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TRIVARIATE DENSITY OF BROWNIAN MOTION, ITS LOCAL
AND OCCUPATION TIMES, WITH APPLICATION TO
STOCHASTIC CONTROL

BY I0ANNIS KARATZAS! AND STEVEN E. SHREVE?
Columbia University and Carnegie-Mellon University

We compute the joint density of Brownian motion, its local time at the
origin, and its occupation time of [0, ). Two derivations of the main result
are offered; one is computational, whereas the other uses some of the deep
properties of Brownian local time. We use the result to compute the transition
probabilities of the optimal process in a stochastic control problem.

1. Introduction. We consider a Brownian motion process {W;, Z;; t = 0},
its local time at the origin.

L, := lim,jo(4¢) 'meas{0 < s < t: —e < W, < ¢}
= lim,;o(2¢) 'measf0 < s < t: 0 < W, <e¢}, t=0,

and the occupation time I'; = meas{0 < s < t: W, = 0}, t = 0, of the positive half-
line. For fixed ¢t > 0, we shall compute the joint density of the triple (W, L., T).
Our principal result provides the desired density as

Po{W, € da, L, € db, T; € dr}

(1.1)

[ b(b—a) [_ b (b—a)?
a2t — 1) exp[ DY P— da db dr,
(1.2) | a<0, b>0, 0<r<t¢
| b+ a b2 (b + )
T2t — 1)32 pl: 20t — 1) o da db dr,
~ a>0’ b>0, O<T<t

In Section 2 we present a simple but heavily computational derivation of this
result based on the Feynman-Kac formula, and in Section 3 we sketch a
probabilistic approach based on a formula of D. Williams (1969). The second
approach serves as a good illustration of the philosophy “that calculations can
be done—and very effectively at that—via the modern ‘abstract’ theory.” (Wil-

liams, 1979).
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820 KARATZAS AND SHREVE

We note that when a <0, (1.2) agrees with the joint density of (W,, maxo<s<:Ws,
arg maxos.=: W) (Lévy, 1948, Shepp, 1979). This can be explained by a path
decomposition argument which is the subject of a forthcoming paper.

In Section 4 we generalize (1.2) to include the case of nonzero initial condition.
In Section 5 we use these results and the Girsanov transformation to compute
the transition probabilities of a Brownian motion whose drift switches between
two values as the process crosses a threshold. Such .a diffusion arises as the
optimal state trajectory in a control problem treated by Benes, Shepp and
Witsenhausen (1980).

The remainder of this section is devoted to certain remarks and corollaries
regarding the marginal distributions obtainable from (1.2). First, let us note that
it suffices to compute the joint density in (1.2) for a > 0 (or a < 0). This follows
from the observation that, with

It =t—-T,=meas{0 =s=<t: W, <0}, t=0,

the triples (W,, L;, T',) and (—W,, L., T;) are equivalent in law.
To simplify notation, we introduce

(1.3) 4y = 2L, = lim,jo(2¢) 'meas{0 = s < t: | W,| < e, t=0,

which is the local time at zero of the reflected Brownian motion {| W, |; t = 0}.
Integrating out 7 in (1.2), we obtain the joint distribution of Brownian motion
and the local time /; at zero,

Py{W, € da, #, € db}

(1.4) la| + b [ (|a|+b)2J
=18 70 |- LT fdadb, a€ER, b>0,
Vort? P 2t

whence the joint distribution of reflected Brownian motion and its local time at
zero (Itd and McKean, 1974, page 45)

Po{| W, | € da, #, € db}

(1.5) _2atd) [_ (a + b)?

]dadb, a>0, b>0.
ort® 2t

Integrating out a and b in (1.2), we recover P. Lévy’s second arc-sine law (Lévy,
1965, I1t6 and McKean, 1974), which says that the density of the Brownian
occupatlon time is

dr

(1.6) Py{T', € dr} = W_T(__«/-—tTT—;’ 0<r<Lt.
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The joint density of local and occupation times turns out to be
PO{/t S db, I‘t (S dT}
(1.7) _ bt exp(=tb*/87(t — 7))
4732t — 7)%?

a result obtained independently by Perkins (1982, Theorem 10c) using down-
crossings.

dbdr, b>0, 0<7<t,

2. Analytic derivation of the trivariate density. We begin by comput-
ing a Laplace transform related to the desired density.

LEMMA 2.1. Let «, 8, v and a be positive. Then

Eo L l[a,w)(Wt)exp[—at - ﬁl"t - 'Y/t] dt

2.1
@1 _ 2 exp(—av2(a + B))
V2(a + B)(2y + V2a + V2(a + B))

PROOF. Define, for each x € R,
u(x) = E, f 1ia,) (W) exp[—at — B meas{0 < s < t: W, = 0} — v/] dt.
0

According to the Feynman-Kac formula for elastic Brownian motion (It6 and
McKean, 1974, Section 2.3 and Knight, 1981, Theorem 7.4.3), u is bounded and
continuous, C! on R\{0}, C% on R\{0, a}, and satisfies

(a + Bl (®))u(x) = Yau"(x) + lgo(x), x € R\{0, a},
u’(04+) — u’(0—) = 2yu(0).

Thus, u has the form

A exp(xv2a), ' x=<0
u(x) = B exp(xv2(a + B8)) + C exp(—xv2(a + 8)), 0=<x =g,
D exp(—(x — a)V2(a + B)) + FIB,- x=a,

where the constants A, B, C and D are determined by the above conditions.
Solving for A, we obtain (2.1).0

The expression in (2.1) is the Laplace transform of the density (if it exists) of
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the pair (I';, Z;) on the event { W, = a}. We claim this density is given by
PO{W;Z a, /te db, I‘te dT}
(b/2) P_wMZ_w+ww

= 2w (t — 7)%% 12 exp 2t — 7) 27

(2.2) ] db dr,

a,b>0, 0<7<t.

The verification of this claim, given in Lemma 2.2, consists of showing that this
function has the Laplace transform computed in Lemma 2.1.

LEMMA 2.2. We have

P F e
2w (t — 7)%271/2

P(Wﬁ_w+mﬁ
- &P 2t — 1) 27
_ 2 exp(—av2(a + B))
Vo(a + )2y + vV2a + V2(a + B))

(2.3) ] db dr dt

PrROOF. We recall the Laplace transforms

© 1 1
(2.4) f e™™ exp(—x2%/2t) dt = —— exp(—| x| v2\), A >0,
A s p(—x*/ o p(—|x]|

T e 1yl
25) f e 2L ovn(—y2/20) dt = exp(—|y| v2X), A > 0.
| o p P y*/ p(—1y|

Equation (2.5) implies that for 7 > 0,

J‘“’ e S A— exp[—— y ] dt
(2.6) J: Vor(t — 7)3 2(t — 1)
= exp(—ar — yv2a); a,y>0.

Reversing the order of integration, we can now write the left-hand side of (2.3)

—at=fir=p (b/2) (b/2)*  (a+ b/2)°
f f f ’ b[21r(t — 7)%%; 1/2] exp[— 2t — 7) h 27 ] dt dr db

_ _ 1 (a + b/2)2 <b> ]
= (a+B)7—vb - — (=
j(: J(; e o exp[ = 2 v2a| dr db

oL b s _ (P
J; e NPT exp[ <a + 2) 2(a + B) <2)~/ﬂ] db
_ 2 exp(—av2(a + 8))

Vo(a + B)(2y + V2a + V2(a + B))
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PROPOSITION 2.3. The joint density of (W,, L;, T;) is given by (1.2).

Proor. Differentiating (2.2) with respect to a, we obtain
Po{Wt (S da, /t (S db, Pt (S dT}
_ (b/2)(a + b/2) [ (b/2? (a+ b/2)”

T 2n(t — 7)3%%2 _2(t —-7) 27 .
a>0, b>0, 0<7<t.

Replacing 7, by 2L, b/2 by b, and db/2 by db, we obtain (1.2) for a > 0. For a <
0, we use symmetry as discussed in Section 1 to derive (1.2).0

] da db dr,

3. Probabilistic derivation of the triviariate density. In this section
we sketch a probabilistic derivation of (1.2). The details of the proof appear in
Karatzas and Shreve (1983).

Let us consider the inverse occupation time

(8.1) I''(r):=inf{t = 0; T, =7}, t=0.

We recall from Ikeda and Watanabe (1981), pages 122-123, that the process
W*(r) := W(I'"(r)) is a reflected Brownian motion with local time L*(7) :=
L(I'*(7)). According to a formula of D. Williams (1969) (see also McKean, 1975,
page 103),

(3.2)  Eolexp(—=AT7Y(r)) | W*(s), 0 < o < 7} = exp(—A7 — v2AL*(1)), A > 0.

We have the joint density of (W*(7), L*(r)) from (1.5), so we are empowered to
compute the density

Po{W*(7) € da, L*(7) € db, T"\(7) E dt}

__bla+d) b* (a + b)*
(3.3) = G = exp[ 2 =7 o da db dt,

a>0, b>0, t>r.

To complete the derivation of (1.2) for a > 0, it suffices to prove the plausible
equation
ipogw*(r) € da, L*(r) € db, T"X(r) € dt}

1

= PulW(t) € da, L(e) € db, T(t) € dr),

a>0, b>0, 0<7<t

(3.4)

4. The trivariate density with nonzero initial condition. In this sec-
tion we compute P.{W; € dz, L; € dy, T, € dr} from (1.2) for x # 0. We shall use
the resulting formula to obtain the transition density in Section 5.

Define the passage time

(4.1) T, := inf{t = 0: ut + W, = 0},
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and set (cf. Karlin and Taylor, 1975)
h(s; x, u) ds := P{T, € ds}

(4.2) x| [ (x + us)z]
= exp| — ds; s>0, x,u €ER.
Vorsd P 2s K .

Because the sum of independent passage times is a passage time, we have
(4.3) h(-5 %1 + X2, u) = B(+; 21, ) * h(-5 29, p); 012, >0, pER
In terms of h, (1.2) can be written as

Po{W, E da, L, € db, T, € d7}

“4) _ Joh(r; b, 0h(t —7;b—a,0), a<0, b>0, 0<7<t.
‘ " |2h(t — 735, 0h(r; b+ a,0), a>0, b>0, 0<7<t

The strong Markov property implies that for x = 0, a < 0,
Px{Wt (S da, Lt (S db, Ft (S dT}
= Px{Wt (S da, Lt (S db, Ft (S dT, TO = T}

= f Px{Wt (S da, Lt (S db, I‘t (S dTlT() = S}Px{To (S ds}
0
4.5) = f Po{W,, € da, L,_, € db, T, € dr — s|P.{T} E ds}
0

=2 f h(r — s; b, 0)h(t — 7; b — a, 0)h(s; x, 0) ds da db dr.
0

= 2h(r; b + x, O)h(t — 7; b — a, 0) da db dr;
x=0, a<0, b>0, 0<7<{,
where the last equality uses (4.3). A similar computation yields
P{W.Eda, L, € db, T, € dr}
(4.6) = 2h(t — 7; b, 0)h(r; b + a + x, 0) da db dr;
o x=0, a>0, b>0, 0<7<t.
In the latter case, we also have
Pi{W.Eda,L,=0,T,=t} = P,{W,E da, T, = t}

(4.7) 1 — 2)2 2
= ﬁ .[exp(— (e 2tx) > - exp(— (a-;-—tx)ﬂ da, x=0, a>0.

Equations (4.5)-(4.7) characterize the distribution of (W,, L, T;) under P,.

5. The optimal transition density in a stochastic control prob-
lem. Benes, Shepp and Witsenhausen (1980) have treated the following sto-
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chastic control problem: to choose a nonanticipative control process u; which
minimizes the expected discounted cost

E, f e™¢} dt,
0

t
E,=x+fusds+W¢, tZO, HoSutSGI, tZO,
0

subject to

where {W;, Z; t = 0} is a Brownian motion on (2, % P). Benes, et al. (1980)
show that the optimal control law is given by u} = 6(¢,), t = 0, where

_ 01, x<6’
(5.1) 0(x) = {00’ £> 0

and

6= (v0§ + 2a + 01)_1 - (V0(2) + 2a — 00)_1.

They also compute the optimal expected cost
v(x) = E, f e X2 dt
0

corresponding to the optimally controlled diffusion X, the solution of the sto-
chastic differential equation with two-valued drift

(5.2) dX, = 0(X;) dt + dW,, Xo=zx,
and they calculate the Laplace transform of the transition density
pi(x, 2) dz = P.{X, € dz}

in the case & = 0. In the computation of this transition density, the switching
point 6 need not be related to 6, and 6,. The transition density for other values
of § is easily obtained from the expression corresponding to é§ = 0 by translation.

The purpose of this section is to use the joint distribution derived in the
previous section to compute the transition density p.(x, z) above as explicitly as
possible. We set 6 = 0 throughout.

In this section we set Q@ = C[0, »), we take W,: @ — R to be the evaluation
mapping Wi (w) = w(t), we take Z; to be the smallest s-algebra which makes W,
measurable for 0 < s <t, & := V»0.%, and we denote by P, the Wiener measure
on (Q, %) for which P,{W, = x} = 1. We write E, to denote the expectation
corresponding to P,.

For x € R, define

t t '
(5.3) K, ) = exp[ f 0(W,) dW, — % f 0%(W,) du]
and with A € %, consider the probability measure:

This definition admits a unique extension to a measure P, on (Q, ), and,



826 KARATZAS AND SHREVE

qccording to Girsanov’s Theorem (Liptser and Shiryayev, 1977, Chapter 6), under
P, the process {W,, #; t = 0} can be regarded as a solution to (5.2). In particular,

(5.5) pi(x, 2) = PAW, € d2} = E{1iwea$(0, t)}.

In order to compute with (5.5), we must find a convenient representation for
¢(0, t). To do this, we define

. : _ )bz, z=<0,
O(z) - L 0(3’) dy - {002’ z=>0.

A formal application of It6’s lemma to ©(W,) results in
t
o(W,) — 0(W,) = J(: 0(W.) dW, + (6o — 61)L,,
and this step can be rigorously justified by the argument used to prove Tanaka’s

formula (McKean (1969), Section 3.8, or Ikeda and Watanabe (1981), page 114).
On the other hand,

t
f 0%(W,) du = 6%t + (83 — 6%)T..
0

In light of these facts, we can rewrite (5.5) as

pi(x, 2) dz = exp[O(z) — O(x) — Y0%t]

(5.6) . f f exp[(lh — 6o)b + 1 03 — 0%)7] ,
)} 0 2

. PAW, € dz, L, € db, T, € dr},

and we can use (4.5)-(4.7) to evaluate the right-hand side of (5.6). After some
manipulation, this yields

( 0 t
2 f f eXh(t — 7; b — 2z, 0,)h(r; x + b, 6,) dr db,
0 0
x=20, 2=<0,

0 t .

2 f f 20+ p(t — 7. b, 0,)h(r; x + b + 2, 6,) dr db
0 0

(5.7) Dpe(x, 2) =4

L L] [_(x-—z+00t)2]

exp|
V2t 1 2t

- 2
_ exp[_ <__+_5£_0L> _ 200x]},

L x=0, 2z>0.

Let us now invoke explicitly the dependence on 6, and 6, by writing
pi(x, z; 0o, 0;) rather than p,(x, z). The symmetry of Brownian motion results in
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the relation
(5.8) P, 2; 8o, 01) = pi(—x, —2; —0,, —bo),
and so for x < 0, the transition density can be obtained from (5.7) and (5.8). We
summarize this discussion with a proposition.

PROPOSITION 5.1. Let 0 be given by (5.1), where 6 is any real number. Let X,
be the solution to the stochastic differential equation

with initial condition Xo=x + 6. If x = 0, then P,.s{X, € dz + 6}; 2 €ER, t >0, is
given by (5.7). If x < 0, then P,.{X; € dz + 6}; z € R, t > 0 is given by the right-
hand side of (5.7) with x, z, 6y, 0, replaced by —x, — z, —0, and —0,, respectively.

SPECIAL CASE. —f6, = 6; = 60, 6 = 0. In this case, the integral term in the
second part of (5.7) becomes

- t
2 f f e®C It — 7; b, 0)h(r; x + b + 2z, —6) dr db
0 0

o t
=2 f f e 2 h(t — 7; b, —=0)h(r; x + b + 2, —0) d7 db
0 0

=2 f e Ph(t; x + 2b + 2, —0) db
0

® — 6t)?
1 e " f v exp[— u] dv
2 t3 x+z 2t

™

@ g2
Lo f (v - 0t)exp[— M] dv
x+z

7

2t

A f B [ (v — at)z]
e % exp|———— | dv
Vot x+z 2t

_ 1 exp[_ (x+z+00° 2,,x]
Vort -2t

A fm [ (v = 0t)2]
e % exp| ————— | dv.
V2wt xtz 2t

It follows from (5.7) and this calculation that in this special case,
i = L o] - =2=0]
o 27t l P 2t

(59) Al i _ 2
+ e 2% f exp[— (v_ﬁ_t_)_] dv} ,

+2 2t

N

B

o
@l

+

x=0, 2>0.
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A similar calculation applied to the first integral in (5.7) reveals

1 J _(x—z+6’t)2
pix, 2) = o lexp[%x o ]

(5.10) ® — ap2
+ ge? f exp[— (v_2t()ﬁ] dv} ,

x=0, z2=<0.

When 6 = 1, we recover the expressions obtained by Shreve (1981), pages
476-471.
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