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STRONG APPROXIMATION OF EXTENDED RENEWAL
PROCESSES

By LAjos HORVATH
Szeged University

We develop a strong approximation approach to extended multidimen-
sional renewal theory. The consequences of this approximation are a Bahadur-
Kiefer type representation of the renewal process in terms of partial sums,
Strassen and Chung type laws of the iterated logarithm. We also give a
characterization of the renewal process by four classes of deterministic curves
in the sense of Révész (1982). We generalize our results to the case of non-
independent and/or nonidentically distributed random vectors.

1. Introduction. Let X = (X®, ..., X@¥), {X,, n =1} be a sequence of
independent identically distributed random vectors (i.i.d.r.v’s) in R% d = 1 with
expectation u, defined on some probability space (2, o P), and having finite
vth moments:

() E|XY)*<w,1=<ix=<d,for some v > 2.
Let h: R? — R be a function which satisfies the following regularity conditions:
(ii) his homogeneous of degree one, i.e. for all x € R%, A\ = 0, h(Ax) = Ah(x),
(iii) h(u) >0
(iv) h has continuous partial derivatives of the second order in a neighbour-
hood of u.

The partial sums of the first [t] random vectors are denoted by S(t) =
Y x;, where [t] is the integer part of t. Set S(0) = 0. We define the extended
renewal process {N(t), t = 0} by

N(t) = min{k: h(S(k)) > tk?}, 0<p<1,

where N(t) = o if no such k exists. The continuity of A in u and Kolmogorov’s
law of the large numbers imply that -

(1.1) lim,_.h ((1/n) S(n)) = h(p) as.,
and by the condition (ii) we get that
lim, ,.h(n™S(n)) = as., 0=p<l1.

So we obtained that the extended renewal process is well defined with probability
one, i.e., P{N(t) =} =0,t= 0.

Of course, (ii) and (iii) imply in general that u # (0, .- -, 0). If h is any norm
inducing the Euclidean topology in R then the conditions (ii) and (iii) are
automatically satisfied and (iv) usually places a condition on the expectation
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vector u = EX only. In particular, if
h(x) = (TL x)Y? or h(x) = Tk x|, x = (x4, - -+, %a)

then (iv) is satisfied if and only if the components of u are all different from 0.
If h(x) = max;;<q4| x;|, the L. norm, we find that (iv) is satisfied if and only if
the components of u are different from each other and from 0. In these cases
N(t) denotes the instant when the d-dimensional random walk leaves for the
first time the sphere of radius ¢ about the point O for the norm h.

Instead of condition (ii) we could assume that h is homogeneous of degree «,
i.e. for all x € R% \ = 0, h(Ax) = A\*h(x), but this is of course nothing more than
the case when h is homogeneous of degree one.

Up to the present time, the case p > 0 has not been discussed when d > 1.
Farrell (1966) proved the ordinary central limit theorem for the process N(t),
(d = 1, p = 0) and Bickel and Yahav (1965) generalized some elementary renewal
theorems for planar walks (d = 2, p = 0). A functional central limit theorem for
the process N(t) (d = 1, p = 0) was proved by Kennedy (1971) assuming instead
of (iv) that h has continuous partial derivatives of the first order on the whole
R°. An elementary calculation shows that Kennedy’s conditions imply that
h(x) = 3%, ¢9%;, x = (x4, -+, xq), where ¢, ..., ¢c'¥ are constants. Hence
Kennedy’s h function cannot cover any norm in R%. When d = 1 and p > 0 then
it follows from (iv) that h(x) = cx, where c is a positive constant. This case (h(x)
= x, 0 < p <1) was considered by Gut (1972, 1975) who proved functional central
limit theorems for extended renewal processes of this special type.

The main result of this paper is a strong approximation of the process

Z(t) = (t/h(u))* = N(t), ¢g=1-p.

This result will be a consequence of the best approximation of the function of
partial sums

Y(t) = h(S(t)) — th(p).

The extended renewal process N(t) is based on the weighted partial sums k™ "S(k)
and our approach to the approximation of Z requires the study of the asymptotic
properties of the process Y defined by

Y(t) = (R(S(t))/tPh(u))¥e — ¢.

We approximate Z, Y and Y by three Gaussian processes which are constructed
from the same Wiener process by time-transformations and prove that the rates
of these approximations cannot be improved when v = 4. Consequences of the
main theorem are functional and Chung-type laws of iterated logarithm,
Bahadur-Kiefer type representation of the extended renewal process in terms of
partial sums, and the characterization of the renewal process by four classes of
deterministic curves in the sense of Révész (1982).

Throughout this paper | x| = maxi<;<q| %:|, X = (x4, -+, x4) denotes the
maximum norm in R% The transpose of a row-vector x is a column-vector
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denoted by x”. We use the abbreviations

£n =as. 0(a(n))
and

£n =as. 0(b(n))
where {£,, a(n), b(n), n = 1} are sequences of random variables, to mean that

lim, £./a(n) =0 as.
and
P{lim sup, | £n |/ b(n)| = o} = 0

respectively. We say that a(n) is not greater than b(n) almost surely (a(n) <,
b(n)), if for almost all w € Q there is an integer ny = ny(w) such that a(n) < b(n)
for n = n,.

2. Strong approximation of the function of partial sums. The func-
tion A has continuous derivations in u, and setting

Vh(ﬂ) = (ah/aXh trty ah/aXd)|x=m

the random variable VA (x)X” has bounded »th moment under condition (i). The
second moment of VA(u)(X — r)7 will be denoted by ¢ The following theorem
is a direct generalization of the celebrated results of Komlos, Major and Tusnady
(1975, 1976) and Major (1976) and coincides with them when d = 1 and h(x) =
x.

THEOREM 2.1. If the underlying probability space (Q, &7, P) is rich enough we
can define a Wiener process {W (t), t = 0} on it such that

Suposi=nr| Y(t) — e W(t)| =as 0(n'”)
for any T > 0, provided that conditions (i) and (ii) and (iv) are satisfied.
PROOF. The random variables {Vh(u) (X, —u)”, n =1} are i.i.d. real random
variables having expectation zero and finite »th moment. It follows from Komloés,

Major and Tusnady (1975, 1976) and Major (1976) (cf. Theorem 2.6.3 in Csorgd
and Révész, 1981) that there is a Wiener process {W(t), t = 0} such that

(2.1) suposi<nr| S VR(p)(Xi — p)7 — e W(t)| =as. 0(n'”?).

Let 6 denote a positive number such that the sphere of radius § about u belongs
to the neighborhood of u defined in (iv). Using the Kolmogorov’s law of large
numbers we obtain that for almost all w € Q there is an integer k, = ko(w) such
that

(2.2) I&7'S(k) — ull < 6/2,
if k = ko. We divide the interval [0, nt] into two parts with the random point k.
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A two-term Taylor expansion shows that
SuPose=ne| Y(2) — o W(2)|
< SUPost=ky | R(S(t)) — th(r) + suposisk,o | W(t)|
+ SUPkesi<nr| VR(R) (S() — th(w)T = s W(¢)|

+ SUPky<t=<nt| V2h(E) % (S(t) — th(w)T(S(t) — th(w)T]

=ap+ -+ Ay,

where & = £(t) is a random point satisfying
(2.3) 1€@) —pll < 1t7'S(t) — ull, ifko=<t=Tn
The random variable k, is finite almost surely and therefore we get

Qin < MaXi<p<ky| K(S(R))| + koh(n) =as O(1)
and

Q2n = 0 SUPosi=k | W(t)| =as. O(1).
The construction of W in (2.1) implies that
@3 =as. 0(n').

Using (2.2) and (2.3) we obtain that

0 1 0 .
(HOEN S—+—<l|ul| +—>, if ko <t < nT.
2 n\ 2

If n = (2/6) || e || + 1, then £ is an element of the neighbourhood of u defined in
(iv) and therefore

0h(x)

m =.s 0(1).

(2.4) maxi<;,j=dSUPky=t=nT

x=§

By the condition (i) we can use the law of the iterated logarithm and an easy
computation shows that

max<e=ta | K28 (k) — k2 || =as. O((log log n)'/?)
and so we get
(2.5) supi<i<nrll 7/%8(t) — tV2p || =as O((log log n)'?).
Combining (2.4) and (2.5) we obtain that
@4n =as. O((log log n))

and the theorem is proved.
Theorem 2.1 implies, among others, that under the conditions (i), (ii) and (iv)
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we have
(2.6) lim sup,_.»(2Tn log log n)~2 max,<x<nr| h(S(k)) — kh(u)| = ¢ a.s.
The corresponding strong approximation of Y is also a consequence of Theorem
2.1.

THEOREM 2.2. On the probability space of Theorem 2.1 we have that

Supo<e<nr| Y(t) — W(t)| =as 0(n'”)

h( )
N\
for any T > 0, provided that conditions (i)-(iv) are satisfied.

PrOOF. Using (1.1) we obtain that for almost all w € Q there is an integer
ko = ko(w) such that

- 1_hSk) _3

27 kh(p) ~— 2 ‘
if k = ko. The law of the iterated logarithm proved in (2.6) implies that
(2.8) max;<k=nrk | R(S(k)) — kh(p)| =a. O((log log n)’?).

As we did in the proof of Theorem 2.1, we divide [0, nT'] into two parts with the
random point ko and use a two-term Taylor expansion:

SUPosc<nr| Y(t) — W)

h()

(h<s<t>))”" _, h
tPh(n)
h(S(t))

+ SUPost<k, 5 h( ) | W(t)| + suppy=i=nr = ' < () t) h( ) W(t) '

= SUPost=k,

1/(1 . (h(S(t) 2
— = - (1/9)—2 —_—_— 9 = PPN
+ SUpPkysi<nr p (q 1) ¥ | (tph(u) t ) Asn + -+ + 0gn,

where £ = £(t) is a random point between (h(S(t)))/(tPh(u)) and t9 It is easy to
check that
a5, =as. 0 (1) and  ag, =as 0(1).
It follows from Theorem 2.1 that
@7 =as. 0(nY),
and elementary computation shows that

11 (1 )
= — 1) SUpgy<tsnr

€€ —
"= h¥(w q \q £

£

wom <h<S(t)) - th(u)>2
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Using (2.8) we get that
supi=e<nr (1/t) (R(S(t)) — th(u))? =.. O(log log n).
On the other hand,
h(S(t)) £ h(S(t))
n (_th(u) s 1) = p = max(—-———th(“) R 1),

so by the help of (2.7) we obtain that
1/q)—-2

=.s O(1). <

SUPky<t=Tn F

Whence
agn =as. O(IOg IOg n),

and the theorem is proved.
Theorem 2.2 also implies a law of the iterated logarithm:

ag
qh(uw)

The second application of Theorem 2.2 is an estimation of the modulus of
continuity of Y.

a.s.

(2.9) lim sup,_...(2Tn log log n)™2supe<;=m | Y(¢)| =

COROLLARY 2.3. If the conditions (i)-(iv) are satisfied then
SUPo=:=nSUPo=s=1 | Y(t + 5) — Y(t)| =4 0(n'”).

Proor. Using Theorem 2.2 it is enough to prove that
SUPo<t=TnSUPoss=1 | W(t + 5) — W(t)| =as. 0(n"”),
and this follows from Theorem 1.2.1 of Csérgd and Révész (1981).

3. Strong approximation of the renewal process. The form of the
main result of this paper follows the pattern of Theorems 2.1 and 2.2.

THEOREM 3.1.  On the probability space of Theorem 2.1, we have
. t 1/q
Z(t) - w
® gh(u) ((Mu)) )
if2<v<4and

lim sup,_..n""*/(log log n)""*(log n) *supo<¢=n

o t Va
Z®) = hw W<<h(u)> )
ifv=4.

Before beginning the proof of Theorem 3.1 we prove an easy but efficient and

=,, 0(n'"9)

SUPo=<t<n

= 21/4(1_263/2(’1(u))'3/2_1/4" as.,
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useful lemma on the inverse of step functions. A functon ¢, defined on [0, «), is
called a step function if there is a decomposition of [0, ) = U, [¢;, ti+1)
suichthat 0 = ¢, <t, < ---and ¢(t) =qF, ti<t<ti,, i=1,2, ..., where
{g¥, i = 1} is a sequence of real numbers. We assume that gf = 0. The inverse of
¢ is
_ Jinf{t = 0: ¢(t) > u},
Y(u) = {oo, i (=0 (t) > u} = @,

0 < u < . Letting ¢; = max (g}, j < i) we have a direct way of looking at y:
1//(u) = tiy1, if q; < u<q,~+1,i= 1,2, ....

(If g; = qi+1 then the above definition of the inverse gives ¥(g;) = ¥(qi+1).)

LEMMA. Forany T=0

Supo=u=7|¥(u) —u| < SUPo=t=y(T) | o(t) — t].

PROOF' If¢(T) = 0o, then ¢(t) = T on the WhOle [0, w), and therefore
SUPo<i<w | (t) — t| = o0,

We assume that ¢ (T') < . The inverse function y is also a step function. Let
gx be the first point of discontinuity of y after T, T < i, and let §;, - - -, Gr_1
denote the points of discontinuity of y before T'(k = 1 is possible). We have

Sup05u5T|¢(u) - ul
=< max(fy, |¥(Gr =)= Gel, |¥(d)— @, 1¥(di =)= Gil, 1<i<k-1),

where £;, 1 < i =< k is defined as §; = ¥(¢;) and £;, 1 < i < k, are points of
discontinuity of ¢. Let ¢*(t) = sup{o(u): 0 = u < t}. We get that

(4 =) — Gil = | ¢*(E:) — & = |@(E)— &, 1=si<k,

tAl = Sup05:<il I ¢(t) - tl
and

(&) — ;| = | 6*(fivr) — Eisa |
=< max(| ¢(£i1) = Einal, 1) — &), 1sisk-1
(see figure). On the other hand, y(7T) = tx, SO We proved our lemma.
PROOF OF THEOREM 3.1. In this section we prove only the half of Theorem
3.1 in the case v = 4, that is, only the inequality

lim sup,_..n""*(log log n)""*(log n) *?supo=:<n

5 (5t )
qh(n) h(u)

This inequality is the most important part of Theorem 3.1 because this is enough
to derive functional limit theorems, the Bahadur-Kiefer representation and other

(3.1)
Z(t) -

< 21/4q——20,3/2(h(u))—3/2—1/4q a.s.
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strong limit theorems for the renewal process. The opposite of (3.1) will be proved
only after Theorem 4.2.

We consider the time transformed renewal process (1/n) N(n?(u)) which
we can write in the form

L N (nth(w) = int { h(S(ns))
n [ns]P

o] [ hsms) \V
= inf {s. (—[ns]pnqh(u)> > t}.

Z(t) = (t — N(t'%h(n))).

> n"t"h(u)}

Introduce the process

First we prove that
(3.2) lim sup,— (1/n) N(n%h(p)) <1 as.
For every positive ¢ let A, denote the following event:

A, = {w: lim sup,—. (1/n) N(n%h(p)) > 1 + 2¢}.
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This means that for each w € A, there is a random sequence of integers n, =
ny(w) going to infinity such that

(3.3) N(nih(p)) > ng(1 + ¢).
It follows from (3.3) that

h(S(n(1 + ¢)))

e + 17 = kK

and we obtain from this inequality by an elementary computation that

h(S(n.(1 + ¢))) _ ni[n.(1 + ¢)]° _
L+ o) ) =hlw { (L + )] 1}‘

It is easy to see that

. h(S(nx(1 + ¢))) _ 1
lim sups_.e {———_[nk(l ol h(u)} < h(u) {(1 FUNT 1} <0

and therefore the law of large numbers in (1.1) implies that P(A,) = 0 and we
proved (3.2). .
In the following step we prove a law of iterated logarithm for Z:

(3.4) lim sup,_«(2n log log n) 2supe<i=n | Z(t)| = a.s.

g
qh(p)

( h(S(nt)) )1"' _, ‘
[nt]*nh(w) '

Indeed, using our Lemma we have

1
SUPo=<¢=<1 r_t N(n%h(p)) — t | < SUPo=t=(1/n)N(n%h(u)

Let e > 0. We get from (3.2) that

( h(S(nt)) )""_t
[nt]Pnh(n)

SUPo=<t=(1/n)N(n%(n)) =as SUPost=<1+c

( h(S(nt)) )”"_t ‘
[nt}Pnh(p) ’

and by the help of (2.9) it is easy to see that

(h(S(nt)))”" l 1+ e)o
T vp1 /7 - nt Sa.s. ———.——’
[nt]Ph(p) gh(u)

1/2

(2n log log n) "*supo<:<1+.

and (3.4) is proved. .
Now consider the following decomposition of Z(t):

R(S(N (th(w)))) >/)
h(w)(N(t*h(w))?) )

We approximate the first term in (3.5) and show that the second term is almost

(3.5) Z(t) = Y(N(t*h(n))) + (t - (
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surely less than the rate of the approximation. Clearly,

AL = SUpo=e=n | Y(N(t%h(p))) — ——— W ()|

qh(w)
< suPo=e=n | V(N (t%h(1))) — ——— W(N(t%h(u))) |
gh(u)
+ SUPosizn —— | W(t) = W(N(th(n)) | = aon + a10n-
qgh(p)
Using (3.2) and Theorem 2.2 we get
(3.6) Qgon =as. O(nl/y)-

By (3.2) and (3.4) we have
SUpo=e=n | W(N(t%h(n))) — W(t) |
<as. SUPost=n(1+:)SUPoss=g(m) | W(t +8) — W(t) |,

3.7

where ¢ is an arbitrary positive number and
g(n) = (1 + ¢)(/(gh(n))(2n log log n)*2.
Theorem 1.2.1 of Csérgd and Révész (1981) shows that

1/2

lim sup,,_,oo(g(n)log n)~ SUPo=<t=n(1+¢) SUP0=s=<g(n)

(3.8)
| W(t+s)— W) =1 as.
We get from (3.6), (3.7) and (3.8) that
Al =,. 0(n'"), if 2<wv<4

and

3/2
lim sup,_..n"*(log log n) **(log n)"*2A} < 21/ ( A ) a.s.,
qh(w)

ifv=4.

In order to prove (3.1) and Theorem 3.1 in the case 2 < » < 4 we have to
estimate

A% = Supo<¢=n

t— ( h(S(N(t7h(r)))) )”"
h(u) (N(th(r)))*
We show that A2 is not greater then the largest jump of Y (¢) on [0, N(nh(u))].
Let {v;, i = 0}, vo = 0 denote the points of discontinuity of N(t), increasing in
order, and v, < n%h(p) < vper. If tioy = (visy/h(w))V9 < t < (v;/h(u))¥? = t;, then
by the definition of N(t) we have that
h(S(N(t°h(n)))) _ ).
(N(t%h(u)))* Y
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and therefore

(3.9)  suposi<i, h(w)(N(t%h(r)))?

We have to consider the interval ¢, < t < n which may be only one point. We
obtain by the definition of N(¢) that

SUPy,=e=n | (R(SIN (%R (1)) (h(w) (N (t%h (1)) = t|
(3.10) = sup,=e=n | (R(S(N (n°R () (h (1) (N (nh(r)))) /7 = ¢t|

= max(t, — tp-1, trr1 — tr).

On the other hand, we have v;4;. = h(S(N(n?%h(u))))(N(n?h(r))). Using (3.9)
and (3.10) we obtain that

q 1/q
(h(S(N(t h(“))))) -t ‘ = max;<;=x(t; — ti-1).

A% < max;<i<p—1(t; — tio1),

and therefore AZ is not greater than the largest jump of ¥(¢) on [0, N (n?h(p))].
Theorem 2.2, Corollary 2.1 and (2.2) then imply that

(8.11) A2 =, o(n'").

4. Applications. First application of the main theorem is the determina-
tion of the set of the limit points of the process

1/q
£n(t) = L (h(w))"0/29(2n log log n)™/* ( N(nt) - (n_t> )
7 h()

Let & be Strassen’s set of absolutely contmuous functions (with respect to
Lebesgue measure) such that

1
(4.1) f(0) =0 and J; (f'(t))* dt < 1.

THEOREM 4.1. If the conditions (i)-(iv) are satisfied then the sequence {£,(t),
0<t=1,n=1}isa.s. relatively compact with respect to the supremum norm and
the set of its limit points is &#* = {f (tY/9): f € }. Consequently

¢ 1/q
N - (m)

= 22 Z (h(u))
q

1/2

lim sup,_«(n*?log log n) *?supo<;<n

—(1+ 1/2q)

ProoF. Using Theorem 3.1 and (3.1) it is enough to determine the limit
points of the process

1/q
£5(t) = (h(p))V*%(2n'?log log n)~ ‘/QW((h'(lt)) )
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The limit points of £}(t) is the same as the limit points of
(2n log log n)~Y2W (nt'/9)

which is &* by Strassen’s functional law of iterated logarithm (Theorem 1.3.2
in Csorgd and Révész, 1981).

Bahadur (1966) was the first to investigate the distance between the empirical
distribution function and its inverse, the empirical quantile function. Kiefer
(1970) determined the exact rate of this distance. Shorack (1982) gave a new
proof of Kiefer’s theorem based on the strong approximation of the quantile
process, or, generally, on the “Hungarian construction”. The following theorem
shows that a Bahadur-Kiefer type representation is also true for the renewal
process in terms of partial sums. Set

h(s((Ttu)/))_( ‘ )w (1 1) ‘

gh(u) h(u) q/

N(t) +

n = SUPost=n

THEOREM 4.2. If conditions (i)~(iv) are satisfied and 2 < v < 4 then
A, =, 0(n'"),
and if v = 4, then
lim Sup,.—.n~"/*/(log log n)™"/*(log n)™*A,,

3/2
= 21/4(6#”)) (h(w) g™ as.

ProOOF. If 2 < v <4 then the statement follows immediately from Theorems
2.1 and 3.1 because the function of the partial sums and the renewal process are
approximated by the same Wiener process.

Letv=4 and
h(S(t))

1/q
N(t%h(p)) + (W) - 2t ‘ .

~

Ap = SuPost=n

First we prove that

3/2
(4.2)  lim sup,_.(n log log n)"Y4(log n)™2A,, = 21/4<L> a.s.
qh(u)

Using Theorem 2.2 and (3.1) we get that

3/2
lim sup,_.(n log log n) **(log n)"?A, < 21/4(—0-) as.,
qh(p)

because we approximated Z and Y by the same Wiener process. Theorem 4.2
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implies that the sequence
{(2n log log n)~'/2 %E—) (N(n%h(p)) — nt), 0<t=<1, n= 1}

is a.s. relatively compact with respect to the supremum norm and the set of its
limit points is & Consider the function h;(t) that equals ¢ and 1 — & according
asO0<t<1—-6andl1—08=<t=<1, where 0 <8 <1. Foreach$, h; € & so it
follows from the relative compactness of

‘qhi—") (2n log log n)™ (N (n%h(w)) — nt)

that there is a sequence of integer-valued random variables n, = n;(w) such that

Gh() (o.1.10g log nx) 2N (n3t%h())

o

lim,.—,SUPost=1
(4.3)
- nkt) - h.s(t) =0 as.

By the help of the decomposition in (3.5), and by (3.11), Theorem 2.2, we obtain
that

lim sup,—(n log log n)™/(log n)™*4,

[

h(u)q
suposi<1| W(N(n%%h(n))) — W(nt)| as.

(4.4) = lim sup,_.(n log log n)"**(log n)™"/*

Using a modification of part (iii) of Theorem 1.2.1 of Csdrgd and Révész (1981)
we get that

lim,,—...(n log log n) **(log n)™2supo=:=1

[

(4.5) ‘ W<nt + hs(t) —— (2n log log n)l/2> — W(nt)

gh(u)
T
qgh(p)

Since & > 0 is arbitrary, (4.3), (4.4) and (4.5) imply that

. 3/2
lim sup,—.(n log log n)™"*(log n)™?4, = 2‘/4< 2 ) a.s.,
qh(p)
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and we proved (4.2). On the other hand, (4.2) implies that

lim sup,_.n""“?(log log n)**(log n)"/?supo<:=n

h(l»t) p/q ) (( ¢ )Uq))l/q— (-t_)llq
,N(t”(( t > R\ 2w

3/2
=21/4<_qh((7u)) (h(p)) " /09g1/2 g4,

Using Theorem 2.1 and 2.2 we then get that

hSEN\™ 1 h(S() ( _1>| "
<tph(u)> ¢ hw A1) | T o

SUPo=t=<n

and therefore we proved our theorem.
The obtained Bahadur-Kiefer representation of the renewal process immedi-
ately implies that

lim sup,_..n"**/(log log n)Y*(log n)~/2

o t Ve
‘ 20~ hw W((h(u)) )

where W is the Wiener process defined in Theorem 2.1 and we therefore also
finished the remaining part of the proof of Theorem 3.1.

Theorem 3.1 implies not only the law of functional iterated logarithm as above
but a Chung-type law of iterated logarithm as well.

SUPo<t<n

3/2
2‘/“<qh( )> (h(p))™V4g™2  as,,

THEOREM 4.3. If the conditions (1)-(iv) are satisfied then

¢ 1/q
N = (m)

=82 g -‘é (h(,u))’(1 +2_q) a.s.

lim inf,_.(n"“log log n)?supo<;<n

PrOOF. This theorem immediately follows from Theorem 3.1 and the Chung
(1948) law of iterated logarithm for the Wiener process.

These two laws of the iterated logarithm give an almost sure characterization
of the path behaviour of the renewal process but a more detailed one can be given
using the concept of upper-upper, upper-lower, lower-upper and lower-lower
classes introduced by Lévy (1948) and Révész (1982). They say that a function ¢
belongs to the upper-upper class of the process X if the inequality X(n) <.,
¢(n) holds and ¢ belongs to the upper-lower class if X(n) > ¢(n) holds infinitely
often almost surely. The definition of lower-upper and lower-lower classes are
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analogous. We investigate these classes for the following processes:

1/q
m(n) = N(n) - <ﬁ) ,

n 1/q
n2(n) = l N(n) - <W>

¢ 1/q
773("') = supostsn<N(t) - <WI£)) )

’

and

n4(n) = supo=;=y

¢ 1/q
N = (m)

The characterizations in question are given in the form of integral tests concern-
ing the convergence of divergence of integrals

I,(¢) = j: t7'¢(t)exp <— -;- ¢2(t)> dt,

I(¢) =J: t7l¢(t) dt
and
hd 2
I;(¢) = J: t‘1(¢(t))“2exp<— % (¢(t))_2) dt.

THEOREM 4.4. We assume that the conditions (i)-(iv) are satisfied and ¢ is a
nondecreasing function. Then

-1 +2/q Ma . ; =
P{m(n)zaq'l(h(u))( k )n””‘”«ﬁ(%) ) "°'}={(1>: v <

i=1,2,34,

-(1+2/q Ve ; =®
P{ns(n) < og 7 (h(w) " 2”¢<(g("—u)) ) i~0-}’={c1>1 ;; roe
and

-(1+2/q 1 . g = ©
P{m(n)s«rq_l(h(u)) o ’nl’z"“’((ﬁ)) ) "°'}={(1>: v <

PROOF. The rates in Theorem 3.1 go to infinity faster than n'*log n;
therefore, as it was pointed out by Jain, Jogdeo and Stout (1975), the upper-
upper and the upper-lower classes of 7;(n), 1 < i < 4 and lower-lower classes of
n4(n) are identical with the corresponding classes of the corresponding function-
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als of the approximating Gaussian processes. Using again Theorem 3.1 and the
fact that

L(¢(t) £ t7) < 0 & I(¢) <, A>0,
we get that

1/q
< -1 -(1 + 2/q) 1/2q n .
P{ n3(n) < aq™'(h(n)) n ¢(<h(“»> ) 1-0}

n 1/2q n 1/q
= P{SupOSts(n/h(u))”’ W) = (W) ¢<<W)_) ) 1.0.}.

So we obtained that it is enough to determine the classes in question for the
indicated functionals of the Gaussian process which is a time-transformed Wiener
process. The characterizations of these classes for the time-transformed Wiener
process W((t/h(n))9) can easily be deduced from the well-known theorems of
Kolmogorov, Petrovski, Erdos and Feller (see, for example, Ito6 and McKean
(1965, page 163), Hirsch (1954), Chung (1948), It6 and McKean (1965, page
547)).

5. Nonindependent and/or nonidentically distributed random vec-
tors. Instead of (i), the condition of independence and identical distribution of
the random vectors {X,, n = 1} we assume that

(v) EX, = u for each n,
(vi) maxo<i<n [ S(t) — tu|l =45 O((n log log n)'?)
and
(vii) E(Vh(p)(X, — p)7)? = ¢* for each n.

In this case {Vh(u)(X, — )7, n = 1} is a sequence of random variables which
are not independent, nor identically distributed, but under further conditions on
the dependence and the distribution we can define a Wiener process such that

(5.1) SuPose<n | Tih VA()(Xi — #)T — s W ()| =as. 0(r(n))
and
lim sup,_..r(n)(n log log n)™/2 < o,

where r(n) is a nondecreasing, regularly varying sequence. The conditions which
are sufficient for (5.1) were studied in many papers, we refer only to Philipp and
Stout (1975), an excellent early survey of the problem, and to Berkes and Philipp
(1979).

Reading through the previous sections we can see that we used in fact only
(v)—(vii) when the random vectors were i.i.d., the strong approximation in (2.1)
and the law of the iterated logarithm which followed from (2.1) as well. So we
conclude that (5.1) always implies the appropriate strong approximation of the
renewal process.



EXTENDED RENEWAL PROCESSES 1165

THEOREM 5.1. If the conditions (ii)-(vii) are satisfied then (5.1) implies that
<t=n Z(t) - w =as. TN ’
SPose=n | Z(8) = Gh) <<h(u)> rw

1 (n log log n)Y*(log n)"2 =0

r(n)
qh(p) h(u)

=21/4q—2( - )3/2(h(u))"/““” as
h(w)

lim,_.
and

lim sup,—.n""*(log log n)~4(log n) "2supos:sn

if
lim sup,_..n"4(log log n)~"*(log n)™2r(n) < .

The results of Section 4, all being consequences of the approximation of the
renewal process, are true for the case r(n) = n'?(log n)~2 If we assume that
{X, X,, n = 1} are i.i.d.r.v’s and X have only finite second moments, then (5.1)
is true with r(n) = (n log log n)"/2 by Strassen’s approximation theorem (see, for
example Csorgo and Révész, 1981, Theorem 0.2.). We obtain now from Theorem
5.1 that conditions (ii)-(iv) and E | X |2 <, 1 < i < d, imply Theorem 4.1.
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