriage lemma appearing in previous
proofs.

II. Conditionally finitely determined processes. If (X, Y), (U, V) are
two stationary pair processes such that dist X = dist U and Y, V have the same
state space, then d.((X, Y), (U, V)), the relativized d-distance between the two
pair processes [12], is the infimum of Prob[Yo # V] over all stationary triple
processes (X, Y, V) such that dist(X, Y) = dist(X, Y) and dist(X, V) = dist(U,

V). Following [12], if (U, V) is a pair process, we say V is U-conditionally finitely
determined (FD) if (U, V) is stationary and ergodic and d,((U™, V™), (U, V))
— 0 for every sequence of stationary and ergodic pair processes {(U™, V™)}%_,
such that

(i) For all n, dist U™ = dist U and V™ and V have the same state space;
(ii) (U™, V™), (U, V), where the “d” denotes convergence in distribution;
and
(iii) H(U™, V™) — H(U, V).

Our proof of Thouvenot’s theorem will use the result that V is U-conditionally
VWB if and only if V is U-conditionally FD. It is not hard to show that the first
condition implies the second (see [13], proof of Lemma 6). The original proof [7]
that the second condition implies the first is hard but an easy proof is now known

[4].
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III. A relativized Sinai theorem. Sinai [10] showed that if Y is a sta-
tionary and ergodic process and if U is a stationary independent process whose
entropy rate is no greater than that of Y, then U is a factor of Y in the sense
that there is a stationary coding U of Y for which dist U = dist U. Ornstein [6]
generalized this result to the case of a very weak Bernoulli process U. Ornstein
[5] also proved a relativized version of Sinai’s theorem. In this section we
generalize Ornstein’s relativized result to show that if (X, Y) is a stationary,
ergodic pair process and (U, V) is a pair process such that V is U-conditionally
VWB and dist U = dist X and H(U, V) < H(X, Y), then there is a process Z
which is a stationary coding of (X, Y) and for which dist(X, Z) = dist(U, V).
For use in our proof of Thouvenot’s theorem (see Section V), we prove a bit
more, namely the following.

THEOREM 1. Let (X, Y) be a stationary and ergodic pair process. Let (U, V)
be a pair process such that V is U-conditionally VWB and dist U = dist X and
H(X, Y)=H(U, V). Let the process Z be a stationary coding of (X, Y) for which
d.((X, Z), (U, V)) <e. Then there is a stationary coding Z of (X, Y) for which

(i) dist(X, Z) = dist(U, V), and
(li) Pl'Ob[Zo #* Zo] <e.

Our main tool for proving Theorem 1 is the following lemma, whose proof is
given in the next section. This lemma is of interest not only in the development
of the Thouvenot theory, but in other contexts as well. For example, a variant of
this lemma was used in [3] to prove some multiterminal coding theorems of
information theory.

LEMMA 1. Let (X, Y, U) be a stationary and ergodic triple process. Suppose
also that the pair process (X, Y) is aperiodic (meaning that Prob[X =x, Y = y] =
0 for all x, y) and that H(X, Y) = H(X, U). Then there is a sequence of stationary
processes {U™ }x_,, having the same state space as U, such that

(i) each U™ is a stationary coding of (X, Y);
(i) (X, Y, U™) —q (X, Y, U); and
(iii) HX, U™) — H(X, U).

PROOF OF THEOREM 1.

Case 1. H(X, Y) = 0. Then H(U, V) = 0 and so by Lemma A1l of the
appendix, V is a stationary coding of U almost surely. Because of this and the
fact that (X, Z), (U, V)) < ¢, it is not hard to show there must be a coding 1%
of X satisfying Prob[Z, # V,] < ¢ and dist(X, V) = dist(U, V).

CASE 2. H(X,Y)>0.Then (X, Y) is aperiodic. Find positive numbers ¢, ¢,

. so that Y2, & < ¢ and d,((X, Z), (U, V)) < ¢&;. Redefining (X Y) on a new
probablhty space if necessary, find a process Vsuch that (X, Y, V)isa stationary
and ergodic triple process for which dist(X, V) = dist(U, V) and Prob[Z, # V]
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< &;. (The existence of such a triple process which is stationary follows from the
definition of the metric d,. If the triple process is not ergodic, it can be replaced
by an ergodic one by appealing to the ergodic decomposition theorem.) Applying
Lemma 1 to the triple process (X, (Y, Z), V), and using the fact that V is X-
conditionally FD, we may find a stationary coding Z¥ of (X, Y) such that
X, (Y, Z), Z‘”) is so close in distribution to (X, (Y, Z), V) and H(X, Z") is so
close to H(X, V) that Prob[Z, # Z{’] <&, and d,((X, Z?V), (U, V)) <e.. Applying
this argument repeatedly, obtain stationary codings Z®, Z®, ... of (X, Y) so
that foreachi=2,3, - -+, d((X, Z?), (U, V)) < ei+1 and Prob[ZS“” # ZP)1<e
hold. Then the process Z whlch is the almost sure limit of the processes {Z®},;
is the process we seek.

Combining Lemma 1 and Theorem 1, one can obtain the following modification
of Lemma 1 which will be of use to us later.

LEMMA 2. Let (X, Y, U) be a stationary and ergodic triple process such that
(X, Y) is aperiodic, U is X-conditionally VWB, and H(X, Y) = H(X, U). Then
there is a sequence {U™} of stationary codings of (X, Y) such that -

(i) (X,Y,U") -4 (X, Y,U)
(ii) dist(X, U™) = dist(X, U) for all n.

IV. Proof of basic lemma. In this section we prove Lemma 1, which was
basic to our approach to the Thouvenot theory. (The reader who is not interested
in how Lemma 1 is proved may skip to Section V.) First, we introduce some
notation and terminology to be used in this section.

In the following, if Z is a process let Z" denote the random vector (Zo, - -,
Z,).If m> N =1 and § > 0, we say an m-sequence z is (N, §) typical of Z if the
frequency with which each N-sequence b appears in z is within § of Prob[Z" =
b]. Similarly, if (X, Y) is a pair process, we can define what it means for a pair
of m-sequences (x, ) to be jointly (N, §) typical of (X, Y), and if (X, Y, U) is a
triple process, we can define what it means for a triple of m-sequences (x, y, u)
to be (N, 8) typical of (X, Y, U). If S is a set, | S| is used to denote the number
of elements in S. Finally, if X, Y are processes, H(X | Y) denotes the conditional
entropy rate for the process X given the process Y, which is equal to H(X, Y) —
H(Y).

Lemma 1 will follow from Lemmas 3 and 4 below. We omit the proof of
Lemma 3, as it is a simple consequence of the Shannon-McMillan Theorem.

LEMMA 3. Let (X, Y, U) be a stationary and ergodic pair process, where X has
state space A, Y has state space B, and U has state space C.
(i) Suppose forn=1,2, ---, E, is a subset of A™ X C" for which
lim sup,_.ntlog|{u € C*:(X", u) EE,}| <H(U|X) as.

Then Prob[(X™, U") € E,] — 0.
(ii) Suppose for n =1, 2, ---, F, is a subset of A® X B" X C" for which
lim sup,—_..Prob[(X", Y", U") € F,] > 0. Then there exists for each n a
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map ¢,: A" — C" such that the following inequality holds with positive
probability:

lim sup,..n"'log|{y € B":(X", y, ¢.(X")) € F,.}| = H(Y| U, X).

LEMMA 4. Assume in addition to the hypotheses of Lemma 3 that «a, 8 are
positive numbers for which H(Y | X) — H(U | X) <a<B<H(Y| U, X). For each
n=1,2, ..., and each x € A", let {(B¥(x), ul(x)):i=1, ---, k.(x)} be a largest
possible set of pairs such that:

(a) The coordinates B¥(x) (i = 1, ---, k,(x)) are disjoint subsets of B" each

having between 2™ and 2" elements;

(b) The coordinates u?(x) (i =1, - .-, ky(x)) are distinct elements of C";

(C) (x’ y’ u:l(x)) lS (N’ 6) typwal Of (X, Y, U), y € B:l(x), l= 1, Sty kn(x)

Then if N is large enough and 6 is small enough,
Prob[Y"” € U%¥" BHX™)] — 1.

ProOF. Fix7>0sothat H(Y|X)— H(U| X) + 7 < a. Take N large enough
and 6 small enough so that

lim sup,_.n"tlog|{y € B": (X", y) is (N, 6) typical of (X, Y)} |
<=HY|X)+7 as.
Then since the argument of the logarithm in (2) is at least 2™k,(X"),
lim sup, .ntlog k(X") <= H(Y|X)+7—a<HWU| X) as.

By part (i) of Lemma A3,
(3) Prob[U" € {ul(X"):i=1, ---, ka(X")}] = 0.
Take F, to be the set of all triples (x, y, u) from A™ X B" X C" which are (N, §)
typical of (X, Y, U) and satisfy y & U® B?(x), u & {ul(x):i=1, - -, ka(x)}. By
part (ii) of Lemma 3 and the maximality (in terms of cardinality) of the set of
pairs {(B*(x), u?(x)} relative to the conditions (a)-(c), we must have
(4) Prob[(X™, Y", U") € F,] = 0.

The conclusion of the lemma follows from (3), (4) and the fact that Prob[(X",
Y™, U") is (N, 6) typical] — 1.

PrOOF OF LEMMA 1. We can assume H(Y | X, U) > H(Y | X) — H(U| X).
(For, if H(U) = 0 the lemma is trivially true because any sequence {U™} satisfying
(ii) of Lemma 1 also satisfies (iiiA). If H(U) > 0, it is not hard to show that there
exists a sequence of processes {U™} jointly ergodic with (X, Y) for which (X, Y,
U™ - (X, Y, U), HX, U™) - H(X, U), and H(Y| X, U™) > H(Y| X) —
HU™ | X) = 0 for all n.) Employ Lemma 4 to get a certain sequence of block
encodings of (X, Y), and then by the standard technique from information theory
(see, for example, [2], page 960) via the strong form [9, page 22] of the Rokhlin-
Kakutani theorem (valid since (X, Y) is aperiodic), replace the block encodings
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by sliding-block encodings (finite stationary encodings) {U™} of (X, Y) so that
(ii) of Lemma 1 holds and lim sup,..H(Y|X, U™) < H(Y|X) — HU| X),
whence lim inf, .. H(X, U™) = H(X, U). By uppersemicontinuity of the entropy
rate with respect to convergence in distribution, one has automatically that
lim sup,.H(X, U™) < H(X, U). Hence, (iii) of Lemma 1 holds.

V. Proof of the Thouvenot Theorem. Here is the result of Thouvenot
we wish to prove.

THEOREM 2. Let (X, Y), (U, V) be pair processes such that Y is X-condition-
ally VWB, V is U-conditionally VWB, H(X, Y) = H(U, V) and dist X = dist U.
Then (X, Y), (U, V) are relatively isomorphic. Furthermore, if Z is a stationary
coding of (X, Y) for which d.((X, Z), (U, V)) <e, there is a process Z such that

() (X, 2) and (X, Y) are almost surely stationary codings of each other;
(ii) dist(X, Z) = dist(U, V), and
(iii) Prob[Z, # Zo] <e.

For the proof of Theorem 2, we will need Theorem 1 plus the following two
lemmas.

LEMMA 5. Let the pair process (X, Y) be stationary and ergodic. Let Z be a
stationary coding of (X, Y) for which H(X, Z) = H(X, Y). Then for any ¢ > 0,
there is a stationary coding Z of (X, Y), whose state space contains that of Z, and
which satisfies

(i) Prob[Zo # Zo] <e
(i) H(Yo | X, Z), the conditional uncertainty for Yo, given (X, Z ), is smaller
than e.

NoTE. Roughly speaking, Lemma 5 says that any stationary coding (X, Z)
of (X, Y) of full entropy (i.e., H(X, Z) = H(X, Y)) is “almost” relatively
isomorphic to (X, Y).

ProOF OF LEMMA 5. Since H(Y | X, Z), the conditional entropy rate of the
process Y given the pair process (X, Z), is zero, the Slepian-Wolf theorem [11]
[1] implies the existence of a binary process U which is a stationary coding of Y,
and for which H(Y,| U, X, Z) < ¢ and Prob[U, = 1] < ¢ both hold. Define Z to
be the process

Z;=%7; if U=0 Z;=Z,U) if U=1.

LEMMA 6. Let (X, Y) be a pair process such that Y is X-conditionally VWB.
Let Z be a stationary coding of (X, Y) such that H(X, Z) = H(X, Y). Then for
any ¢ > 0 there is a process Z such that

(a) (X, Y) apd (X, Z) are almost surely stationary codings of each other:
(b) dist(X, Z) = dist(X, Z), and
(c) Prob[Z, # Zo) <e.
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PROOF. We can assume (X, Y) is aperiodic. (Otherwise, by Lemma Al of
the Appendix, Y is a stationary coding of X and Lemma 6 is trivially true with
Z = Z.) It suffices to prove the weaker result that there exists a stationary coding
Z of (X, Y) satisfying (b), (c), and

(d) H(Yo|X, 2) <e.

(Just apply this weaker result repeatedly to get Lemma 6.) By Lemma 5, find a
stationary coding W of (X, Y) such that (i) Prob[W, # Z,] < ¢/2 and (ii)
H(Y,| X, W) < e. By Lemma A2 of the Appendix, W is X-conditionally VWB;
also H(X, W) < H(X, Z) and d,((X, W), (X, Z)) < ¢/2 hold and so by Theorem
1, redefining X, Y on a new probablhty space if necessary, there is a process VA
such that the triple process (X, Y, 7) is stationary and ergodic, (iii) dist(X, Z) =
dist(X, Z), (iv) Prob[Z, # W] < ¢/2, and (v) W is a stationary coding of (X, 2).

Then from (ii) and (v) we have (vi) H(Y,| X, Z) < e. Applying Lemma 2 to
the triple process (X, (Y, W), Z), we can just as well assume that (iii), (iv) and
(vi) hold when Z is replaced by an appropriate process Z which is stationary
coding of (X, Y). Thus we have (b) and (d). Also, (c) follows from (iv) with VA
replaced by Z and (i).

PROOF OF THEOREM 2. By Theorem 1, find a stationary coding Z of (X, Y)
such that dist(X, Z) = dist(U, V) and Prob[Z, # Z,] < e. Then apply Lemma 6.

APPENDIX

LEMMA Al. Let(U, V) be a pair process such that V is U-conditionally VWB
and H(V| U) = 0. Then V is a stationary coding of U.

PROOF. The left side of (1) is no less than
limpem™ 32, Ed;(dist(V;| U), dist(V;| V%, U))
= limpn_oEd; (dist(V, | U), dist(Vo | VIZ, U)).

This latter quantity then being zero, we have lim,, .. H(Vy | V™, U) = H(V, | U).
The left side of this equality is zero, which we see by applying Pinsker’s formula
for H(V | U) [8, page 24, equation (28)]. Therefore the right side is zero.

LEMMA A2. Let (X, Y) be a pair process such that Y is X-conditionally VWB.
Let Z be a stationary coding of (X, Y). Then Z is also X-conditionally VWB.

ProoOF. Clearly (X, Z) is a d,-limit of pair processes of form (X, Z), where Z
is a finite stationary coding (sliding-block coding) of (X, Y). It is easy to see
directly from the definition of the conditional VWB concept that 7 is X-
conditionally VWB for such a pair process (X, Z). Now apply the result that the
conditional VWB property is stable under the taking of d,-limits. (An easy proof
of the fact may be found in [4].)
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