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SOME REMARKS ABOUT THE CONVOLUTION OF
UNIMODAL FUNCTIONS

By BELA UHRIN

Hungarian Academy of Sciences

In the note a new class of functions called a-quasi-concave is introduced
and it is proved that the convolution of two unimodal functions each having
some additional concavity properties belongs to this class. Other results
concerning the convolution of unimodal functions are also studied and the
extensions of some of them are also given in the paper.

1. Anderson [1], generalizing the concept of 1-dimensional unimodality due
to Khintchine [14], called the function f: R” — R}, (n = 1), unimodal if its upper
level sets

(1.1) A(f,u) == {x € R™ f(x) = u}
are convex for all u = 0, or, equivalently, if
(1.2) fOx + (1 = Ny) = min{f(x), f(y)}

forallx,y€E R"and0 <\ < 1.

In more recent literature these functions are called quasiconcave. In what
follows we shall use the latter name for these functions.

The function f: R” — R} is called symmetric if f(x) = f(—x) for all x € R".
The set A C R" is called symmetric if A = —A. The characteristic (indicator)
function of a set A is denoted x4. The convolution

(1.3) f=g(y):= J; f(x)g(y — x) dx, y €R",

of two quasiconcave (unimodal) functions f and g has been for many decades a
subject of intensive research.

In the 1-dimensional case (n = 1) the following three “classical” results had
been proved:

1. If both f and g are symmetric and quasiconcave, then f * g is quasiconcave
(Wintner [22]).

2. There is a nonsymmetric quasiconcave function f such that f * f is not
quasiconcave (Chung [3], see Feller [9] page 164).

3. Let f be quasiconcave. Then f * g is quasiconcave for all quasiconcave g if
and only if f is logconcave (Ibragimov [12]).

For higher dimensions the convolution of two symmetric quasiconcave func-
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tions need not be quasiconcave:

EXAMPLE. (Sherman [19]). Letf= 2 x4 + x5, where A := {x € R% | x,| <
1,| x| =1}and B:={x ER* | x,| =1, | xo| =5}. Then f * x4 is not quasiconcave. 0

First results for the general case n = 1 are due to Anderson [1] and Sherman
[19]. Namely, using Brunn-Minkowski inequality (see e.g. [10]) we can easily
prove:

LEMMA. (Sherman [19]). If A, B C R" are convex sets, then x4 * xg IS
quasiconcave. [

Using the obvious identity

(1.4) fgly)= J;z XA(fw) * Xaww(y) du dv,
this lemma easily implies:

THEOREM 1.1. ([1], [19]). Iff, g&: R" — R’ are symmetric and quasiconcave,
then

(1.5) f+80N\y) =f=*g(y)
foralye R"and 0 <A< 1.0

Using the identity (1.4) we can in fact easily prove the following extension of
this theorem.

THEOREM 1.2. Let f, g: R® — R’ be two quasiconcave functions such that their
translates f(x + a) and g(x + b) are symmetric functions of x for some a, b € R".
Then the condition

(1.6) frgla+bd)=1f=+g)

is sufficient and in the case a + b # 0 is also necessary for f * g to have the property
(1.5) forally € R" and 0 = \ < 1. (0 is the zero vector of R".) 0

Theorem 1.1 had been both sharpened and generalized by many authors ([19],
[8], [13]; see reviews in [6], [7] or [20]). In all results the symmetry about the
origin of both convolved functions had been always assumed. Theorem 1.2 shows
how far we can go with translations of the symmetric functions so that the
property of their convolution remained the same.

2. No symmetry assumptions are needed if we restrict ourselves to some
subclasses of quasiconcave functions. The subclasses come from the observation
that min{a, b} appearing on the right hand side of (1.2) is “at one end” of the
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following class of means. Let a, b = 0, —o < o < + ®, o # 0 and denote
fo if a-b=0
|Aa® + @ = NbY)Y* if a-b>0.

For a = —, 0, + we take limits to get: Mj(a, b) := a* - b'™*, M .(a, b) :=

minf{a, b}, M}«(a, b) := {0 if a - b = 0 and max{a, b} if a - b > 0}. M(a, b) is for

A, a, b fixed a nondecreasing function of @ on — © < o < + ® (see, e.g. [11]).
We call the function f: R® — R} a-concave, —© < a < +o, if

(2.2) fOx + (1 = Ny) = Mi(f(x), f(¥))

for all x, y € R” and 0 = A\ < 1. (Compare with a-unimodal functions of
Das Gupta [6]; see remarks in the next section.)
We call the function f: R* — R a-quasiconcave, —o < o < +0, if

(2.3) fx + (1 = Ny) = minfA“f(x), (1 = Nf(y)}
forallx,y€E R"and0 <=\ < 1. ‘

(2.1) M) (a, b) =

THEOREM 2.1. Let a + 8 = 0. The convolution of an «-concave function with
a B-concave one is

(A) (1/a + 1/8 + n)'-concave if —1/n < _aB_ < +ox,
a+f

(B) (1/a + 1/8 + n)-quasiconcave if —o < =-1/n. O

_ab
a+f

REMARK 2.1. Of course, we always assume that the functions in question are
such that their convolutions exist (say, both belong to L%R") N L'(R")).0

REMARK 2.2. Davidovich, Korenblum and Hacet [5] proved (A) for a = 8 =
0 and Borell [2] for @, 8 = 0. Das Gupta [6] announced (A) for the convolution
of an a-unimodal function with a B-unimodal one. Our class of a-concave
functions is more general than that of a-unimodal ones (see remarks in the next
section). We have to note that there is a misprint in Das Gupta’s paper: in [6]
he announced (A) under the condition o - 8 < 0 instead of & + 8 = 0. This
misprint can easily be corrected using his paper (use Theorem 4.1, [6] page 307
and property (3), [6] page 306). O

REMARK 2.3. The condition o + 8 = 0 is in a weaker sense also necessary for
(A) to hold. Namely, if (A) were true for « = 0 and a sequence of §;, i =
1, 2, ---, such that 8; =+« —, then taking limit, (A) would imply: (a) “The
convolution of a 0-concave function with a —c-concave (quasiconcave) one is
quasiconcave.” Similarly, assume that (A) holds for an infinite sequence of pairs
(a;, B:) such that a; < — §; and a; — — and 8; — + as i — +; taking the limit
case, we would get: (b) “If f is quasiconcave and K a convex set, then f * xx is
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1/n-concave”. Using the example of Sherman (Section 1) Das Gupta showed that
(a) cannot be true (see [6], page 308, 8th row from above). The same example
shows directly that neither (b) can be true. Instead of (b) a much weaker
statement is true, see Corollary 2.1 below. 00

The proof of Theorem 2.1 is based on the following two lemmas.

LEMMA 2.1. Leta,b,c,d=0and a + 3=0. Then
(2.4) M:(a, b) - Mj(c, d) = M +p (ac, bd). O
PROOF. Assumethata,b,c,d>0,0<A<1, —0o<aqa, <+, a - 870and

a+ 3>0.Denote p=(a+B)/B,q=(a+ B)/ayr=ap/(a+B), x=A\"Pa",y=
A u=(1—N)"Pb", v =(1— \)"d". Write the Hélder inequality:

( )x-y+u~vs(x”+u”)1/p~(y"+vq)1/q
2.5
if pg>1, 1/p+1/g=1,

and the reverse inequality if {0 <p<1,¢<0}or {0<¢g<1,p<0},1/p+1/qg=
1. The inequality (2.5) implies

(2.6) (x-y+u-v)/r=s@P+ur)/rr. (y?+ vV,

where r should be positive in the first case and negative in the reverse case. The
condition {p, ¢ > 1, r > 0} is equivalent to {«, 8 > 0} and conditions {0 <p < 1,
g<0,r<0lor{0<g<1,p<0,r<0}are equivalent to {a + 8>0, a - 3<0}.
Taking limits we can prove (2.4) for the remaining cases. We note that (2.4) is-
in general not true if o + 3 < 0.0

LEMMA 2.2. ([4]). Letf, g: R" — R’ be Borel-measurable functions. Let 0 <
A <1, —0 < y < 4 and denote h(t) := ess-SUPs+a-ry=:M (f(x), 8(y)). Then

My, + "”(J;.. f(x) dx, J;" g(x) dx), if —=1/n <~ < 4,
2.7 J; h(t) dt = [ |
minl)\"“/7 . J,:.,. f(x) dx, (1 — A"+ . J;.. g(x) dxl

if —o=sy=<-1/n. 0O
PROOF. See [4] Theorem 3.1, Theorem 3.3 and Remark on page 398.0

PRrOOF OF THEOREM 2.1. Let f be a-concave, g be 8-concave. Then
(2.8) f() = suprera-ny=tMi(f(x), f(¥)),
(290 g+ (1= Mo —1t) = supara-ry=Mji(g(u — x), gv — ¥)).

The product of suprema is not smaller than the supremum of product of means,
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so assuming a + 8 = 0 and using Lemma 2.1 we get
f+=gu+ (1 —MNv)

(2.10)
= J; SUPse+-ny=e M5 (f(x)g8(u — 1), f(y)g(v — ¥)) dt,

where v = af/(a + B).
Applying Lemma 2.2 to (2.10) we get the theorem. [

It is clear that the class of +o-concave functions coincides with the class
{xx, K convex sets}. So we have

COROLLARY 2.1. If K C R" is convex and f: R" — R is quasiconcave, then
f * xk is n-quasiconcave. [

PROOF. xk is +o%-concave, f is —%-concave. Taking the limit case of (B) of
the theorem, i.e. letting tend o« — —, 3 — +» so that « + 8 — 0+ and
aB/(a + B) — —o, we get the result. O

3. Das Gupta [6] called the nonnegative function f defifed on the open convex
set W C R" a-unimodal (see [6], page 304) if: for —o = « =< 0, f fulfills the
condition (2.2) forallx,y € Wand 0 = A =< 1; for 0 < o < 4, f*is concave; and
for a = 4+, f(Ax + (1 — A)y) = max{f(x), f(y)} forallx,y € Wand0 =\ = 1.
It is clear that for arbitrary W any a-unimodal function is a-concave (after
extending its domain to R" by f = 0 on R"\W). On the other hand, the support
supp f := {x € R™ f(x) > 0} of any a-concave function is clearly convex, but not
necessarily open (take e.g. xk, K convex nonopen). Borel [2] defined his functions
similarly. We see that our Theorem 2.1 is an extension of their results also in
this sense.

Olshen and Savage [18] called the function f: R® — R} a-unimodal, — <
a < 4o, if

3.1) fx) = A7 (x)

for all x € R" and 0 < A =< 1. For these functions we have ([18]):
The convolution of an a-unimodal function with a 8-unimodal one is
o + B-unimodal. O

An easy corollary of this result is

COROLLARY 3.1. If f and g are quasiconcave functions such that f(0) = f(x),
g(0) = g(x) for all x € R", then f * g is 2n-unimodal. 0

The condition of n-quasiconcavity principally differs from the conditions (3.1)
for « = n and « = 2n (n-unimodality and 2n-unimodality). So Corollary 2.1
conveys new information also in the cases treated by Theorem 1.1 (K, f are
symmetric) and by Corollary 3.1 (6 € K, f(§) = f(x) V x € R"). The corollary
‘throws new light on the example in Section 1 as well. It seems to be interesting
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also in the 1-dimensional case. The comparison of a + n-unimodality ((3.1) for
a := a + n) with a-quasiconcavity is also illustrative using A(f, u): fis a + n-
unimodal iff NA(f, u) CA(f, \*u) forall u=0and 0 < \ < 1; f is a-quasiconcave
if and only if M(f, u) + (1 — NA(f, u) C A(f, min{A“u, (1 — N)“u}) for all
u=0and0 < \ <1 (algebraic sum of sets).
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