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RANDOMLY STARTED SIGNALS WITH WHITE NOISE!

BY BURGESS DAVIS AND ITREL MONROE

Purdue University and University of Arkansas

It is shown that if B(t), t = 0, is a Wiener process, U is an independent
random variable uniformly distributed on (0, 1), and ¢ is a constant, then the
distribution of B(t) + ev(t — U)*, 0 < t < 1, is absolutely continuous with
respect to Wiener measure on C[0, 1] if 0 < ¢ < 2, and singular with respect
to this measure if ¢ > V8.

1. Introduction. Let C[0, ©) be the space of continuous functions on
[0, =), let & be the Borel subsets of C[0, ) for the topology of uniform
convergence on compact sets, and let u be Wiener measure on &% For ¢t = 0,
define the random variable B(¢) on (C[0, »), % u) by B(t)(f) = f(t), so that
B(t), t=0, is a standard Wiener process. Let U be a random variable independent
of B(t), t = 0, and uniformly distributed in (0, 1). (Formally, we must enlarge
our probability space to permit such a U.) For a positive constant & define W;(t),
t=0, by

t
Wi(t) = B(t) + f 2N s—U)" I(U=ss=<U+1)ds,
0

where I denotes the indicator function, and let v; be the distribution of W;. We
prove

THEOREM 1. If 0 < § < 2, v, is absolutely continuous with respect to p. If
8 > V8, v; is singular with respect to u.

We do not know what happens for 6 € [2, v8]. We remark that Theorem 1 is
essentially equivalent to the statement that the distribution of B(t) +
0v(t — U)*, 0 =t =1, is absolutely continuous with respect to Wiener measure
on C[0, 1] if 0 < § < 2, and singular with respect to this measure if > V8. Also,
notice that it is easy to show that, for a fixed number a and any constant ¢ > 0,
the distribution % of the process

y(t) = B(t) + f 2 (s—a)yY(a<s=<a+1)ds
0

is singular with respect to u. This can be done either using Girsanov’s formula,
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which will be stated in Section 3, or by showing that if
F = {f € C[0, ®): limnon™ 2225 (Fla + 27%) —f(a + 27**V))22 > 0},

then u(F) = 0 while 7(F) = 1, both statements holding by the strong law of
large numbers for iid random variables.
The result ([1]) that, for constant ¢, the probability

P, = P(3¢t: B(t + h) — B(t) > evh for all h € (0, 1))

equals zero for ¢ > 1, and equals one if ¢ < 1, has somewhat the same flavor as
Theorem 1, although the proofs of these results are only related in that both the
proof that P, = 0 if ¢ > 1, and the proof that v; is singular with respect to u if é
> /8, have a common ancestor in Dvoretzky’s argument in [2].

2. Singularity. Let ¢ > v8. The measure v, will be shown to be singular
with respect to u by exhibiting a set A, € & such that v,(A.) =1 and u(4,) =
0. Put #(s) = [2(s — 1)In s]*/2/(s"/2 — 1). Then ¥(s) decreases to V8 as s decreases
to 1. Let r(e) = r > 1 satisfy v8 < @(r) <, put 8 = ¢2/%%(r) > 1 and a =
(8 + 1)/2. For integers n = 1 and 0 < k < [r"], where [ ] is the greatest integer
function, define the functions @, , on C[0, ©) by

Qun(f) = n72 Bhcy (7™ = r) V(e 4 r7™) = f(RrT 4 7MY,
and put
Sa(f) = I(maxosk=(mQkn(f) = (2na In r)'?).
The set A, is defined by
A, = {f: lim sup,—.=Sa(f) = 1}.

To show u(A,) = 0, we note that, considered as a random variable on
(C[0, ®), Z u), Qkn is n™? times the sum of n independent standard normal
random variables, so that @, , itself has a standard normal distribution. Thus if

d(x) = (2m)~ V2 J: e 2 dt,
p(Sa(f) = 1) = ([r"] + 1)1 — @[(2na In r)*/%)
< 2r"exp(—[(2na In r)*?%/2)
= 27'"(1_2“).

Since a > 1, Ypoy u(Sn(f) =1) < o, s0 u(A,) = 0.
Now let k(U, n) = k be that integer satisfying kr™" = U < (k + 1)r " The
conditional distribution of

(r~m* — ™) TVAW (ke + rT™) — W(kr + 1))
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given U = u is normal with variance 1 and mean equal to

kg pmmtl
(r—m+1 _ r—m)—1/2 f 82_1(8 _ u)—1/2 ds
ki

r P rm
kr N4 pmm+l
> (rmtl — pm)Tl2 f e2 Y (s — hr)"V2 ds
kr— 4 pm
=e(r— 1) V3(r2 - 1)
= (28 In r)"?,
so that conditioned on U = u
Y=n232_ (r~™ — ™)y V2 (Wo(kr™ + r ™) — W(kr™ +1r ™))

is normal with variance 1 and mean exceeding (2n8 In r)”2 In partic-
ular, P(Y > (2na In r)Y?|U = u) = ¥[(2nB In r)*? — (2na In r)¥?] = q,, so
v.{f € C[0, ®): S, (f) = 1} = q,,. Since ¢, — 1 as n — o we get v.(A,) = 1.

3. Absolute continuity. If f(s), s = 0, is a measurable function such that
[ f%(s) ds < », Girsanov’s formula (see [3]) gives that if p is the distribution of
the process B(t) + [§ f(s) ds, t = 0, then the Radon Nikodym derivative of p
with respect to u is

-zll—” = exp(f f(s) dB(s) — lf f(s) d8>-
u o 2 Jo

We let EX stand for [cjo.«) Xdu. Of course, E(dp/du) = 1.
For an integer n > 1 and a constant & > 0 put a,(v, t, ) = an(v, t) =
27 v—t)I(t+n'sv=t+1). Let

Wi(t) = B(t) + J; an(s, U) ds,

and let v} be the distribution of W3. We will show that, for 0 < 6 < 2,
E(dv}/du)® = M; < »,

which gives that the random variables dvy}/du are uniformly integrable with
respect to u. Since | Wi(t) — Ws(t) | < 6/vn — 0 as n — o, this implies that v,
is absolutely continuous with respect to u if 0 < 6 < 2.

We have \

E\—) =E exp an(v, t) dB(v) — = ar(v, t) dv) dt
du o 0 2 Jo
e[ [ exp( [ (e, ) + catos o) aBw)
0 0 0

- % J; (a2(v, t) + (v, 5)) dv) ds dt
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1 1 o0
= f f E exp(f (an(v, t) + an(v, s)) dB(v)
0 0 0

- é J; (aZ(v, t) + a2(v, 8)) dv) ds dt

1 1 o0
= f f exp f o, (v, t)an(v, s) dv
0 0 0

- E eXp(J; (an (v, t) + an(v, 5)) dB(v)

1

- = f (an(v, t) + an(v, 5))?2 dv) ds dt
2 Jo

1 1 0
= f f exp(f an (v, t)a, (v, s) dv) ds dt
0 0 0
1 1 52 s+1
=2 J(: f exP(Z f RCERICED dv) ds dt.

Nowifs<t<s+1,

s+l s+1
f L= =—91"dv = f [(v = t)(v — 8)]"V2 dv

=In[2 — (t — s) + 2V1 = (t — 5))/(t — 5)]
=< In[4/(¢ — 9)],
so that E(dy2/du)2 <2 [} [} (4/(t —5))*"/* dt ds < 0 if 0 < § < 2.
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