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A REPRESENTATION FOR THE INTERSECTION LOCAL TIME
OF BROWNIAN MOTION IN SPACE!

By JAY ROSEN

University of Massachusetts

We present a “Tanaka-like” representation for a(x, B), the local time of
intersection for Brownian motion in 2 and 3 dimensions, where a(x, B) is

formally
l;f 8. (ws — w,) ds dt.

Section 1. Let W, denote three dimensional Brownian motion, and set
(1.1) X, t) =W, — W,.

X:R2 — R?® and induces a measure on R3, the occupation measure up of X relative
to B C R%, defined by

(1.2) ra(4) = N(X7H(A) N B),

where )\, denotes Lebesgue measure on R".
In [1] we showed that up < A3, and furthermore

(1.3) o (xa d\s ’

for B = [a, b] X [c, d], can be chosen to be jointly continuous in x, a, b, ¢, d with
probability one, as long as b < c. a(x, B) is called the intersection local time
- relative to B and plays the key role in Symanzik’s approach to quantum field
theory [2] and in work on polymers [3].

The main goal of this paper is to present a “Tanaka like” representation for
a(x, B). Let us first define the occupation measure vx of W relative to K C R by

(1.4) vk(4) = M(W(4) N K)
and set
1 1 1 1
(1.5) | Grk(x) = i f m dv(y) = . Lm ds,

the Newtonian potential of vx. We will show in Lemma 1 that Gy (x) is jointly
continuous in x, a, b. Here is our representation.
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146 JAY ROSEN

THEOREM 1. Forall x, a<b < c < d with probability one,

(16) _<%) a(x, [a, b] X [¢, d]) = Giop)(Wy — x) — Grpop) (W, — x)

d
—f VGV[a,b](Wt - x) . th

The integrand in the stochastic integral is defined in the course of the proof.
In Section 5 we present an analogous result for planar Brownian motion. It is
our hope that this combination of intersection local time, potentials and sto-
chastic integrals will be fruitful in the study of intersections of other diffusions.

Our work on local times owes a great deal to the survey article of D. Geman
and J. Horowitz [4] which in turn relies on the work of S. Berman, L. Pitt and
others (see the extensive bibliography in [4]).

We use the symbol é to denote constants, which may vary from line to line.

Section 2.
LEMMA 1. Gy (x) is Holder continuous of any order < 1, with probability 1.

PrROOF. We use the notation A = [a, b). Let

1 !
Rv”A(x)=fdeA(y)=£ md&

We have
b 1
sup,E(R,va(x)) = supxE J‘: |x — W,|” ds
b

_ 1 e _ds

= sup, I f Ta=ap exp(—| u|*/2s) du (2rs)"2

i L ([ et %) o
(2.1) —supr Iu—xl*< - exp(—| u|%/2) JZ) @)

exp(—| u|?/4b) f " dt\ du
< sup, f ——I—u—_—;l—,y— ( A exp(—| u|%/4) 7t> W

— 2 ’
< sup, f exp(—|u|?/4b) 1 du

. —_— <
lu—x" Jul@n?° <%

for any y < 2.
Using the Markov property in the form of Khasmingkii’s lemma [5, page 461],
we have .

(2.2) sup,E(R,v4(x))* = kl6X.
The inequality [5, page 468]

lz=x™ = |z=y|?| sclx—y|*(lz = 2|7 + |z — y|7«*?)
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valid for any o < 1 now shows that
(2.3) E(Rgva(x) — Reva(y))* < &|x — y|**
foranya<l,a+ <2

The multidimensional form of Kolmogorov’s lemma [10] applied to (2.3) shows
that a.s.

(2.4) | Rgra(x) — Rova(y)| = é|x —y|®

for all rational x, yin B, ={z||z| =n}andanya<1l,a+ < 2.
Hence Rgva(-) for any 8 < 2 is bounded on B, when restricted to the rationals,
hence by Fatou’s lemma it is bounded for all x € B,,. This means that the family

of functions of s,a <s < b,
1

Ix - Ws|ﬁ
indexed by x € B, is uniformly integrable. This shows that (2.4) holds for all x,
y € B,.

REMARK. It is clear from the proof that G, (x) is jointly continuous in x,
a, b.

Section 3. In this section we present a proof of Theorem 1 based on the
existence of « established in [1]. In Section 4 we show how to establish Theorem
1 independently of [1], and indeed recover the existence and continuity of « as a

corollary.
Let g be a C* function on R3 with g(p) = 1 for |p| < 1 and g(p) = 0 for
|p| = 2. The Fourier transform f of g is in S. Set f,(x) = n®f(nx) so that

[ fulx) d3 = 1.
We use the abbreviations

A = [a, b]
B =a, b] X [c, d).

By Lemma 1, Gv,(x) is continuous and bounded in x, (in fact Gvs(x) — 0 as
| x| = o0 since »4, has compact support). Therefore

(3.2) fr * Gra(x) — Gra(x).

fn * Gva(x) is a bounded C* function of x, which depends on the path only up
to time b < ¢ so that we can apply Ito’s formula

fn * Gva(Wy — x) — fn * Gva(W, — x)

(3.1)

d *d
(3.3 = f Vfn * Gra(W, — x) - dW, + -;— f Afy * Gra(W, — x) dt

d ’ d
=f an*GvA(W:—x)-th—%f fo * va(W, — x) dt

since —A(f, * Gvy) = f * va.



148 JAY ROSEN

Because of (1.3) we have

d b
j; fo* va(W, — x) dt = j; ffn(Wt —x —y) dva(y) dt
d b
(34) = f f fn(Wt - W, — x)ds dt

- f fuly = 2)a(y, B) dy = fo * a(-, B)(x).
By (3.3) and (3.4)
o+ (-, B)(x)/2

(3.5) d

=fo* Gra(Wy — x) — fo * Gua(W, — x) — f Vf. * Gua(W, — x) - dW,.
By the results of [1] a(x, B) is a continuous compactly supported function of

x so that letting n — o in (3.5) we have

—a(x, B)/2 = GVA(Wd - X) - GVA.(WC - x)

(3.6) d
= lim, . Vo * Gra(W, — x) - dW,.

To obtain Theorem 1 we will define the stochastic integral in (1.6) as the limit
in (3.6). In order to do this we need to show that this limit is indeed a stochastic
integral. However, it follows from Lemma 1 and (2.2) that Gv,(x) is a bounded
continuous L%(dP) valued function of x, (dP is the measure for Brownian motion)
so that (3.2) is true in L*(dP). Similarly f, * a(-, B)(x) — a(x, B) in L%(Q) by
the proof of Lemma 1 of [1]. Hence

d
f Vfn * Gua(W, — x) - dW,

converges in L?(dP). By a basic property of stochastic integrals, [7, page 25), this
limit is the stochastic integral of the L%(dP X dt) limit of

Vi * Gua(W, — x)

which we have denoted in Theorem 1 by VGrs (W, — x). (While we do not know
that Gvaa(x) is differentiable, our limit will be a distributional derivative.)

Section 4. In this section we directly establish Theorem 1 and obtain the
existence and joint continuity of a(x, B) as a corollary. This is analogous to the
now standard procedure in 1-dimension: first establish Tanaka’s formula, and
then use it to study Brownian local time (see e.g. [6], [7], [8]).

v Let

(4'1) Ln = Ln(t9 X, A’ (O) = vfn * G"A(Wt - X).
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Since as distributions
= 5— 7 A
(4.2) Vfa * Gva(p) = p/|p|*fx(P)?a(p) € L'(R®),

fexp(zp (W, = 2))p/|p|*(p)ia(p) dp
(4.3)

f f exp(ip - — W, = x))p/Ip|*.(p) ds dp.

We first show that L, is a Cauchy sequence in L%(dP X dt). Using the fact that
8nn(P) = fa(p) = fm(p) = 0if [p| =m =n

we have

d
f E|L, — L,|%dt

p-q
fdtf f drdsffdpdqexp( —(p—-4q) - )I EPIE

- 8mn(P)qmn(q) E(exp(ip - (W, — W) — iq - (W, — W,)))

d b s
52f dtf dsf drf feXp(—(s—r)IQI2/2)
c a a Ipllglzm

1
- exp(—(t — s) |p — q|?%/2) DTl dp dg

(4.4)
pl,lgl=zm 2 dp

(t—s=c—b=¢)

IA

6J;| fIql“’lp—ql'lexp(—slpl2/2) dp dq
ql=zm

séf lg|™dg—>0 as n=m—>o»
lglzm

where the last inequality is obtained by arguing separately on the region of p
space where |p| = | ¢g|/2 and where |p| = | q]/2.
Denote this limit by L. We will find a version of [¢ L - dW,, jointly continuous

inx,ab,c,d.
We will show that for a subsequence n

d d’ 2k
(4’"'5) E(sup,,(f L.(t x, a, b) - dW, — f L.t x’,a’,b’) th) )

<&l (x,a,b,¢,d) — (x',a’, b, ¢’,d’)|*5.
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The multidimensional version of Kolmogorov’s lemma [10] then shows that a.s.

d d’
f Ln(ty X, a, b) : th - f Ln(t7 x" aly b') ‘ th

(4.6)
=é(w)|(x,a b,c,d)— (x',a’,b',¢c’,d’) |

uniformly in n for all rational arguments (locally). This allows us to find versions
of [¢ L, - dW, satisfying (4.6) for all arguments locally. With these versions (3.3)
is now true a.s. for all (x, a, b, ¢, d) simultaneously.

Going to a subsequence in (4.4) we see that [ ¢ L, - dW, converges in L%dP)
and a.s. simultaneously for all rational (x, a, b, ¢, d). Using (4.6), we find that
this limit, f¢ L .- dW, also satisfies the bound in (4.6)—first for all rational
arguments, then with a suitable version—for all (x, a, b, ¢, d).

We now prove (4.5). Considerations such as those in (4.4) will show that it
suffices to prove (4.5) without sup,, but for ¢, independent in n. We bound our
expectation by three terms:

d d 2k
E(f L.(t, x, a, b) - dW, — f L.(t x', a, b) - th>

d d
(4.7) + E(f L.(t,x',a,b) - dW, — f L.(t, x',a’, ') - th>

2k

2k

d d’
+ E(f L.(t,x',a’,b") - dW, — f L., x',a’, b’) - dW,) .

Using the bounds [6, page 110]
2k k
E((fft th> ) =< c]E(f f? dt)
s s

|exp(iu - x) —exp(iu - x’)| = ¢ Jul’|lx—y]|° for e<1.

and

We can bound the first term in (4.7) by

(4.8) |x — x| I - 1%, (Ip-| | g.1)°F dp dg dr ds dt
where

Pj - G;
F= HJ’?=1 2

- E(exp(i Yk PAW, — W,,) +1i Skiq. - (W, — W.))).
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For the second and third term in (4.7) we have the bound

LkLderdsdtdpdq
1—e
sISIk‘Lk(LkFI/<1‘”’drdsdt> dp dq

with S respectively [c, d] X ([a, b]A(a’, b’])? and ([c, d]A(c’, d’]) X [a, b]>.
We will show how to obtain uniform bounds on

(4.11) f f F dr ds dt dp dg,

after which the reader can easily verify that the integrals in (4.8) and (4.10) are
bounded for ¢ small; 1/10 will do. This will prove (4.5).
We have

fderdsdtdq

<c2,ffn,-l|u, L+ | e )

1+ X5 U D) duy - - dusk

(4.10)

where the last inequality uses the fact that the Brownian motion has independent
increments,

h
f exp(—sp?) ds < é(1 + pH)7},
0

and all t; = ¢ > b = all s;. The sum is over all permutations = of {1, -- -, 2K}.
Using Holder’s inequality this is bounded by

3/5
= c(f HJ-l (1 + | Ty w|?)73 dui>

2/5
(4.12) - ( f [T [l gl (14 | 22 w7 du)

SE(f"'ijIil(|u2j—1| | ug|) 2

2/5
(1 + I 2 =1 u,|2)_5/2 du . dUQn> .

We use the inequality

’ 1 . 1+ |uyl?
=é

1+ |2:~1 ull 1+ |2?J—11 ut|2
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raised to the % power to bound the integral in (4.12) by

(4.13) éf f K, L ugjoa | ™21 + | SET 0] ?) ™4 uy| ™
-1+ |Zz2=1=1 ui|2)_7/4 du; - dugg

which is finite by induction on j if we can bound

(4.14) SuP"ff|u|_5/2(1+|u+a|2)-3/4|vl—1
(L4 u+v+al’) dudv.

But

sup, f [v]™X1 + v + b]?) "% dv < » trivially and

Sup,q f lu|™52Q + |u+ a|?)™%* du

<¢é+ sup,,f(l +u)2Q + |lu+a|?) 3 du

2/3 1/3
sé+supa(f(1+|u|)“5/4du> (f(1+|u+a|2)‘9/4du> < .

Return to (3.3) and (3.4) and integrate with respect to a continuous function
of compact support h(x) to obtain

1 d b
4.9) — Qf f fox h(W, — W,) ds dt
¢ d
=fo* h x Gua(Wa) = fo * h * Gva(W,) — f h(x) <f L, - th) dx.

Equicontinuity, (4.6), guarantees that
d d
f L, - dW, ——>f L . dW,(locally)

uniformly along a path dependent subsequence. The n — o« limit yields

1 (¢
—éffh(Wt—Ws)dsdt

d
= f h(x)<GvA(Wd —x) — Gra(W, — x) — f L. th> dx.

This establishes formula (1.5), and at the same time establishes the existence of
a(x, B). Formula (1.5) then yields the joint continuity of a(x, B) fora<b<c¢
<d. *

Section 5. In this section we briefly describe how to proceed in 2 dimensions.
The problem here is that the logarithmic potential is not bounded at c. Therefore



BROWNIAN INTERSECTION LOCAL TIME 153

in place of the G(x) = 1/(4w|x|) of 3-dimensions, we use K(x) the Fourier
transform of 1/(1 + | p|?). Note that K(x) > 0, and falls off exponentially at o,
with a logarithmic singularity at x = 0. As in Lemma 1 we can show Ky (x) is
continuous. Since (—A + 1) * K = § we obtain

THEOREM 2. For all x, a < b < ¢ < d with probability one

1
- (5) al(x, [a, b] X [c, d]) = K"[a,b](Wd - x) - Kl’[a,b)(Wc - x)
d
- f VKu[a,b](Wt - X) th
1 d
- 5 f Kl/[a,b](Wt — x) dt.
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