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PROBABILITY INEQUALITIES FOR EMPIRICAL PROCESSES
AND A LAW OF THE ITERATED LOGARITHM

By KENNETH S. ALEXANDER!

Mathematical Sciences Research Institute?®

Sharp exponential bounds for the probabilities of deviations of the
supremum of a (possibly non-iid) empirical process indexed by a class F of
functions are proved under several kinds of conditions on % These bounds
are used to establish laws of the iterated logarithm for this supremum and to
obtain rates of convergence in total variation for empirical processes on the
integers.

1. Introduction. Let X,, X,, --- be a sequence of independent random
variables taking values in a space (X, o), and P;, := <(X;). We construct the
nth empirical measure and process:

-1

P, :=n""' YL, éx,

Vp = n1/2(P,, - 13(,,))

where P, := n™' 3%, P;,. Given a measure P and function f on X, let P(f)
denote [ f dP; thus

va(f) = n72 Ty (f(Xi) — Ef(X))).

Given a class # of functions on X, we can view v, as a stochastic process indexed
by # and consider limit theorems for this process. To prove such theorems it is
often helpful to have bounds on the tail of the r.v. sup #| v,(f) | (see for example
Dudley, 1978, Kuelbs and Dudley, 1980, Dudley and Phillip, 1983, or Giné and
Zinn, 1983.) Our main question of interest is, for what classes % can “best
possible” bounds be obtained?

So first we must ask, what are these best possible bounds? Of course

(1.1) P[sup #| va(f)|> M] = sup #P[| v.(f)| > M]

so we would like a bound on the left side of (1.1) which is not too far from the
best known bounds on the right side of (1.1). Restricting our attention henceforth
to uniformly bounded % specifically 0 < f < 1 for each f € % we have three
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1042 K. S. ALEXANDER

inequalities from Hoeffding (1963):
(1.2) P[lvn(f)| > M] = 2 exp(—¢(M, n, a))
where a = var(v,(f)) and ¢ is either
Vi(M, n, @) := Mn'*h,(M/n"2a),
¥2(M, n, a) := Mn'?h, (M/n"?a) (Bernstein’s inequality)

or
¥s(M, n, a) := 2M2
Here
hi(A) .= (1 + X Ylog(1 + ) — 1
and

A
TS Vel

We therefore try to bound P[sup #| »,(f)| > M] by something close to the right
side of (1.2).
A common example is given by

Z = {1(_09,,]: x € Rd}, with the Xi iid (P)

Here P, is the nth empirical d.f.,, and Kiefer (1961) proved that for each ¢ > 0
there exists a constant R = R(e, d) such that

(1.3) P[sups|v.(f)]| > M] <2 exp(—(2 — e)M?) forall M>R,n=1.

The exponent in (1.3) is within a factor of ¢ of the exponent in (1.2) (with Y=
¥3). If P((— @, x]) = % then the bound in (1.2) with ¢ = y; is sharp for f = Licwo,x);
in this sense (1.3) is best possible.

For general ¥ we may thus ask whether, given an inequality of form (1.2) for
some v, we have

(1.4) P[sup #| v.(f)| > M] < K exp(—(1 — &)¥(M, n, a))
for some immerical constant K, and M, n sufficiently large, where
o = sup gvar(v,(f)) = supsn~' T, var f(X;).

We will show that (1.4) holds for quite general % When X is a bounded sub-
set of RY the functions in % “need only be sufficiently smooth. When & =
{lc: C € £} for a class ¥ of subsets of X, it is enough that & satisfy a certain
combinatorial condition, or that % consist of convex sets or sets with smooth
enough boundaries.

Note that ha(X) = (1 — e)A/2 if A < 3¢, s0

(1.5) Vo:(M, n, @) = (1 — e)M?/2a) if M < 3can'’?
Thus for moderate M, (1.5) says that sup 5| »,(f) | has a Gaussian-like tail. This
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fact can be exploited to prove a law of the iterated logarithm (LIL) for
1sup #| v.(f)].

When a = Y4, its largest possible value since 0 < f < 1, ¥ gives a better bound
than ¢, or y,. By the lower exponential bounds in Stout (1974, Theorem 5.2.2),
V3 is essentially sharp in this case. If & < %, ¢, or ¥, usually gives a better bound
than y5: we have

A4 if A=4
h() = {1/2 log\ if A=4

S0

M?/4q if M < 4n2q
(1.6) (M, n, ) = {1/2 Mn'’L(M/n"?a) if M = 4n"a

where Lx denotes log max(x, e). By (1.5) and the above mentioned lower
exponential bound, y;, is essentially sharp if M/n'?a is small Y1 is always better
than y,, but ¥ is often easier to work with.

But we need not assume that ¢ in (1.4) is ¥, ¥, or ¢3. We require only that ¥
satisfy (1.2) for all choices of a function 0 < f < 1 and r.v.s X, ---, X, with
n~' Y&, var f(X;) < a, and all M > 0 and n = 1, and that y satisfy

Vv(M, n, a) = Y(OM, n, pa) = 0%07Y(M, n, a)
forall 6<1, p=1, M>0, n=1, a>0.

Let ¥ be the class of all such y; it is easy to verify that ¥, ¥s, Y3 € V. The
homogeneity condition (1.7) is really only assumed for convenience, but it is
natural in view of the Gaussian tail exponent M?/2« (see (1.5) above.)

When & ={1¢: C€ £}, wewill use Cand 1¢, and ¥ and %, interchangeably.
In this case one natural condition to impose on £ turns out to be a combinatorial
one. For x;, ..., x, € X, let

A%(xy, -+, %s) :==card {C N {xy, -+, x,}: CE &} < 2"

1.7

and
m%(n) := sup{A€(xy, - -+, %,) : %1, -+, %, € X}

If m®¥(n) < 2" for some n = 1, then ¥ is called a Vapnik-éervonenkis (or VC)
class. The least n = 1 for which m%(n) < 2" is called the index of & and denoted
V(¥). Then

(1.8) z’(n) < 2V(g) 1 ( > < (_ne—>V(_‘z’)—1
V(ig)-1

ifn=V(¥)—-1 (Vapnik and Cervonenkls, 1971). Many classes of interest in
applications are VC classes. Dudley (1978) showed that for .# a finite-dimen-
sional vector space of real-valued functions on X, % := {{x: f(x) > 0}: fE€E 4} is
a VC class. He also showed that if & is a VC class and k = 1, then the class of
all sets which are in an algebra generated by some k-element subset of ¥ is a
VC class. Since any subset of a VC class is a VC class, it follows in particular
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that the classes of all rectangles, all ellipsoids, and all half spaces in R are each
VC classes. Devroye (1982), refining an earlier result of Vapnik and Cervonenkis
(1971), showed that for & a VC class,

(1.9) Plsup¢| v, (C)| > M] = 4e"(n72e> exp(— 2M?)

foral M>0,n=1,ifv= V(£). But this is clearly unsatisfactory if n —  and
M remains fixed; we will prove an inequality which eliminates the dependence of
the right side of (1.9) on n.

Our results will also hold for those classes F of functions for which the
collection & = {{(x, t): 0 < t < f(x)}: f € &) of regions under the graphs of
functions in F is a VC class of sets. In this case we will call ¥ a VC graph class
and ¥ the graph region class. Clearly {1¢c: C € ¥} is a VC graph class if & is a
VC class. Pollard (1982) studied such classes and used bounds on sup #| »,(f)|
to obtain results on convergence rates of kernel density estimators.

2. Statement of results. The key to most of our results is the control of
some form of the metric entropy of the class % Given ¢ > 0, p > 0, and a law P
on (X, o), set

Ny(e, & P) := min {k: there exist f,, - - -, fx € F such that
min;< || f — fill, < ¢ for all f € F}
NZ(e, & P) := min {k: There exist f¥, f%, ---, f¥, fk € & such that f£ <
=< fV for some i for each f € F and | f¥V — fF|, <e}.
The functions
H, :=log N,, Hf := log N2

are called the metric entropy and metric entropy with bracketing of ¥ in LP.
When no confusion is possible, we will suppress the % and P in the entropy
notation. When ¥ consists of sets and p = 2, the entropy with bracketing is
essentially.the entropy with inclusion used by Dudley (1978) and others, though
Dudley does not require f ¥, fF € & Let '

t
I(s, t, & P) := f H,(u, &% P)2 du

t
IB(s, t, & P) = f HE(u, % P)'” du.

The only facts about the entropy of % which we will use are upper bounds on
the values of I and H™" at specific points. Since H may be replaced by a larger
continuous function at the expense of an arbitrarily small increase in these
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values, we may assume that

(2.1) H(., & P) is continuous and strictly decreasing from o to 0 on (0, a] for
some a > 0.

This will allow us, given b > 0, to define t by H(t, % P) = bor H(t, &, P) = bt®.
For many classes of interest the entropy satisfies a bound of the form

H(u, 4 P) < Au™
for some A, r > 0, and H = H, or H}. Some examples:
1. Let % «([0, 1]%) be the class of all functions f from [0, 1]¢ to R which are

smooth to order 8 with bound K, i.e. have all partial derivatives of order < 8 and
satisfy

max,, <msupf | Df (x)|: x € [0, 1]%}

|Dpf:3;)_—yDlzf(y)l iy €O, Hd}, <K

where m = [g] (the integer part), y = 8 — [f], and |p| = p1 + --- + pu,
p € (z*)°. Then

+ maxp|=»Sup {

Hoo(ur %,K([Or ]-]d)) = Au—d/ﬁ
for some constant A = A (B, K, d) (Kolmogorov and Tihomirov, 1959).

2. Let %aq be the class of all regions in R? cut out by images of those
functions on the sphere S~! which are smooth to order 8 with bound K. (More
precisely, since “cut out” is a little vague, we'll say %14 is the class J(d, 8, k)
of Dudley, 1978.) Then, by the proof of Theorem 5.12 of Dudley (1978), if d =

2, B>d -1, and P has a bounded density with respect to Lebesgue measure,
then

HE(u, & P) < Au™2@V/6,

3. For the class &, of all convex subsets of [0, 1]%, d = 2, if P has a density
bounded by K < «, then

(2.2) H3(u, %, P) < Au™¢™
for some constant A = A(d, K); this follows from a theorem of Bronstein (1976).

4. If X = {x;, i = 1} (ie. X is countable) and (pm)m=1 is (P({xi}))i=1 in
nonincreasing order, then

13(0, 1, 2%, P) < o if and only if ¥,z piZ <

by Theorem 6.3.1 of Dudley (1983); by modifying his proof it is easy to verify
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that
HS(u, 2%, P) < Ar'(u?
where r, = Y j=m p; and r~'(u) = min{j: r; < u}. In particular, if r,, = 0(m~*°) for
some 8 > 0, then
(2.3) HE(u, 2%, P) < Au®*.
The important fact for our purposes is that 1(0, 1, % P) < « if H(u, &% P) <

Au~" for some r < 2.
We begin with results under assumptions on H..

THEOREM 2.1. Let ¥ be a class of functions 0 < f<1on (X, 7). Let y € ¥,
n=1 ¢>0, and a = supsn~' T, var f(X;). Define t, by Hu(ty, F) =
Yeey(M, n, ). If

oy (M
2.4) M > 2877, (ﬁen—lﬁ’ to>
then
(2.5) P*[sup 7| v(f)| > M] =< 5 exp(=(1 = e)¥(M, n, a)).

The unwieldjr condition (2.4) translates into a natural one when the entropy
grows polynomially fast at 0, as is reflected in the following corollary.

COROLLARY 2.2. Let % {, n, ¢, and a be as in Theorem 2.1. There exist
constants K; = K;(r, ¢, A) such that if r > 0,

(2.6) Ho(u, )= Au™ foral u>0,
and

Kya®n/ if r<2
(2.7 M = \K:Ln if r=2

K3nr=2/20%2)  (required for all r)

then (2.5) holds.

We have not attempted to obtain best numerical constants in the above and
following results; techniques which depend on the metric entropy, which is usually
known only up to an asymptotic rate, do not lend themselves to this. Our results
are intended for asymptotic use.

THEOREM 2.3. Let ¥ be a class £ of measurable subsets of X. Let ¢ € ¥,
nz1¢>0,and a = supgn I, P;(C)(1 — P;)(C)). Define t, by H:(t,, %,
P(n)) =lY¢ \P(M, n, a). If

(2.8) M = 293"3/21‘29((eM/64n1/2)1/2, to, .% p(n))
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and

(2.9) HE((eM/16nY?)'2, &, P(,)) < ¢2Mn'/2/4

then

(2.10) P*[supg | v,(C)| > M] = 5 exp(—(1 — e)¥(M, n, a)).

Again these conditions become natural when the entropy grows polynomially
fast at 0.

COROLLARY 2.4. Let %, y, n, a, and ¢ be as in Theorem 2.3. There exist
constants K; = K;(r, ¢, A) such that if r > 0,
(2.11) H3(u, %, P,y) < Au™ forall u>0
and (2.7) holds, then (2.10) holds.

From Borel-Cantelli and Corollaries 2.2 and 2.4 we get the following improve-
ment of a result of Dudley (1982).

COROLLARY 2.5. Let & (or ¥) be a class of measurable functions (or sets)
satisfying (2.6) (or (2.11)) for all n and some A > 0, r = 2. Then

_ O(n(r—2)/2(r+2)) a.s. if r>2
supfl Vn(f)l - {O(Ln) a.s. if r= 2.

Corollary 2.5 is sharp for classes of sets, i.e. there exist classes for each r > 2
satisfying (2.11) with
lim sup,n~""220+2Agup & | v,(f)| >0 a.s.
and classes with r = 2 for which
lim sup,(Ln)'sup#|v.(f)| >0 a.s.

This follows from Remark 2.15 below, or (for r > 2) from a result of Dudley
(1982).

The following special case of Corollary 2.5 refines a result of Stute (1977) and
follows from (2.2). Stute shows it is sharp up to a possible power of Ln.

COROLLARY 2.6 Let X = [0, 1]¢ and suppose P, has a density ©,(x) uniformly
bounded in n and x. Let & be the class of all convex subsets of [0, 1]°. Then

3 O(n(d—-3)/2(d+l)) as. if d>3
supy | v.(C)| = {O(Ln) as. if d=3.

We turn next to VC graph classes of functions. The key here is the next
lemma, which is a refinement of one from Pollard (1982) which is based in turn
on one from Dudley (1978).
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LEMMA 2.7. If ¥ is a VC graph class of functions 0 < f < 1 on X with graph
region class %, V(¥') < v, and u is Lebesgue measure on [0, 1], then

Ny(u, # P) = Ni(¥%, Z P) = N\(u?, &, P X p)
< (16u~?L(8u™?))" ! < (Bu™?)%
for all 0 < u =1 and all laws P on X.

It is the uniformity of this bound in P that makes VC classes tractable.
Vapnik and Cervonenkis (1981) showed, under some measurability conditions,
that in the iid case with <(X,;) = P, one has for % uniformly bounded,

limnsqul Pn(f) - P(f)l =0 as.
if and only if
EH,(u, & P,) = o(n) for each u > 0.

(Actually, Vapnik and Cervonenkis stated this for H. in place of H;, but their
proof shows the condition on H, is sufficient. In fact, it doesn’t matter what
H,(p = 1) is used—see Giné and Zinn, 1983.) Because of this it is natural to seek
inequalities like (1.2) under assumptions on the distribution of H;(u, & P,). We
will show that for % a VC graph class the appropriate assumptions are easily
satisfied.

In the course of our proofs we will need to use a special construction of P,.
Let {¢;;, j = 1} be independent copies of X; for each i = 1. Fix m < o, to be

specified later, and let 7(i), i = 1, be independent r.v.’s uniformly distributed on
{1, - - -, m} and independent of all the £;;. We may then assume

(2.12) - Xi = tio
and define
£ = (&)=
Posm = (nm)™ 3, 2,’-',21 b,
Hy(m, n, ¢, & F) = Hi(e, & Puxm)..

In this context, given % ¢ € ¥, and n, M, a, ¢, b > 0 we say (A) holds for
(Z Y, M, n, a,e¢ b) 1f there exists an integer

My 16 2% (M, n, a) 22 8M
e2M? ¢’ e2an " an’ ean'’?

(2.13) m = max(l +

such that

o~ CM C\I/(M, n, a)
(2.14) P*[Hl(m -1, n, W’ & .9'-> > '—T—] <l
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and

ey (M, n, a)] <o

(2.15) p* [fll(l, n, M £, 37> > T

64n/?’
and if « < % then for all k = 1,
(2.16) P, [H\(2"'m, n, 2" %a, £, F) > 22 B2amn — (k — 1)log 2] < Y%.

The use of inner and outer measures P, and P* above is required because H,;
need not be measurable in general. Because the same holds for sup | v,(f)],
some measurability assumptions will be needed for our next theorems. To this
end, we assume throughout that the £,; are coordinate functions on the product
spaces X”. We say . is n-supremum measurable (for (P))i<n) if sup#Q(f, £) is
measurable for each function Q(f, £) which is a linear or quadratic function of
finitely many of the f(¢;), i=<n, j= 1. We say F is n-deviation measurable
if both & and {f — g: f, g € & var v,(f — g) < 6} are n-supremum measurable
for all > 0. We omit the “n-” when either condition is valid for all n = 1.

We say a class & in (X, &) is (v, k)-constructible if there exists-a VC class
2 with V(2) < v and a function ¢¥: 9* — o7 constructed from the basic set
operations N, U, and °, such that & C ¢(2*). Then & is a VC class and

Ni(u, %, P) < Ni(u/k, 9, P)*

for all laws P and u > 0. Of course any VC class is (V( %), 1)-constructible. By
Lemma 2.7, if # is a VC graph class with (v, k)-constructible graph region class
%, then
a (8k2)
1(m, n, u, #, §) = 2kvL o
(2.17)

= 8k2
Hy(u, 4, Pyy) = 2kvL o
for all m, n, £ and all u > 0, a fact which will help us establish (A).

ExAMPLE. The class % of all at-most-k-sided polygons (not necessarily
convex) in R? is (4, 3k-6)-constructible. Take 2 to be all half planes, so V( 2)
= 4, and note that each set in % is a union of at most k — 2 triangles. Thus we
can use

P(Dyy +++y Dape) = (D1 N Dy N D3) U --- U (Dsgg—g N D3p—q N Dsp).

It will suit our purpose to use a slight variant of the entropy N,. Let # be the
class of all constant functions on X and define
Ni(u, & (Py))i=n) := min {k: there exist fi, ---, fr € F U Z, such that
min;<,n”! ¥k var((f — £;)(X0)) < u®

forall fe 1.
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Then
(2.18)  log N#(u, & (P))isn) = 0 if u> > sup# n™' Ti, var f(X;)

and

(2.19) N3(u, & (Pu))i=n) < No(u, Z Py,
since n”' Y%, var((f; — f)(X:)) < | f; — fll2. Let
H¥ .= log N3}

t
I%(s, t, & (P))isa) = f H3(x, & (Pw)isn)"? dax.

THEOREM 2.8. Let n =1 and let & be an n-deviation measurable VC graph
class of functions 0 < f <= 1 on (X, &) with (v, k)-constructible graph region class
L Lety €EV,e>0,and a = supsn~"' Y%, var f(X;). If

(2.20) M= o'?
and either (i)
64 kv

M> om,
and
(2.21) V(M n, a) = 29kve‘1L<% Vv S)
or (ii) |
(2.22) M > 2% 52kpyn~12], (%)
and
(2.23) M > 2'2.7%%(kpa L(k/a))"?,
then

(2.24) P*[sup 7 | va(f)| > M] = 16 exp(—=(1 — &)¥(M, n, a)).

In the examples (2) — (4) above Theorem 2.1, we have to make assumptions
on P, (to control the entropy) to obtain the exponential bound of Corollary 2.4.
Note that there are no such assumptions for VC graph classes.

The condition (2.23) is principally important in the way it relates M to the
maximum variance a. For fixed &, v, and ¢, it says we need M = R(aLa™')"/? for
some constant R(k, v, ¢). This is sharp in that if () := (aLa™")*? were replaced
with any function g(a) = o(q(a)) as o — 0, the theorem would be false. To see
this, let £ (a) denote the class of all subintervals of [0, 1] of length less than «,
and take P; to be the uniform law on [0, 1] for all i. Fix R > 0 and § > 0, then
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choose ap > 0 small enough so dq(a) > Rg(a) for all a < ao. If (2.23) could be
replaced by “M > Rg(a)” then for each a < ay we would have by Theorem 2.8
and (1.6):

2,2
(2.25)  lim,supP[supg (a)|v,.(C)| > éq(a)] = 16 exp(-— é—-‘-i%).

Since, by Donsker’s well-known invariance principle, the process »,([0, t]) con-
verges in distribution as n — o to the Brownian bridge Wo(t), (2.25) implies that

(2.26) P[Sup|s—cj<a | Wol(s) — Wo(t)| > dg(a)] =< 16 exp(—¥48°La™?).
Set ay := k~®%", Then for large enough m, we have been using (2.26):

| Wo(s) = Wo(t)|
q(ls —t])

< Yiom P[SUD |s—t1<a, | Wols) — Wo(t) | > 28q(ak+1)]

p[sup|5_¢|<am > 26]

=< Yirem p[SUP|s—:|<a,,| Wo(s) — Wo(t)| > dq(ar)]
< Yi=m 16 exp(—%4é*Lai?)
=16 Yi=m k250 as m—o> o forall §

contradicting a theorem of Lévy (1954) which tells us that

| Wo(s) — Wo(t)|

=22 ag,
q(|s—t])

lim 4—.0SUP |s-¢|<a
A special case of Theorem 2.8 is:

COROLLARY 2.9. Let n=1and let £ be an n-deviation measurable VC class.
Lete>0,v= V(¥), and o = supgn™ Y% Pi(C)(1 — Pu(C)). If

213:-32(ya L(1/a))? < M < ean'’?
then

1- e)M"’)

P*[supg | v.(C)| > M] < 16 exp(— e

COROLLARY 2.10. Let % v, k, ¥, ¢, and a be as in Theorem 2.8 and suppose
F is deviation measurable. There exists a constant K = K(a, v, R, ¢) such that

P*[sup 7 | va(f)| > M] = K exp(—=(1 — e)¥(M, n, a))

(2.27)
forall M>0, n=1.
Corollary 2.10 is immediate from Theorem 2.8. K need only be chosen large
enough so the right side of (2.27) is = 1 if (2.20) — (2.23) are not satisfied. We
state it to match the original form of Kiefer’s (1961) inequality for d.f.’s.
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By taking ¢(M, n, a) = 2M? and ¢ = 2"'vM~2LM and using a variant of the
proof of Theorem 2.8, we obtain the following.

THEOREM 2.11. Let n =1 and let & be an n-deviation measurable VC graph
class of functions with graph region class %. Then for all M = 8,

P[sup s | va(f)| > M] < 16 M2V ®)exp(—2M?2).

Thus ¢ in the exponent may be replaced by a polynomial in M in front of the
exponential.

When (1.4) is valid, with ¥ = y», for the proper choices of constants M, a, and
¢, using (1.5) and the techniques of Stout (1974, Theorem 5.2.3) it is not hard to
show that sup # | v,(f) | satisfies an LIL. Specifically, for each ¢ > 0 we need (1.4)
with @ = a, := supsn~" ¥, var f(X;) and M = (1 + 2¢)(2a,LLn)"? for all
sufficiently large n, and to take advantage of (1.5) we need n"'LLn = o(a,). Thus
from Corollaries 2.2 and 2.4 and Theorem 2.8 we get the following theorems.

THEOREM 2.12. Let F be a deviation-measurable class of functions0 <f<1
on (X, &) such that for some r < 2 and A < o, either

Ho(u, ) <Au™ forall u>0

or
H3(u, % P,) <Au™ forall u>0, n=1, and F consists of sets.

If

(2.28) (LLn)™%" = o(a,)

then

(2.29) lim sup, S—ul—)f——lﬁ'-(fl

@a,LLn)" =1 as.

Note that (2.28) ensures that (2.7) holds when needed.

THEOREM 2.13. Let Z be a deviation-measurable VC graph class of functibns
0<f=<lon (X X).If
(2.30) L(1/an) = o(LLn)
then the LIL (2.29) holds.

For d.f.’s (2.29) is the well-known Chung-Smirnov LIL (Chung, 1949, Smirnov,
1944). In the i.i.d. case for  a class of sets, it follows from a compact LIL of
Kuelbs and Dudley (1980).

The condition (2.30) is sharp in that, given (8,) with LLn = 0(8,.), there exist
p.m.’s (P;))i=1 on the integers Z and a VC class & of subsets of Z such that

L(1/an) = 0(Br)
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but

supg | v(C)| _
n (2a,.LLn)1/2 = o a.s.

For the proof see Alexander (1982).
From (2.3), Theorem 2.11, Corollary 2.4, and Corollary 2.5, the following is
immediate.

lim sup

COROLLARY 2.14. Let P be a law on the positive integers and suppose
P([m, ©)) = O(m™*) for some B > 0. Then the total variation distance p satisfies

O(n™V4(LLn)"?) as.if >1
p(P,, P) =< O(n~"2Ln) as.if =1
O(n~P/(B+1)) as. if 0<B<l1.

REMARK 2.15. The bounds in Corollary 2.14 are sharp. For 8> 1, this follows
from Theorem 2.12. For 0 < 8 < 1, consider P with P(m) = am™~%*V for all m =
1. Fix 6 > 0 and let m, := [0n/**V], Define events B, := [v,(m) > P(m)Y?].
Then

p(Pn, P) = T, := n~Y2 3™ P(m)?1p .

It follows easily from Theorem 5.2.2 of Stout (1974) that if 6 is small enough,
then there exist ny and 6 > 0 such that P(B,,,) = 6 for all n = ng and m < m,,.
Hence for n = ny,

(2.31) ET, = n 2 3™ 6P(m)Y2 ~ \n=#/1*P

for some A > 0. It is clear that for & # m we have P (B, | Bum) < P(B.:), S0
P(B.: N B,.,,) — P(Bn)P(B,,) < 0. Thus

var(Ta) = n™" Timem, P(R)/*P(m)*(P(Bu N Bum) — P(Buk) P(Bum))

<= n"! Ymem, P(m) = n7%,

With (2.31) and Chebyshev’s inequality this shows

—B/(1+8)
P[Tn < MT:I — 0.

It follows that
lim sup,n?/®*Vp(P,, P) >0 as.
For 8 = 1 the proof is the same except that ET, = An""?Ln. O

3. Proofs. The fundamental idea is the familiar “chain argument” first
applied to empirical processes by Dudley (1978), then used by LeCam (1983),
. Pollard (1982), and others. Given a class % with finite L? entropy, and &, > 6,
> ... >y >0, there exist #; C F (j < N) such that | & | = N,(8;, Z P,)
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and for each f € F there is an f;(f) € & with || f — f;(f) |l < §;. Hence
P*[sups | va(f)| > M]

= P[supfl-vn(fo(f))l > (1 - E)M]

+ P[Supfl va(fo(F)) — walfn(F 1 > %4 - "N]

+ P*[supfl (D) = 3] > 20+ nN]
3.1)

< | %| supyp[| m(f)| > (1 - i)M]

+ I | Fil | Final supsPlvalfi(F) = fia(F)| > nj]

¥ P*[supyl () = NI > 228+ mv]

=P, 4+ Py + P

where the 7, are chosen so 3 X, 1, < ¢eM/8. If &, is large enough, then | % | is not
too large, so P, is small. When M is large relative to [} H,(x)"? dx, the 7, can
be chosen large enough so P, is small. Control of 3 depends on &y being
sufficiently small; the particular method used to bound it varies with the as-
sumptions made on &

To facilitate the choice of the é;’s and 7,’s we use the following lemma. We
omit the straightforward proof.

LEMMA 3.1. Let H: (0, t] —» R* be a decreasing function, and let 0 < s < t.
Set 8o :=t, 8j41 := s V sup{x =< 6;/2: H(x) = 4H(5;)} for j = 0, and N :=
min{j: é; = s}. Then

t
S 8;H(35)"2 < 8 f/ H(x)"2 dx.
s/4

PROOF OF THEOREM 2.1. To make [P, small, we take & (in (3.1)) = ¢,. Using
(1.7),

P; < 2 exp(H(to))exp(— ¢((1 — ¢/4)M, n, a))
=< 2exp(—(1 — &)Y (M, n, a)).
To handle s, take 6y < eM/16n'/2 Then
lva(fn(f) = F)] = 202 | fn(f) = fllo < eM/8

(3.2)

soPg = 0.
To bound P,, we may assume &, > ¢M/16n'? otherwise we can take N = 0 so
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P, = 0. Let N and é;, 0 < j < N, be as in Lemma 3.1, with H(x) := H.(x, %),
t:=to, and s := eM/16n"2 Let n; := 4¢7V/25; H(8;41)"% j < N, and gy := 0. By
(2.4) and Lemma 3.1 we have

3.3) SNom; < 32¢7V2.(s/4, t) < eM/8.
Since (46;) 7" I f;(f) = fi+1(f) |« =< %, if N = 2 we have
P; < T/55' 2 exp(2H (8;+1))exp(—ys(n;/49;, n, '4))
(3.4) = TN 2 exp((2 — 2/e) H(5;41))
< Y70 2 exp((2 — 2/e)2/**H(3¢)) =< 3 exp(—=(1 — &)Y (M, n, a)).

If N = 1, we may redefine 7o as 8¢5, H(5,)"/? without violating (3.3), and the
last line of (3.4) again bounds P,, by a similar calculation. 0O

To prove Corollary 2.2 we observe that if an entropy function H(u) < Au™"
for all u >0, then for0 <s <t

J’2A1/2(2 =)@ 2 i r<2
(3.5) I(s, t) < 4 AY?og 1/s if r=2 and t=<1
24Y%(r — 2)71s@ 2 if > 2.

If r < 2, we may assume equality holds in (2.6) and ¢, := ¥1(M, n, a) <
V(M, n, ), so to < (4A%/ey1)"". Using (1.6) and (3.5) it is easy to show that

M = K;n"2720+2  implies (2.4) if M = 4n'%a
M = K,a®/ implies (2.4) if M < 4n'?a.

If r = 2, our assumption (2.1) that H is continuous precludes assuming t, < 1,
but since log N.(u, #) = 0 for all u > 1, we may assume ¢, < 1 + 0 for any fixed
6> 0, which has the same effect. Then (3.5) shows that M = K;Ln implies (2.4).
If r > 2 then (3.5) shows that M = K, n"~2/2+2 jmplies (2.4).

PROOF OF THEOREM 2.3. As in the proof of Theorem 2.1, to make P; small
we take 6 := to; as in (3.2) we have
P; = 2 exp(—(1 — &)¥(M, n, a)).

To make P; small, take 65 < (eM/16nY?)2 and 5y := 8¢ Y25y H(5x)Y2 Since
our entropy is with bracketing, we may assume that fn(f) = f5(f) < f < f%(f).
Then since . consists of sets,

lva(fn(F) = /)| = 1valfRGF) = FROD| + 2021 FR(F) — FR(D) 1
= | wa(fR(f) = fR(F)| + 2n25%.
Hence
P < P[sups| va(FN(f) = F&(F)) | > 1]
= 2| Znlexp(= ¥a(nn, n, 5%)).
To bound P,, we may assume §, > (¢M/16n'?)!/2; otherwise we can take

(3.6)
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N=0soP,=0.Let Nand é;, 0 <j < N be as in Lemma 3.1, with H (x)
= HE(x, F, Pn), t == t,, and s := (¢M/16n'?)'/2 Let 5, := 8¢Y/25; H(8;+1)"?,
0 <j < N. As in (3.3) we have

Sio ny < M/,
Now by (2.9),

2
nj 4H(s) _
3.7) (46,2n1/2> = ens? ~ =16,

while || f;(f) = fix1(f) |2 < 26}, so using (1.6),
P, < 375" 2 exp(2H (8;.41))exp(— ya(nj, n, 487))

n?
(3.8) =YNt'2 exp<2H(6,+1) 1657 )

= Y 2 exp((4 — 4/e)4/H (50)).
Similarly, (3.6), (3.7), and (1.6) imply

2
Py <2 exp(H(BN) - W) < 2 exp((4 — 4/¢)4VH (80)).

With (3.8) and the definition of 8, this shows
P, + P3 < 3 exp(—(1 —‘e)w(M, n, ). 0

The proof of Corollary 2.4 is analogous to that of Corollary 2.2.

ProorF OF LEMMA 2.7. It is sufficient to show that
(3.9) Ni(u, & P) < (16u'L(8u™1))"?

for all 0 <u <1 and laws P on X X [0, 1]; the rest of the lemma is easy.

Suppose Cy, -+, Cr, € & with P(C;AC;) = u for all i # j. Take n to be the
least positive integer such that (3*)(1 — u)" <1, and let Yy, ..., Y, be i.i.d.(P)
and S :={Yy, ---, Y,}. Then

n=<1+ (2Lm — log 2)/u = 8Lm/eu
while
P[A¥(Yy, -+, Ya) <m] =P[SN (C; AC;) = ¢ for some i # j]

= (’g) 1-uw"<1.

m = m¥(n) < m¥(8Lm/eu)).

It follows that
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If 8Lm/eu = v — 1 then by (1.8) this shows m < (8Lm/(v — 1)u)’"?, which implies
(3.10) m < (16u™*L(8u™Y))" .

If 8Lm/eu < v — 1 then Lm < eu(v — 1)/8 < (v — 1)L(16/u) so (3.10) again
holds. Taking {Cy, - - -, C,,} maximal gives Ni(u, &, P) < m, and (3.9) follows. 0

In proving Theorem 2.8 the main difficulty is in bounding P;. For this the key
is the following.

PROPOSITION 3.1. Let n =1 and let ¥ be an n-supremum-measurable class
of functions 0 < f<1on (X, 7). Let y € ¥, e >0, a = sups n~' T, var f(X),
M >0, and b:= (M, n, &). Suppose that (A) holds for (% ¥, M, n, &, ¢, b). Then

P*[sups| va(f)| > M] < 11 exp(—(1 = &)¥(M, n, a)).

To avoid measurability difficulties in the proof of Proposition 3.1, we use the
following two lemmas, whose proofs are straightforward modifications of the
well-known measurable cases.

LEMMA 3.2. Let (Q, %4, Qu), (R, o4, Q) be probability spaces, and let
A C Q. BC Q; X Q, and 8> 0. Suppose for each w, € A there is a subset C,, C
Q. with Q%(C.,) = 8 and {w1} X C,, C B. Then

1(4) = 71(Q1 X @2)*(B).

LEMMA 3.3. Let (21, 94, Q1), (s, %, Q2) be probability spaces and let
AE o X oy, BC Q. Then

(Q: X Q2)*(A N (B X Q) < sup,,ep@:2({we: (w1, wo) € A}). O

Let us outline the proof of Proposition 3.1 heuristically before giving the full
story. P, is normally constructed by sampling one point under each law P;
(i < n). In our alternate construction (2.12) we sample m points under each P,
then resample one from each group of m to use in constructing P,. This
resampling may be viewed as the construction of a “secondary” empirical process,
call it »2, in which the laws for the sampling are the empirical measures
constructed from each group of m points from the first sampling. That is, we
construct »2 = nV2(P, — Pnxm). We show that little is lost if we replace v, with
»2 in the probability we wish to bound. The advantage of this replacement is that
| ¥S(f — g)| is small whenever P,xn|f — g| is small, so we need only consider a
finite subcollection, call it &, of ¥ which is nearly dense in ¥ with respect to
the LY(P,xm) metric. Let p := maxse «P[| v2(f)| > M]; then | & | p provides an
upper bound for P*[sup#| »3(f)| > M]. Now | & | and p are random, so the
upper bound is conditional on P,xn. For it to be a good bound, Pyx, must satisfy
two conditions with high probability: | % | must be much less than p~*, and the
(random) variance var »3(f) for the resampling process must be close to the
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variance var »,(f) for the original process for all f. The former is guaranteed by
condition (A) (cf. (2.15).) The latter can be proved, if m is large enough (cf.(2.13)),
by an iteration scheme. In this scheme, symmetrization is used to make the
resampling-variance process var »3(-) look somewhat like a new (symmetrized)
empirical process on which this entire procedure is repeated, this time with a
larger m. After sufficient repetitions, the random variance is an adequate ap-
proximation to var »,(f).
A useful observation for the proof is that

m.é&; + mqéeg
m; + my v

SINII(’nl’ ’,82_1, ) ’) +H1<m2, 77%’ *y ')-

PRrROOF OF PROPOSITION 3.1. The key will be the randomization defined in
(2.12) of the choice of the X;. To take advantage of it we must first modify v, (f)
so it depends only on {f(£;): i < n, j < m} and not on P,(f), where m is the
integer in (2.13). We do so by approximating P(,) by P,xn. Define ¢’ to be ¢ with
the X/’s deleted, that is, £/; := &;; if j < 7(i), £fj := &, j1 if j = 7(0), and let

Plxm-1 = (m = 1)7'n7" Ty ¥jsmjmr O,

I:I1(m1 + my, -,
(3.11)

\00 = ‘ﬁ(M, n, a)
[ . eM eYo
Ay = _Hl(ly " eAni?’ ¢, 5’) = Tg]
, [ em , ey
A = H1<m—l,n,m,£, f)s—igo':l
v [ eM eYo
Ag = _H1<m, " L emni?’ £ 5’) = -8—]

Note that P;xm-1) is independent of P,. If £ € [sup#| v.(f)| > M], there exists
f: € F with | v,(f:) | > M, so define events

Cg' = [| n1/2(Pr'1><(m—1)(f£) - p(n)(ff))l = (4a/(m - 1))1/2]
C; := C{ N AS.

By Chebyshev’s inequality we have P(C/) = %. By (2.14) it follows that P*(C;)
= Y, so by Lemma 3.2,

P*[sup#| va(f)| > M] — P*(A})

< P*[sup#| va(f)| > M; Ao]
(3.12)

4 1/2
< 2@*[supy| RY(Po(f) = Pscinn(f))| >M—<mf1) ;Ao;Aa]

= (I).
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Let
V?z = nl/z(Pn - PnXm) = (1 - (l/m))nl/2(Pn - Pr,tx(m-—l))o
By (3.11) we have A, N A§ C A¢, so by (2.13)

(3.13) ) = 2@*[supy| 3(f)| > (1 - g)M, A(’{J.

We would like to be able to condition on £ and bound the probability in (3.13)
with only the choice of X; from among the £;; remaining random. We have for
eachfe ¥

PlIva(f)] > (1 — ¢/8)M| £] < 2 exp(~ ¥((1 — ¢/8) M, n, var(va(f) | £)))

which gives a good bound only if var(v,(f) | £) is not much larger than a, so we
must condition on this latter event. Set

Fe=rt S, f(g), r=1
V(r,n, f, &) = (rn)™ Tk B (f(Ey) — FO)?
=var (v,(f)| &) ifr=m
By = [sup#V(2*'m, n,f, £) = 1 + 2¥%)a), k=1

_ &M
" 16mn'/2

and for each r, £, s let F;, C F be such that | #.,| = Ni(r, n, s, £, F) and for
each f € F there exists f,;(f) € Frs With Pox,|f — fres(f)| <s. Then

|va(f) = va(@)| < mn'/’Ppyn|f — g|

and from n-supremum measurability we know sup »| ¥3(f)| is measurable, so
using (3.12), (3.13), Lemmas 3.2 and 3.3, and (1.7), we get

P*[sup #| va(f)| > M] — P*(A§) — 2P*(A¢ N BY)

So -

< 2P*[sup #v3(f)| > (1 - g) M; Ag, By]

3e

= 21@*[811])3" "?l(frfso(f))l > (1 - E) M; Ag, BlJ
(3.14)

3
< 2 supeasns, | Fris, | SUp fp[l va(f)| > (1 - i‘é) M| E]

3e

< 4 exp(eyo/8) exp(—-np((l - —1-6> M, n, 1+ e/2)a>>

=4 exp(_(l - C)W(M, n, a))‘



1060 K. S. ALEXANDER

By (2.15) we have
(3.15) P*(Af) = exp(—¥(M, n, a))

so it remains to bound P*(A{N B$). If a = % then B = ¢ and we are done.
Hence we may assume (2.16) holds. We will proceed by an iteration. Define £
by £ = &+, and set

8 1= 2F %q
my, = 2F'm
Ay = [Hy(mp, n, si, &, F) < 22 Be2amn — (k — 1)log 2]
A} = [Hy(my, n, sk, £™, F) < 22 B2amn — (k — 1)log 2]
for all k = 1. Suppose we can show that
P*(A, N BS) = 2 exp(—22*mne’a — (k — 1)log 2)
+ 2P*(Ap+1 N Biy1), k= 1.

By (2.13) we have s; = ¢eM/16mn'/? and eyo/8 < 27 %%amn, so Ay C A,. For all
sufficiently large k& we have (1 + 2*%)a = % so B = ¢. Hence from (3.16) we
obtain by induction

P*(A§ N BY) = P*(A4,; N BY)
=< Yo 2% exp(—22*Bmne?a — (k — 1)log 2)

—92k-13

(3.16)

=2 Y71 exp( mne’a)
= 8 exp(—y¥(M, n, a))

using (2.13). In combination with (3.14) and (3.15), this proves the proposition.
It remains to establish (3.16). Fix k£ = 1 and set

fir=f{™ =mi 7 f(&y)
Fi=mi* Tih o f&5)
V(f) = V(mw, n, f, £)
V'(f) := V(my, n, f, £™)
Vo(f) := V(f) = V'(f).

Then V(f) and V’(f) are independent copies of the “sample variance” for the
choice of X; from among the £;;, but with the “sample size” m, instead of m for
each i. We will take advantage of the fact that as k increases, V(f) becomes
increasingly likely (conditional on B;+;) to be not much larger (uniformly in f)
than a. We have

EV(f) = (mgn) ' (mp — 1) T, var f(X;) < a
var V(f) = n7?mp3(my, — 1)* T E(f(X)) — Ef(X:))* < a/nm,.



INEQUALITIES FOR EMPIRICAL PROCESSES 1061
By Chebyshev’s inequality, (2.13), (2.16), (3.11), and Lemma 3.2, we have anal-
ogously to (3.12):
P*(AxNB5) = P*[sup #V(f) > (1 + 2" %)a; As]

1/2
(3.17) < 2P*[sup #Vo(f) > 2¥ %a — (ﬁ:—n) ; Ar; Al

= 2P*[sup #Vo(f) > 2% %ca; Apsi]-
Now consider the symmetrized “sample variance” Vo(f):
Vo(f) = (men)™ T T74 (F(E5) = F)* = (FGimyes) = F1)?)
(3.18). = (men)™ i T4 [F () + fEimpei) — Fi = F1]
A (&5) — F(Eimi)]
Let (6;;) be iid with P(9;; = 1) = PP(8;; = —1) = 4, and define
Yii () = f(&;) — f(Eimpei)
Zi(f) = f(&;) + [(Eimeei) — Fi = F{
W(f) := (mpn)™ T T2 0,5 Yi(F) Z5(f).

Then W(f) has the same law as V,(f) by (3.18), and in fact the last probability
in (3.17) is unchanged if V, is replaced by W. By Theorem 2 of Hoeffding (1963),

(8.19)  P[W(f) > t|£] < exp(—min’t?/2 Ti T4 Y5(F)Z5(f)).
Since
(men)™ Ty T/ YE(HZE(F) < (man)™ i S5 Z3(F)
< 2(mpn)™t Tk TPH (f(&y) — F{™)?
= 4V(mes1n, f, £) < 4(1 + 25 %)a
for £ € Bj41, and

men(2¥%ea)® o 10,
—_—_ >
81+ 2"0)a = 2**“e*amn,

it follows from (3.19) that
(3.20) P[W(f) >‘2k'4ca | £ € Biri] < exp(—2%*"2c%amn).
The other observation needed to bound the right side of (3.17) is that
V() = V(@) = (men)™ Ti T4 1(F (&) — Fi)? — (8(&;) — 8)°
= 2(mpn)™ Ty 74 11f (&) — Fil — 18(85) — &l |
< 4Ppxm,|f — &1
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so | Vo(f) — Vo(g)| < 8Puxm,,, | f— &l, and therefore
(3.21) | W(f) — W(g)| = 8Ppnxm,,,If —&I.

Hence by (3.17), (3.20), (3.21), and Lemmas 3.2 and 3.3, analogously to (3.14)
we get

P*(Ax N B) — 2P*(Ag+1 N Bis)

< 2P*[supsW(f) > 2*%ca; Aps1; Brsil
< 2P*[sup # W (fm,. 60, (f)) > 25 %eat; Apir; Brail
= 2sup€€Ah+1ﬁBh+1 I ‘gmk+1£sk+l l sup y[P[W(f) > 2k 4ea l ‘E]

< 2 exp(—2%*"Bmne?a — (k — 1)log 2)
s0 (3.16) holds and we are done. O

PROPOSITION 3.4. Let n, &, {, ¢, o, and M be as Proposition 3.1, with &
n-deviation measurable. Define to, t,, and b by

3(to, Z (Pw)isn) = % ep(M, n, )
Hi(t, F (Pw)izn) = 4ent}
b= ¢¥(M, n, a).
Suppose that one of the following holds:

\i) (A) holds for (¢, M, n, a, ¢, b);
(ii) (A) holds for (Z ¢, eM/16, n, s%/4, %, b) for some s = t, and P €  such
that
(3.22) ©(eM/16, n, s%/4) = 2¢(M, n, a);

(iii) (A) holds for (Z ¢, eM/16, n, s?/4, Y, b) for some s = t, and ¥ € Y such
that (3.22) holds, and

(3.23) M > 2°:73%[%(s/4, to, F;, (Pi))izn)-
Then
P*[sup #| va(f)| > M] < 16 exp(—(1 — ¢)¥ (M, n, a)).

PrOOF. (i) is just Proposition 3.1, where ¢ (M, n, ) is large enough that the
“chaining” of (3.1) is not needed. Under (iii) we construct the chain of (3.1) from
00 = to to 6 = s; having s = t, ensures that we can use the upper inequality in
(1.6) in bounding P,, as in (3.7) and (3.8). Under (ii) we can omit the middle of
the chain, taking N = 0 so [P, = 0.

For the specifics, we begin with (iii). We may assume s < t,, otherwise (ii)
holds. Let N and §;, 0 < j < N, be as in Lemma 3.1, with H(x) := Hi(x, &,
(P))i=n), t := to, and s from (iii). Let 5, := 8¢7%; H(3;+1)/%,, 0 <j < N. As in
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(3.2) and (3.3) we have by (3.23):
Yo m; < eM/8
P, < 2 exp(—(1 — &)Y (M, n, a)),
while as in (3.7) and (3.8), we get from the assumption that s = ¢, that
P, < 3 exp(—(1 — &)y (M, n, a)).

Let % := {1+ (f— 8)/2: f, g € F var v,(f — g) < s*}. Then Hi(r, n, u, 7, £)
< 2H(r, n, u, Z &), so we have (A) holding for (F, ¥, eM/16, n, s*/4, Y4, b).
Since %, is n-supremum measurable, from Proposition 3.1 and (3.22) we get that

Ps < P*[supfo [ (f)| > %l]

< 11 exp(—¢(M, n, a)).
If (ii) holds, then N = 0 so the above proof works without (3.23) or the

assumption s = ¢;. 0

REMARK 3.5. At times (when proving a central limit theorem, for example),
we do not need the sharpest possible bound on P*[sup #| v.(f)| > M]. The
following modification of Proposition 3.1 may then be useful. Let (A’) be the
same as (A) except that (2.13) is weakened to

m>max 1+2_1.1£ E .2.2_
- e2M? ¢’ fan

and the right side of (2.16) is replaced with e for k = 1. Let n, & ¢, ¢, a, and
M be as in Proposition 3.1, and let b > 0. If (A’) holds for (£ ¥, M, n,.a, ¢, b),
then

P*[sup #| va(f)| > M]
< 4 exp(—(1 — &)Y(M, n, a)) + 6 exp(—2""'mne?a) + 3e™°.

The only changes in the proof are in the bounding of P*(A§) and P*(Ag N Bj)
(we no longer know A§ C A;). This time P*(A§) < e~ and we must use the
following:

P*(A4 N BS) = P*(A§) + P*(4; N BY)
<e P+ 1A2 3 exp(—2%* Bmne’a)
< e + 3 exp(-2""mnela).

This leads to a modified version of Proposition 3.4 (iii). Let n, & ¢, ¢, a, M,
to, and t; be as in Proposition 3.4, and let > 0 and

Fo(s) ={1 + (f — 8)/2: f, 8 € F, var v,(f — g) < 5°}.
If (A’) holds for (F(s), ¢, eM/16, n, s?/4, Y%, b) for some s = t; and ¥ € ¥, and
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if (3.23) holds, then
P*[sup #| vn(f)| > M]
=< 5 exp(—(1 — &)Y(M, n, a)) + 4 exp(—¥P(¢M/16, n, s2/4)/2)
+ 6 exp(—27%mns?) + 3e7%. 0O

To apply Proposition 3.4 to VC graph classes, we need the next lemma.

LEMMA 3.6. Let ¥ be a VC graph class of functions 0 < f < 1, with (v, k)-
constructible graph region class. Let y E ¥, M >0,0<e<1,a>0,andn= 1. If

(3.24) a2 = M < n'?
64 kv
(3.25) M= m
(3.26) (M, n, a)= 2% ve'L (g v S)

then (A) holds for (&, ¥, M, n, a, ¢, u) for all u> 0.

PROOF. Let ¢y := ¢(M, n, o), and let m be the integer part of 2m,, where
my := (8n)" exp(eyo/64kv). Suppose we can show that m satisfies (2.13). Then
2% 8 = ¢ M/64mn'’? and ey/16 < 22 Ye’amn — (k — 1) log 2 for all k = 1, so
by (2.17), (A) will follow if

(3.27) 4kvL(4k/u) < eyo/16 for u = eM/64mn*/2

But u = kv/mn by (3.25), so (3.27) is immediate from the definition of m, and
the lemma follows.
To prove (2.13), set
k
e

Then by (3.24), (3.25), and (3.26) we have a = 64/¢ and
v a3 215 210(1
m02<'8-;)a42"8—2';;21+82—w

so the first two terms in (2.13) are smaller than m,. Since e®* = a®x/La =
2%kx/e8a for all x = La, by (3.26) we have

v 2% eb 2N

mo = =
8n fa 2%~ eZan

which takes care of the third term in (2.13). For the last two terms we have from
(3.24) and (3.27)

12 12
mo = <i>e8"“ > a2 2 > max (—g—-— 8—1‘{/2) ]

8n o e2na’ ean

\%

a::=

SR
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PROOF OF THEOREM 2.8. We may assume M < n'? and « < %. Under (i),
the theorem then follows from Lemma 3.6 and Proposition 3.4(i).

Under (ii), we may assume (2.21) is false (otherwise (i) applies.) We will use
Proposition 3.4(iii). Let t,, t; be as in Proposition 3.4. By Lemma 2.7, (2.19),
(2.17), and (2.23) we have

" 8k?
I(s/4, a'/?) sf/ <2kvL( )) dx
s/4
B\\ V2
it ()" < o

for all s > 0. Hence (3.23) holds for «'/? in place of to, but by (2.18) we may then
assume (3.23) holds for ¢o.

To establish (3.22), take ¢ = ¢, and s := (vkL(en/v)/en)? by (2.22) we have
eM/16 = 2'°n'/%s2, 50 by (1.6), (2.22), and the falsity of (2.21),

(3.28)

V1(eM /16, n, s2/4) = eMn'/?/4 = 2V¢~%2kyL(en/v)

(3.29) AR

= 2% kvl ( ' s_) = (M, n, o).

Now (2.22) and M < n'/2 give 8k < en/v, so

5(s, Z (Puy)isn) < 2kvL(8k%/s?)
(3.30) < 4kvL(en/v) = 4ens?
so s = t;. Finally, (2.20), (2.22), and (3.29) give us (A) for

eM

<~9~ \bla ’ na /4a b)

by Lemma 3.6, so Proposition 3.4(iii) finishes the proof. [

PROOF OF THEOREM 2.11. Take k:=1, a:= %, ¥(M, n, a) :==2M? and ¢ :=
21yLM/M?, where v := V(¥). We may assume M < n'2and ¢ < 1.

If M = (n/v)"8, Theorem 2.8(i) is easily shown to apply, proving the theorem.

If M < (n/v)"®, we use Proposition 3.4(iii), with ¢ = y; and s :=
(vL(en/v)/en)/2. By (2.17) we have t = 8 M2, 50 as in (3.28),

I (s/4, to) < 8(vt3Lts?)V2 < 27%%2 ]

50 (3.23) holds. Since 8k < 2!! = eM?/v < en/v, (3 30) shows s = t;.
To obtain (A) we use Lemma 3.6. From

eM _ (2"'vLM)? - (2'"'v)* (L(n/v)/8)*

16 16eM® ~— 16¢  (n/v)*®

> 214n5/832

(3.31)
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we get using (1.6) that

eM  §? 1 eM
121 <‘1‘é‘, n, Z) Z3 eMn'”L <4n1/232)
4

(3.32)
> 8M*%LMLn = 2% (g Vv ;)

and (3.31) also gives
M = 24n'2%s? > max <s, 2’%%13)’

so (A) follows for (% Y1, eM/16, n, s*/4, %, b). The second line of (3.32) proves
(3.22), so we are done. [
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