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ON DOMAINS OF UNIFORM LOCAL ATTRACTION IN
EXTREME VALUE THEORY

By T. J. SWEETING

University of Surrey

An absolutely continuous distribution F is said to be in the domain of
uniform local attraction of the absolutely continuous distribution H if the
density of the normalized maximum of an independent sample of size n
converges locally uniformly to the density of H as n — oo,

Under the sole restriction that F is eventually increasing, the domains of
uniform local attraction to the three types of extreme value distribution are
shown to be characterized by the usual Von Mises’ conditions. The equivalent
form of conditions used here greatly simplifies and shortens proofs of known
results. In particular, L, convergence and convergence of the k upper sample
extremes are investigated and extensions to known results derived.

1. Introduction. A simple condition for a local limit theorem to hold for a
distribution in the domain of attraction of the Type III extreme value distribution
was given by Pickands (1967). More recently, de Haan and Resnick (1982) have
made a more detailed study of local limit theorems in this case, and also for the
Type I distribution. It is shown here in Theorem 1 (iii) that the domain of
uniform local attraction, in the sense of uniform convergence in compact subsets,
of the Type III distribution, is characterized by the slow variation of a certain
function. This condition is equivalent to the Von Mises’-type condition given in
de Haan and Resnick (1982), as well as Pickand’s condition, but is both simpler
to state and simpler to work with. Furthermore, our condition leads to a unified
approach to the characterization of all three domains of uniform local attraction.
In view of the equivalence of our conditions and those given in de Haan and
Resnick (1982) certain parts of Theorem 1 follow from results in de Haan and
Resnick (1982), but independent proofs are included here for completeness, and
since these are relatively short.

The advantage of using our form of conditions becomes apparent when we
come to make a more detailed study along the lines of de Haan and Resnick
(1982). In Theorem 2 we explore the uniformity of convergence over the entire
range of the limit distribution and the characterization given is new. We use our
conditions in Theorem 3 to prove L, density convergence results. For the Type I
and III distributions L, results were obtained by de Haan and Resnick (1982);
the proofs given in Section 3 here however are far simpler. Finally the joint
density convergence of the k upper sample extremes is given in Theorem 4.

2. Statement of results. We employ the notation H,,(x) = exp(—x77),
x>0, Hy,(x) = exp(—(—x)"), x < 0 and H3(x) = exp(—e™), x € R, where vy is a
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positive parameter. Let X;, --., X, be independent random variables with
common distribution function F, and set « = inf{x:F(x) > 0}, w = sup{x:F(x)
< 1}. Let H,(x) = P(X(» =< x) = F*(x). The distribution F is in the domain of
attraction of the nondegenerate distribution H if there exist constants ¢, and
d, > 0 such that lim,_,..H,(c, + d,x) = H(x) at all continuity points of H. The
three types H, ., Hy, and H; exhaust the possibilities for the limit distribution
H, and classical extreme value theory characterizes their domains of attraction,
which we denote here by 9., 9,, and I, respectively. (See Galambos, 1978,
for example.)

Suppose that the distribution F is absolutely continuous with density f. We
shall say that F is in the domain of uniform local attraction of H if there exist
constants ¢, and d, > 0 such that

(1) fa(x) = h(x) locally uniformly as n — oo,

where f,(x) = nd, f(c, + d.x)F" (¢, + d,x) is the density of (X, — c,)/d, and
h is the density of H. Since density convergence implies convergence in distri-
bution, the three extreme value distributions exhaust the possibilities for H, and
we denote their corresponding domains of uniform local attraction by &4, <2,
and <.

We shall say that F is eventually increasing if there exists xo € (o, w) such
that F(x,) < F(xy) whenever x, < x; < %3 < w. In Theorems 1-4 below F is
assumed to be an eventually increasing absolutely continuous distribution func-
tion. Theorem 1 characterizes the three domains of uniform local attraction in a
simple and appealing way. Define for ¢t > ¢, the inverse function a(t) =
F1(1 —t™) and b(t) = tf(a(t)). The function a(t) is increasing and continuous,
and lim; ,.a(t) = w.

THEOREM 1. (i) F € A, iff o = ® and a(t)b(t) — v. In this case one may
take ¢, = 0 and d, = a(n).

(ii) FE€ Y. iff w < o and {w — a(t)}b(t) — v. In this case one may take c, =
wandd,=w— a(n).

(iii) F € < iff b(t) is slowly varying. In this case one may take ¢, = a(n) and
dn = {b(n)}

Pointwise convergence in case (iii) was proved by Pickands (1967) under a
condition equivalent to the slow variation of b. Local uniformity in case (iii) was
proved by de Haan and Resnick (1982) under the Von Mises’-type condition.

f(x) [¢ (“log F(t)) dt _ 1
(log F(x))® -

(2 lim,y,

(The case w = o was treated in de Haan and Resnick, 1982 for convenience.) We
shall show that (2) is equivalent to the slow variation of b, and so Theorem 1
(iii) states that the Von Mises’ condition (2) is necessary and sufficient for local
uniform convergence to the Type III distribution. Uniform convergence in case
(i) was obtained by Anderson (1971) and characterized by de Haan and Resnick
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(1982) under the Von Mises’ condition

lim, ., — 122 f(x) =v
% —log F(x) "
again equivalent to a(t)b(t) — v. The condition given in case (ii) is equivalent
to :
L o= D)) _
1 _log F(x) v

Note that no assumptions about the boundedness of f are needed in Theorem
1. We can however deduce the eventual boundedness of f in cases (i) and (iii),
but this is not necessary in case (ii). Finally note that in all cases our conditions
imply that f is eventually positive. (Eventual boundedness and eventual positivity
of f are defined on («, w) in an obvious way.)

THEOREM 2. (i) IfFisin A fory >0, %%, fory > 1, or & the convergence
in (1) is uniform in a neighbourhood of ®, 0, © respectively.

(ii) For F as given in (i) the convergence in (1) is uniform in R*, R™, R
respectively iff there are constants B, C > 0 such that

3) f(x) < C{F(x)}™8 forall x € (a, w).

REMARK. Theorem 2(ii) characterizes the three domains of uniform local
attraction, in the sense of uniformity over the entire range of the limit distribu-
tion. Uniform convergence in the case of Type I and III distributions was proved
in de Haan and Resnick (1982) under the assumption that f is bounded. The
condition (3) permits f to become unbounded as x | a.

THEOREM 3. (i) If FE <, thenifp>(1+v)and A>0

lim, f | fu(x) = hyi,(x)|P dx = 0.
A

(i) IfFE %, thenfor0<p<(1—v)'ify<l,andforalp>0ifvy=1,
and every A >0

0
limyo, f [ fa(x) = hoy(x) |7 dx = 0.

A

(iii) If F € 4 then for all p > 0 and every A > 0
lim, o f | fa(x) = hs(x) |? dx = 0.
-A
If additionally f € L, then the limit results in (i)-(iii) remain true on setting
A = —in (i) and A = + in (ii) and (iii).

REMARK. L, results in cases (i) and (iii) were proved by de Haan and Resnick
(1982). Our proofs given in Section 3 are considerably shorter than theirs.
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Finally, Theorem 4 gives the joint density convergence of the k upper sample
extremes X, - -+ , Xn—t+1), when F is in one of the domains of uniform local
attraction. The results here are local forms of the results given in Weissman
(1978), and would be essential for statistical use whenever one wished to approx-
imate the likelihood function based on these extremes. The theorem is most
simply formulated in terms of appropriate asymptotically independent variables.
Although the normalizing constants in Theorem 1 are used, the results will
clearly hold for any other equivalent normalizing sequences.

THEOREM 4. (i) Suppose F € £, and let hyn(21, - -, Zr-1, %) be the joint
density of Z; = Xm-js/Xw-ip» J = 1, --+, k — 1, and X@u-s+1/a(n). Then as

n— o
w21, -+ 26m1, %) = (U5 Fvar e exp(—xk’)/(k - 14

uniformly for %, € (e, ®) and z; € (1, ®), j =1, ---, k — 1, for every ¢ > 0. If
additionally condition (3) holds then one may take e= O.

(ii) Suppose F € 4., and let by (21, - - - , k-1, X&) be the joint density of Z; =
(Xinjs) — 0}/ (X —@hj=1, -+, k=1, and {Xp-r+1) — 0}/{w — a(n)}. Then
asn— o : .

Bin(ziy - 2e-1, 1) = {150 Jv2 iy (=) ™™ 1exp( (=xx)")/(k — 1)}
uniformly for %, € (A, —¢) and z € (g5, 1),j =1, .-+, k=1, forall 0 <e< A
and ¢; > 0. If v > 1 one may take A = +, and if further condition (3) holds then
one may takee =¢=0,j=1,--- ,k— 1.

(iii) Suppose F € % and let hyn(z1, - -+ , 2k-1, %) be the joint density of Z; =
b(n){Xwmjsn — Xwpl j =1, -+, k= 1, and b(n){Xn-r+1 — a(n)}. Then as

n — o

Pun(21, -+ 5 201, %) — {[152) j exp(—jz;)}{exp(—kxs)exp(—exp(—xx))/(k — 1!}
uniformly for x, € (—A, ©) and z; € (0, ®),j =1, ---, k — 1 for every A. If
additionally condition (3) holds then one may take A = +.

3. Proof of results. We first prove those parts of Theorems 1-3 relating to
%; these results will be used in the proofs of the remaining parts. For ease of
reference we record the following standard results on slowly varying functions.

LEMMA 1. Suppose U is slowly varying and let ¢ > 0. Then there exists to such
that for all t > t,

i) t7< U) <ty
(i) (1 —e)x < U(tx)/U(@t) <A +¢e)x’forall x = 1.

Deﬁne rit) =t fon {1 — F(y)} dy and for r(t) < « let
u,(x) = =log t{1 — F(a(t) + xr(t))}.

Thus for each t, u, is an eventually increasing continuous function and it follows
from Galambos (1978), Theorem 2.1.3, for example, that F € Z; iff r(t) < e for
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all t > 1 and u:(x) — x locally uniformly (l.u.) as t — . Furthermore the
normalizing constants may be chosen as ¢, = a(n), d, = r(n). The inverse of u,
is ur'(x) = {a(te”) — a(t)}/r(t), and it is readily shown that u,(x) — x Lu. iff
url(x) - x Lu.

The next lemma establishes the equivalence of condition (2) and the slow
variation of b. Note that (2) is equivalent to the condition lim, ..r(¢t)b(t) = 1.

LEMMA 2. b is slowly varying iff lim,_..r(t)b(t) = 1.

PROOF. Note that r(t) = [ {b(t/u)} ™" du so that, writing U(t) = {t?b(t)} 7,

we have
r(t)b(t) = <f Uf(s) ds)/tU(t).

It follows from Karamata’s theorem (de Haan, 1970) that r(t)b(t:) — 1iff Uis
regularly varying with index —2; that is, iff b is slowly varying as required. O

PROOF OF THEOREM 1 (iii). From Lemma 1(i), b slowly varying implies that
{b(t)} ™" = ta’(t) eventually exists and r(t) ~ {b(t)} ' from Lemma 2. Write A (¢t)
= a(e’) and note that A’(t) = {b(e)} ™" to give u;(x) = [§ {r(t)b(te*)} ' dv — x
lu. Thus F € Z; and F* (a(n) + r(n)x) — Hs(x) uniformly in x. It therefore
suffices to show that

(4) nr(n)f(a(n) + r(n)x) - e™ lu

Write a(n) + r(n)x = a(n exp(y,)) where y, = u,(x) — x L.u. Then the left-hand
side of (4) is exp(—y»)r(n)b(nexp(y,)) — exp(—x) Lu. as required.

Conversely, suppose there exist sequences c,, d, > 0 such that (1) holds. Then
F € Z; and so H,(a(n) + r(n)x) — H(x) uniformly in x. By Lemma 2.2.3 in
Galambos (1978) we have r(n) ~ d, and {a(n) — c,}/d, — 0, and it follows from
(1) that (4) holds. Let x € R and write n = [t], x, = x + log(¢/n). Then r(n)b(te*)
= exp(x;)n r(n)f(a(n) + r(n)y:) where y, = u,(x;) — x, since F € ;. It follows
from (4) that r(n)b(te*) — 1 for all x, from which the slow variation of b then
follows. O

PRrROOF OF THEOREM 2 (.£3). (i) Suppose F € %4; by Lemma 2.2.3 in Galambos
(1978) it suffices to show that f,(x,) — 0 for every sequence x, — o with ¢, =
a(n), d, =r(n). But

fa(x,) = nr(n)f(a(n) + r(n)x,) = exp(—=y,)r(n)b(n exp(y,))

where y, = u,(x,), and it is easily shown that y, — o. Finally, since b is slowly
varying and r(n) ~ {b(n)}7, it follows from Lemma 1(ii) that for n > n,

(?) fn(xn) = CleXP(—(l - e)yn) -0

as required.
(ii) Write ¢, = nexp(y»), so that

(6) fn(xn) = exp(=ya)r(n)b(t.)(1 — ¢5*)" .
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Since x, — —o iff y, — —x, we need to show that (6) tends to zero for every
sequence y, — —o. Choose no such that y, < 0 for n > no. Since b is slowly
varying and r(n) ~ {b(n)} 7%, it follows from Lemma 1(ii) that there exists ¢, such
that whenever n > no and t, > t, we have r(n)b(t,) < csexp(—ey,). Using 1 — x
< e~* for x > 0 in (6) now gives

(7) fu(%n) < coexp(—(1 + &)yn)exp(—(1 — nexp(—=y,) — 0

as n — o through any subsequence for which ¢, > t,. Suppose however that
t, < to. Then a(n) + r(n)x, < a(ty) < , and so F(a(n) + r(n)x,) < n where
n = F(a(t,)) < 1. Thus from (3) f.(x,) < Cnr(n)y" ' — 0 through any
subsequence for which ¢, < &, since r is slowly varying.

Conversely suppose that for every B and C we can find a corresponding x such
that (3) fails. We can then find a sequence (2,) such that f(z,) > F(z,) ™*". Set
%n = {2, — a(n)}/r(n); then for this sequence we have f,(x,) > nr(n) — o since r
is slowly varying, from which we deduce that the convergence in (1) cannot be
uniform as hs(x) is bounded. O

PROOF OF THEOREM 3(iii). In view of Theorem 1(iii) it suffices for the first
assertion to show that lim sup, .. [% fa(x) dx — 0 as A — «. Put s = exp(u,(x))
and note that

fo(x) dx = s7P{r(n)b(ns)}P 1 — (ns) 47D ds.
Let 0<e<p/|p — 1|; since b is slowly varying and r(n) ~ {b(n)} ", from Lemma

1(ii) there exists n, such that for n > n, we have {r(n)b(ns)}*™* = css*'?"*\.
Therefore, writing s, = exp(u,(4)),

8 J; folx) dx < cs f s™@+1=lp=1D ds < ciexp(—(p — e|p — 1)un(4))

" and the result follows, as lim, ,«u,(4) = A.

For the second assertion, let A > 0, ¥ = u,(x) and ¢, = ne”. Choose n, so that
y < 0 whenever x < —A and n > no; then from Lemma 1(ii) there exists £ such
that whenever n > no and t, > t, we have {r(n)b(t,)}’ ™' < csexp(—¢|p — 1| y).
Set A, = —u;'(log(to/n)) = {a(n) — a(to)}/r(n); then if —A, <x <A and n>n,
we have

f2(x) dx =< ceexp(—(p + ¢|p — 1|)y)exp(—p(1 — n7")e™) dy

from which lim,_,.lim sup,_.. [ Z4, fa(x) dx = 0 follows.
Finally, we need to show that lim, ... [Z%" fa(x) dx = 0. But if x < —A, we
have f,(x) < nr(n)f(a(n) + r(n)x)n""" where n = F(a(t)) <1 and so

-A, a(ty)
f_ fo(x) dx < (™ )PP Nn) | fP(u) du >0

a

as n — o, since r is slowly varying. 00

We now prove the remaining assertions in Theorems 1-3. Let g be a continu-
ously differentiable increasing real-valued function on R, and let X; = g(X),
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Fi(x) = P(X, = x), fi(x) = F{(x). Let a,(¢) = FT'(1 — t7), bi(t) = tfi(aL(¢));
then

© a:1(¢) = g(a(®)), bi(t) = b(t)/g"(a(?)).

PROOF OF THEOREM 1; (i) AND (ii). We deduce (i) from (iii), and then (ii)
from (i).

(i) Since 4., C 9., it suffices to assume that w = o and prove that F € ¥,
iff a(t)b(t) — v. Let g be a continuously differentiable increasing function on R
with g(x) = log x, x > 1, let X; = g(X), and a3, b; be the functions a, b for Xj.
Then from (9) for ¢ > ¢, we have as(¢t) = log a(t), bs(t) = a(t)b(t), and so a(t)b(t)
— v is equivalent to bs(t) — «v. But if f, is the density of X(,/a(n) and f;, that
of v(Xs(n) — az(n)), these are related for xa(n) > 1 by

(10) fa(x) = yx 730 (y log x).

It is now a relatively straightforward matter to deduce from Theorem 1(iii) and
(10) that b3(t) — « iff F € 4, (using Lemma 2.2.3 in Galambos, 1978, for the

necessity).

(ii) Since %, C 9,, it suffices to assume that w < o and prove that
F e %, iff {w — a(t)}b(t) — v. Let g(x) = (w — x) 7}, x < w, and X; = g(X).
Then, with obvious notation, we have from (9) that a,(¢t) = {w — a(t)} ™}, by (t) =
b(t){w — a(t)}? and therefore the given condition is equivalent to a,(¢)b;(¢) —
v. But if f, is the density of {X(,) — w}/{w — a(n)} and f,,, that of X;(n)/a;(n),
we have for x <0

(11) fa(x) = £ fra(=x7").

The result readily follows from this and Theorem 1(i), using Lemma 2.2.3 in
Galambos (1978) for the necessity. 0

For the proofs of the remaining parts of Theorems 2 and 3 we need the
following lemma.

LEMMA 3. Suppose that b(t) — v > 0 and let ¢ > 0. Then there exists t, such

that
() A—e)x—e<ui'(x) <A +e)x+eforallx>0andt>ty, and
(i) QA+e)x—e<uil(x) = (1 —é)x+ eforall x <0 and te* > t,.

PROOF. Write U(t) = e*®; then u;'(x) = {r(t)} "log{U(te”)/U(t)}. Since
F € & we have u;'(x) — x and r(t) — v}, and it follows that U is regularly
varying with exponent 4 ~*. Thus from Lemma 1(ii), for all 6 > 0 there exists t,
such that forallt>tyand s = 1

(1= 8)s7 's U(ts)/U(t) < (1 + 6)s” .

The result (i) follows straightforwardly, with an appropriate choice of é.
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Result (ii) follows in a similar way on taking s < 1 and applying Lemma 1(ii)
to U(TX)/U(T) with T=tsand X =s1.0

PrROOF OF THEOREM 2 FOR % ,, %,. Let F € ¥ ,. The first assertion is
immediate from (10) and the fact that f;,(z,) — 0 as z, — o« from Theorem 2
(). For the second assertion, we need to show that f,(x,) — 0 when x, — xo <
0. Write 2, = v log x,, t, = nexp(us,(2,)), with us, defined in terms of the
functions as, rs for the random variable X;. Then it is easy to see that there
exists ¢’ such that a(n)x, > ¢’ implies that ¢, > t,. Suppose then that a(n)x, >
c¢’; we show that exp(—2,/v)fsn(2,) — 0 as 2z, — —. But from Lemma 3(ii) we
have z, = (1 + ¢)us,(2,) — ¢ for n > ny, and the result now follows from (7) for
a(n)x,>c’.

Suppose now that a(n)x, < ¢’ and set n = F(c¢’) < 1. Then from (1) and (3),
fo(x,) < Cna(n)n™ 2! — 0 from the regular variation of a(t) = exp(as(t))(from
the proof of Lemma 3). ’

On the other hand if (3) fails to hold, choose a sequence (z,) satisfying f(z,)
> F(z,) ™" Setting x, = z,/a(n) gives f,(x,) > na(n) — «, and the convergence
in (1) cannot be uniform as h, ., (x) is bounded.

If FE %4.,,y>1,in order to deduce that f,(x,) — 0 for (i) x, — 0, and (ii)
Xp — —0, —x, < {c’(w — a(n))}™}, it suffices to show from (10) and (11) that
exp(2,/7)fsn(2n) = 0 for (i) 2, — » and (ii) 2, — —, t, > t, respectively. In the
latter case the result is immediate from (7). In case (i) we have 2z, < (1 + ¢)u3 »(2,)
+ ¢ for n > ny. Since v > 1, from (5) we can choose ¢ sufficiently small to give
the desired convergence when z, — .

Suppose now that —x, > {¢’(w — a(n))} " and set n = F(w — ¢’”) < 1. Then
from (1) and (3), f,(x,) < Cn(w — a(n))y" 2! — 0 from the regular variation of
a(t) = (w —a(t)) ™"

On the other hand if (3) fails to hold, choose a sequence (z,) satisfying f(z,)
> F(z,)™"*.. Setting x, = (2, — w)/(w — a(n)) gives f,(x,) > n(w — a(n)) >
n™""* — o fore < 1 — v}, and the convergence in (1) cannot be uniform as
hs,(x) is bounded for v > 1.0

PROOF OoF THEOREM 3, (i) AND (ii). (i) In view of Theorem 1(i) it suffices
for the first assertion to show that lim sup,. [4 fa(x) dx — 0 as A — o. For
a(n)x > 1 we have from (10) f5(x) dx = {ye *"}P~'f% .(z) dz where z = v log x. For
p > 1 the result follows immediately from (8). For p < 1 Lemma 3(i) gives
{e™/"}P71 < exp[y ™1 (1 — p){(1 + &)u,(2) + ¢}] and it now follows as in (8) that,
provided (v + 1)p > 1, we can choose ¢ sufficiently small so that

j; fe™/"}P7If5n(2) dz < crexp(—{p — v7'(1 = p) — (1 + ¥y )e(1l — p)}un(4))

and the result follows, as lim,_,.u,(4) = A.

+ For the second assertion the proof of Theorem 2(i) gives uniform convergence
on a(n)x > c’, and it suffices to show that lim, . [ An f2(x) dx = 0 where A, =
¢’/a(n). But if x < ¢’/a(n) we have f,(x) < na(n)f(a(n)x)y™ * where n = F(c’)
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<1 and so

A, ¢’
J: f2(x) dx < (ny™ YHPaP Y(n) f fP(u) du — 0

as n — o from the regular variation of a(n).

(ii) The proof is very similar to (i); for —x < w — a(n) we have from (10) and
(11) f5(x) dx = {ye*"}P~'f ,(z) dz where z = —ylog(—x). Again using Lemma 3(i)
one finds that forp > 1

j; {eMPf50(2) dz < csexp(—{p — v (p — 1) — (1 + v Ve(p — D}un(A))

and the result follows, since lim, ,.u,(A) =A andp — vy (p — 1) > 0.

For the final assertion consider the range —A, < x < —A < 0, where A, =
{¢’(w — a(n))}™". The only possible difficulty occurs when p < 1, in which
case Lemma 3(ii) gives {e”"}"™* = exp[—y (1 — p){(1 + &)un(z) — ¢}], and
limu_olim sup, .. [Z4, f5(x) dx = 0 follows as in the proof of Theorem 3(iii).
Finally, lim, .. [Z% f2(x) dx = 0 follows in an entirely similar way to (i)
above. [

PRrROOF OF THEOREM 4. If Fis in the domain of uniform local attraction of
H, and the density convergence is uniform on (a, b), it follows from (1) that
nd,f(c, + dox) — h(x)/H(x) = /(x), say, uniformly on (a, b). But if f ,(xy, - - -,
%) is the joint density of (X—j+1) — ¢4)/dn, j =1, ..., k, we have

frn(xr, -y 2) = {1}, ndaf(en + daxp)}{I1E, (n — j + 1)/nIF"Hc, + dui)
for x, < --- <x,, and so
(12) fen(xr, -+ -, x) = {115, 2(x)}H (%)

uniformlyonae <x, < ... <x, <b.

(i) Here the right-hand side in (12) is v*(JT%; %)™ 'exp(—x%”) and from
Theorem 2 the convergence is uniform on e < x, < .- - < x; < ® for every ¢ > 0,
and if (3) holds, ¢ = 0. The result follows on transformation to Z;,j =1, -- .,
k—1. .

(ii) The right-hand side in (12) is v*{J]%: (—x;)}" 'exp(—(—x:)”) and the

convergence is uniform on —A < x,. < ... < x; < —¢ for every 0 < e < A. If
v > 1, from Theorem 2, A = oo, and if furthermore (3) holds, ¢ = 0. The result
follows on transformation to Z;,j =1, --- , k— 1.

(iii) The right-hand side in (12) is exp(— Y%, x;)exp(—e ™) and from Theorem
2 the convergence is uniform on —4A < x, < ... < x; < ® for every A > 0, and if
(3) holds, A = . The result follows on transformation to Z;,j =1, --- ,k— 1.0

Acknowledgement. The author is grateful to the referee for his construc-
tive criticisms, and for pointing out the equlvalence of the slow variation of b
and the Von Mises’-type condition used in de Haan and Resnick (1982).
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