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RAPID CONVERGENCE TO EQUILIBRIUM IN
ONE DIMENSIONAL STOCHASTIC ISING MODELS

BY RicHARD HOLLEY!

University of Colorado

We consider one dimensional stochastic Ising models with finite range
interactions. For such processes we first prove that the semi-group of the
process converges exponentially fast on the L2 space of the Gibbs states.
Under the additional hypothesis that the flip rates are attractive, we prove
that the semigroup acting on the cylinder functions converges to equilibrium
exponentially fast in the uniform norm.

0. Introduction. The stochastic Ising model is a Markov process which
has been used to model the usual Ising model in nonequilibrium situations and
in particular to study the convergence to equilibrium. The details of the mecha-
nism of the stochastic Ising model are chosen so that the model satisfies a detailed
balance equation, which means that when started in equilibrium the process is
time reversible. Unfortunately, this requirement is not enough to determine the
mechanism uniquely even when the spins are required to flip one at a time, and
the author knows of no physical argument which can be used to pick one of the
infinitely many possible mechanisms as the “correct” one. For this reason it
would be nice to be able to draw conclusions about the stochastic Ising model
merely from information about the Gibbs states (or more specifically about the
potential which determines the Gibbs states) instead of having to use information
about a particular choice of the stochastic Ising model. In this paper we attempt
to do this in the case of one dimensional stochastic Ising models with finite range
interactions. Admittedly this is the simplest situation; nevertheless, our tech-
niques yield new results in this case and they show what type of information
about the Gibbs states in two or more dimensions is needed to carry out this
program in higher dimensions. We will point out the places where the one
dimensionality is critical for our argument when we come to them. Presumedly
our arguments which rely on one dimensionality can be replaced by other
arguments which work at all temperatures strictly above the critical temperature;
however, we have only been able to find such replacements at temperatures
which are bounded away from the critical temperature from below. Since we do
not have complete results in two or more dimensions and since the arguments
are simpler in one dimension, we restrict ourselves to one dimension in this
paper.

In order to state precisely what we prove we need some notation. Let Z be the
integers and let {Jr: R C Z} be a finite range translation invariant potential (i.e.
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for each finite subset R C Z, Jx is a real number with Jx = 0 if the diameter of R
is larger than L (the range) and Jg,, = Jrforall RC Z and allk € Z.)
If R C Z is a finite subset we define xr(n) for n € E = {—1, 1} by

xr(n) = HjeR’?(j)~
If AC Z let E(A) = {—1, 1}, For finite A and ¢ € E(A) and 5 € E we define
pala|n) = exp[—Yr Jrxr(n0)]
Y¢ exp[— Xz Jrxr(nf)] ’

where the summation over R is over those finite subsets R C Z for which R N A
# ¢, the summation over ¢ is over £ € E(A), and the configuration 7o is given by

[ i jea
W(])_{a(j) it jea.

The unique (since we are in one dimension and the range is finite) Gibbs state
for the potential {Jz} is the measure u on E with the property that for all finite
ACZ,and all n € E(A),

pa(n| -) is a version of P,(n| M4s)(-),

(0.1)

where for arbitrary A C Z, M, is the o-algebra generated by {n(k): k & A}, and
P,(n]| M,)(-) is the conditional probability under u that the configuration inside
A is n given the configuration outside of A.

Give E the product topology and let C(E) be the space of continuous real
valued functions on E. Let D be the set of local observables or cylinder functions
on E. That is

D = {f € C(E): there is a finite A C Z such that if n = 7" on A
then f(n) = f(n")}.

We define the generator, Q, of the stochastic Ising model as follows. First let
{di: k € Z} be a collection of functions in D with the property that dix(n) =
do(7*n), where 7%y € E is given by (7*7)(j) = n(j + k). Assume in addition that
there is an « > 0 such that dx(5) = « for all k € Z and all n € E and that d, does
not depend on the kth coordinate of 5. This last assumption means that if kp is
the configuration obtained by flipping the spin at k& then d(5) = di(*n). Otherwise
the functions d, are arbitrary. This is where the nonuniqueness enters in the
stochastic Ising model. Now define

(0.2) cx(n) = dr(n)pu (—n (k) [ 1)
and define Q on D by the formula
(0.3) Qf (1) = Trez cx(m)f*n) — F()].

The closure of © generates a positive contraction semigroup, T;: C(E) — C(E),
which has p as its only stationary measure (see [8] and [9]). Since u is stationary
for {T}: t = 0} it follows that {T',: ¢ = 0} can be extended to a semiigroup of positive
contractions on L%(u) (see [6]). We denote the extension by {T. t = 0} also. It
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will be clear from the context whether we are thinking of it as a semigroup on
C(E) or on L?(u). The flip rates (cy’s in (0.3)) were chosen to make this semigroup
self-adjoint on L%(u). This is just another way of expressing the fact that the
stochastic Ising model is time reversible when it is in equilibrium. See [6] for
proofs of these statements and [1], [2], [5], or [7] for further discussion of the
stochastic Ising model.
We use the following notation:
| - Il2 is the usual L% norm on the space L*(u) = L2
[l - || is the uniform norm on C(E).
If f € L*(n) then (f) = [ f(n)u(dn).
The main result of Section one is the following theorem.

THEOREM 0.4. For any one dimensional stochastic Ising model as described
above there is a constant v > 0 such that for all f € L?

(0.5) ITef = (F) Nz < e™Uf = (f) Do

If the flip rates, {c.: k € Z}, are attractive then we can strengthen the conclusion
of Theorem (0.4) to a pointwise statement. Before giving that result we define
what it means for the flip rates to be attractive. Notice that E is a lattice under
the ordering n < n’ if n(k) < 5’(k) for all k € Z. We say that f € C(E) is
increasing if n < 5’ implies that f(5) < f(’) and similarly for decreasing. The
flip rates are attractive if ¢, is an increasing function on {n: n(k) = —1} and a
decreasing function on {5: n(k) = 1}. Note that if dy(n) = 1and Jr < 0if |R| =
2 and Jr = 0 if | R| > 2 (i.e. except for the self interaction (| R| = 1) there are
only ferromagnetic pair potentials), then the flip rates {c,: k € Z} are attractive.

Section two is devoted to the proof of the following theorem.

THEOREM 0.6. For any one dimensional stochastic Ising model with finite
range potential and attractive flip rates there is a constant & > 0 such that for all
f € D there is a constant A; <  and

0.7 ITef = (f) lu < Are™.

1. L? convergence. D is a dense set in L2 but for f € D and t = 0, T'f will
not be in D. However there is a larger set

D, = {f € C(E): Zrez sup,|f(*n) = f(n) | < oo}

on which @ is still defined by (0.3) and for which T,:D; — D, for all ¢ = 0 (see
[9]). Our first goal is to find an expression for [ fQf dji, f € D;, which allows us
to get some information about the spectrum of Q.

*Recall the notation used in (0.1). For singleton sets we write & instead of {k}.

LEMMA 1.1. Forf€ D,
Qf (1) = Zrez Yeerw (f(E) — f(n)) du(n)pr(£] 7).
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PRrROOF. If f € D this follows immediately from the definitions. For f € D, it
follows since @ is a closed operator. [

LEMMA 1.2. Forf,g € Dy,

ngf du = —Yhrez f (Zecew (8(nE) — g(n))pr(§1 1))

(1.3)
(Zeerw (fF(E) = f(n))pr(E]n)) dr(n)u(dn).

PROOF.

(1.4) fgﬂf du = X f g(n) X (f(E) — f(m))pr(&1n) de(n)uldn).

Now conditioning the integral in the kth term on My, we get

(1.5) fo Locem 8(n0) X (f(nE) — f(no))pe(& | no) dr(no)or(o | n)uldn).

Next note that p(£| 1) = pr(£]|n0), de(n) = dr(no) and that for all
2o Ze (f(nE) — f(na))pr(&|n)pe(a|n) = 0.

Thus the expression in (1.5) is equal to

Xk f 2o (8(no) — X 8(mE)pr(§1m))
- (X (fE) — f(na))pr(E1m)) de(n)pr(o | n)u(dn)

==k f (Xe (g(m€) — g(n))pe(E1m))
< (Ze (fE) = fFm)pr(€1m)) de(n)p(dn). O

From Lemma (1.2) we obtain, for f € D,

(1.6) ffﬂf dp = =3 f (Ze (f@E) = f())pu(E1 1)) di(n)ua(dn).

It is possible to simplify this somewhat (see [6]), however, it will be most useful
to us left in this form. o

Zero is an eigenvalue for @ and the corresponding eigenvectors are the
constants. The fact that 0 is a simple eigenvalue is related to the uniqueness of
the Gibbs state. (see Theorem 1.12 of [6]).

By the spectral theorem we may write the L? semigroup T} as

T, =f e ™ dE()\),
B "o
where E()\) is the resolution of the identity corresponding to —Q. (i.e. —Q =

J5 N dE(X\)). We will prove Theorem 0.4 by showing that there is a gap of length
v > 0 between 0 and the rest of the spectrum of —Q.
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LEMMA 1.7. If there is a o > 0 such that for all f € D,

(1.8) 2k f (Ze (FE) — F)pu(E1m))uldn) = voll f = (F) 13

then for all f € L2,
(1.9) I Tef = (f)lz=e™Nf = ()2

where v = yoa > 0. (See the assumptions about d;, in the introduction.)

PrOOF. Since D, is dense in L% and T is continuous on L2, (1.9) will follow
for all f € L? if we can prove it for all f € D;. By (1.6) and (1.8) for all f € D, we
have

(1.10) - f fof du = vl f = (F) I3

Since T,1 = 1 it suffices to prove (1.9) with (f) = 0.
Now D, is contained in the domain of @ and T;: D, — D, hence

d 2 i —_ — 2
g 1 Tz = 2, (T, Tef) = 2(Tof, OTef) < =27 | Tof 2.

The conclusion follows immediately from this. 0

The results up to this point were already clear in [6]. The inequality in (1.8)
is some sort of mixing condition on the Gibbs state u. All previous successful
attempts to check (1.8) have proceeded by checking the conclusion of Theorem
0.6 for some particular choice of flip rates and then using the spectral theorem
together with (1.6). Even in one dimension this can be done only in special cases.
The goal of the rest of this section is to show that (1.8) holds for all finite range
one dimensional systems. To do this we first define auxiliary operators Qy on D,
as follows. Let A(k, N) ={j € Z: |k —j| < N}. Then for f € D, define

Onf(n) = 2N + 1) Tiez Seeracrny (fE) = F(m))pagem (€] 7).
(N)

For each N, the closure of Qy generates a positive contraction semigroup, T'; ~,
on C(E). The Markov process whose semigroup is T® has the following intuitive
description. At each site k € Z there is an independent Poisson process with rate
1/(2N + 1). At the times of the jumps in this process the configuration in the
interval A(k, N) is changed to ¢ with probability paen (€] n), where  was the
configuration of the system immediately before the jump occurred.

The proof of the next lemma is exactly the same as the proof of Lemma (1.2)
except that we condition on M, n) instead of M.

LEMMA 1.11. Forf,g€ D,

ngNf dp=-Yr 2N + 1) f eeranny (8ME) — &) pacem(E1n))
- (Zeer@wny (F(E) — f())pacem (€] 1))u(dn).
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Just as for @, Lemma 1.11 implies that the semigroups {T": t = 0} are self-
adjoint on L” and that zero is a simple eigenvalue of Qy.
Suppose that we can show that for some N there is a v; > 0 such that

for all f€ D there is a constant A; < o such that
I TEf = () Il < Are™.

In Lemma 1.7 we reduced the proof of Theorem 0.4 to checking the inequality
(1.8). We will now check (1.8) assuming that (1.12) holds.

(1.12)

LEMMA 1.13. If (1.12) holds then for all f € D,,

- ffﬂzvfdu =yl = (F) I3

ProOOF. Let {Ex(\): A > 0} be the resolution of the identity corresponding to
—Qy. The lemma will follow if we can show the Ex(\) — Ex(0) =0 forall 0 < A\
< v;. We proceed by contradiction. Suppose 0 < A\’ < v, and h € L? are such
that (Ex(\’) — Ex(0))h = h, and that || h||2 = 1. Since D is dense in L? there is
an f € D such that || f — h |2 <% and since (h, 1) = (Ex(\") — En(0))h, Ex(0)1)
= ((En(0) — Ex(0))h, 1) = 0 we may assume that (f, 1) = 0. Therefore

| (En(N') — En(0)f[lz2 = | (EN(X') — En(0))(f — h) + (Enx(\") — En(0))h||2
>1—= [ (Ex(X') = Ex(O))(f = h) |2 > Ya.
Hence for t > 0

Azet > | TVFI2 > | TS = fo e~ d(Ex(\f, f)

A7
= f e d(Ex(N, f) =z e | Ex(\)f (13 = e7"/4.
(]
That is e 2m ™ = 14 A? for all t = 0. Since v, > A’ this is a contradiction. 0

LEMMA 1.15. Forall N = 2, 3, - - - there is a constant vy > 0 such that for all
fEC(E), k€Z,and,nEE

ZjeA(k,N) EaeE(A(k,N)) (ZEEE(j) (f((ﬂﬂ)f) - f(no))pj(é | na))sz(k,N)(U | n)

(1.16)
> vy sy (f(10) = Yecrwmny f0E)paces (€11))2pawm (o | 7).

PROOF. Since 7 is held fixed and is the same on both sides of (1.16) it suffices
to prove (1.16) for functions f which only depend on ¢ € E(A(k, N)). Note that
{xr: F C A(k, N)} is a basis for the functions on E(A(k, N)) and moreover it
is an orthonormal basis with respect to the uniform probability measure on
E(A(k, N)).

Set

2(2N+1)

'y = inf;, paom (&1 )
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and

'Y = sup; , 2% Vprom (£] 1)

and note that if f = Srcag.n arxr, then for £ € E(j) and ¢ € E(A(k, N))

f(ot) = flo) = ‘{a 2 Zreawnrs) arxe(0) f)fthfr:is;.a v

Thus
Yieawn) Toerawny) (i) (f(a€) = f(a))pi(€] 16)) 20amm (| 1)
= (T0)’Tw Yjeaeny 2o (e (f(ok) — f(5))/2)22-@N+D
= (To)’Tw 2, Zo (= Trsj apxr) 274
= (To)Tw 3 Trsj a¥ = (T0)’Tn Srcamm,rwe aF
= (To)*Tn > (fla) — w)22-(2N+1)

(Po) FN 3o (f(0) — ae)®pacem (o | n)

T
> o) T °) TN 5 (Seematny (F(E) = F(0))patm (£ ] 1) (@ | 1),

and the lemma is proved with vy = (To)2Ty/TN.0

LEMMA 1.17. If (1.12) holds for some N then there is a vo > 0 such that (1.8),
and hence (1.9) holds.

ProOF. By Lemmas (1.11) and (1.13) there is a ¥ > 0 such that for all
f€ D

k(2N +1)7! f (Teeramny (F@E) = F@))pswm (&]m))%(dn)
znlf-(H I3

By conditioning on Mgy and using Lemma (1.15) we see that there is a
v~ > 0 such that

@EN+ 1D % f (e (f(E) = F@))pawn (&) ?u(dn)
=@2N+ 17" 3, f ¥, (B (F((n0)E) = f(n0))pawm( | n0))?
- pak(o | n)uldn)

<@N+ D)MW T f Tieanm o (Seeriy (F((10)€) — f(no))ws(€ | n0))*

- pawn (o | n)uldn)
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= (ym)7" Zj Srearm (2N +1)7° f Zo (Ze (f((n0)§) — f(n0))p;(€ ] n0))?

+ paen o | n)u(dn)

= (W7 L f (Ze (f(E) = f())pi(€ | n))k(dn).

Thus we may take vy = v, yny> 0.0

To finish the proof of Theorem (0.4) we need to show that (1.12) holds for
some N. For our proof of (1.12) we first make a further assumption which we
will verify at the end of this section.

ASSUMPTION 1.18. For some N and every k € Z and (', n%) € E? there is a
measure R.n( | (%, n%)) on E(A(k, N))? such that; for each A C E(A(k, N))?

Ryn(A|(, ) is
o ('), 1%(7)): j € Ak, N + L)\A(k, N)) measurable,
Ren(A| (0, 1%)) = Ron(7*A | ™0, 9%)),

where 7* shifts all coordinates by k,

Ry n(A X E(A(k, N)) | (0%, *)) = pam (A |7),

R, N(E(A(R, N)) X A| (0%, 1%) = pacem (A | 9%),
(1.19) YieawN) SUPGL Ren(a'(f) # a®(j) | (n', n*) < N/L,

Rin(a'(j) # a*() | (', #) = 0

~ (1.20)
’ if jEA(k, N) and 7'and »®on A(k, N+ L)\A(k, N).

Assuming that there is an R,y as in (1.18), (1.19), and (1.20) we couple
together two copies of the process generated by Qy, one starting from ' and the
other from 72 by means of {R.n: k € Z}. Specifically let % be the operator
defined on D(E X E) = cylinder functions in C(E X E) by the formula

%f(n*, %)
(1.21) 1
ToN +1

By standard results on coupling (see [10]), the closure of % generates a semigroup
S; on C(E X E) such that if fi(n', n?) = h(n’) for some h € C(E), i = 1, 2, then
S.fi(nY, 1) = T h(n’). We denote the coupled process by (1}, n?).

Sk Diotey (f(n'al, vn262) = f(n', n®)Ren((a?, a®) | (n*, 7).

LEMMA 1.22. For all (¢}, n?%) € E?
(1.23) supe Pz (ni (k) # ni(k)) < e™*2

PrOOF. Let A(k,j)= Ak, N)N{i€Z:j€ A(, N+ L)\A(i, N)}. Note that
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A(k,j)=9if |k —j| >2N + L. Now define
Yicawp (2N + 1) 'supe,q2)
aj =4 Rin(c'(k) # o*(R) | (', #?)) if |k—j|<2N +L
0 otherwise.
By assumption (1.18), ax; = ao j, and since | {j:i € A(0, j)}| < L we have
Y a0 = X201 Yieaoy (2N + 1) 'supe
Rin(a'(0) # ¢*(0) | (n', #?))
(1.24) = YE%N-1 Yieaw, (2N + 1) 'supeqz
- Ron(a'(=i) # o*(=i) | (n*, 27))
= L ¥¥_n (2N + 1) Isupi2
- Ron(a'(=i) # o*(=i) | (', %)) < Y.
The last inequality in (1.24) follows from (1.19).
Let @ = Y ; ao,; and set Py ; = a4 ;/d. Then by (1.20)

2 P (n} (k) # 22 (8)

= (2N + 1)7! T8N E[Rin(o' (k) # o*(R) | (i, n8))]
= Py (ni(k) # ni(k))
= N + D)7 TN Sijicawin [supe e Rin(a (k) # o*(k) | (£7, £%)
(1.25) X Popaa(ni(f) # n2(j))]
= Pirop(ni(k) # ni(k))
= 3; aiParp(mi(j) # 0i(7)) — Poran(ni(k) # ni(k))
=@ 3 Prj(Porn(i(j) # n1(J)) — Pora(ni(R) # ni(k)))
= (1 = @) Py, (ni(k) # ni(k)).

Note that P,; is the transition matrix of a random walk on Z. Thus by
standard arguments one easily concludes that

P(rl',nz)("?tl(k) # ﬂ?(k))

< e—(l—a)te—at 2:—0

(at)n i PkJP(ﬂlrlz)(nt(J) # 0t (J)) <e2 0

COROLLARY (1.26) For all f € D there is a constant A; such that
(1.27) I T F = () I < Are™”.

PROOF. Fixf€ D. Let A C Z be the smallest subset of Z such that n =75’ on
A implies that f(n) = f(n’). We show that (1.27) holds with A;= 2|/ f|l.| A].
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Since for all ¢ = 0 and 7', 12, 0 € E, T\"f(0) = Ew.n[f(1})] = Eqiolf(n3)]
and p is stationary for T we have

(f) =fE(nl,n2>[f(n?)]u(dn2)

and

Nf(n) = f Eqa[f(n)]u(dn®).
Thus

| T™f() = (f)| = l fEm,n?)[f(n}) = f(m)u(dn?®

< 2 fllu Zrea f P (ni (k) # 7 (k))u(dn®)
<2lfll.lale™ O

REMARK (1.28) The argument up to this point has not depended on dimen-
sion in any way. Dimension only comes in during the verification of Assumption
(1.18)—(1.20). The method we use below yields the desired result in one dimension
for all finite range translation invariant potentials. If one were to restrict himself
to translation invariant finite range ferromagnetic pair potentials then a suffi-
cient condition to imply (1.18)—(1.20) would be the following:

(1.29) There exists a constant A < o and § > 0 such that for all cubes A C Z¢,
allj, k€ A,andally €EE

| Zoerw) 0(/)a(R)pa(N|n) — Eoerw) 0(f)palo|n) Leerw E(R)palE]n)
< Ae®lkil,

While the author believes (1.29) to be true at all temperatures strictly above the
critical temperature, he has not been able to prove it. Note however that (1.29)
is a statement purely about the Gibbs state and has nothing to do with the
stochastic Ising model.

We prove that Assumption (1.18)—(1.20) holds by first reducing the question
to a similar one concerning finite state space Markov chains. To do this we let
S = {—1, 1}!+%~L and define Q on S X S by

Q("’ o) = eXp[_E’ JRXR(‘UU)]»

where the summation ¥’ is over RC [1,2, --- 2L} suchthat RN {1, ..., L} #
¢ and 7o is the configuration which is given by .

k) = {1 if 1<k=<L
M T letk= L) if L+1s<ks=<2L

Let \ be the largest eigenvalue of @ and r(s) be the corresponding right
eigenvector. Since the entries of @ are strictly positive X is a simple eigenvalue
which is strictly larger than the absolute value of any other eigenvalue of €, and
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we may assume that r(s) > 0 for all 0. Now define
(1.30) P(n, ¢) = Q(n, a)r(a)/(Ar(n)).

P(n, o) is the transition matrix of a Markov chain on S. Also if 5o, 71, ---,
7. € S then it is easily checked that

(1.31) P(no, m)P(n1, m2) -+ + P(0n-1, 1)/P™(n0, 1n) = palo|n),
where A={L+1, - -.-,(n— 1)L}, and

no(k) if 1sk=<L
n(k) = (k= (n — 1)L) if (n—1)L<k=nL
] arbitrary otherwise,

and ¢ is the configuration in E({L + 1, ---, (n — 1)L}) obtained by stringing
together 7y, m2, -+, Wn—1. Thus Assumption (1.18)-(1.20) follows from the

following lemma.

LEMMA 1.32. Let S be a finite set and P(x, y) be a strictly positive transition
matrix on S. Then for all 56 > 0 there is an N and for every pair (a, a’), (b, b’) €
S? there is a measure R( | (a, a’), (b, b’)) on SN x S¥ such that

R((ai, ---, an) X S¥|(a, a’), (b, b))

(1.33)
= P(a, a1)P(a1, a3) --- P(an, b)/P"*(a, b)

R(S¥ X (af, -+, ai) | (a, a’), (b, "))

(1.34)

= P(a’, a{)P(ai, a3) --- P(an, b’)/P"*'(a’, b’)
and
(1.35) Y1 supa,wen R(ax # ak| (a, a’), (b, b")) < éN.

PRrROOF. If we were conditioning only on the left end of the interval this
would be an immediate consequence of any of several standard couplings (see
[3]). Similarly if we were conditioning only on the right end we could use the
reversed chain and any standard coupling. Since we are conditioning on both
ends we will do the coupling in three pieces. A standard one for the section of
the interval on the left end, a similar one for a section on the right end, and a
coupling in the center which is concentrated on the diagonal if both of the end
couplings succeed and is just product measure if either end coupling fails. The
reader who is familiar with coupling arguments could certainly supply the details
of the proof and may want to skip them here since they involve lots of notation
which will not be used again in this paper. '

Let

P(m, n, a, @n, b) = P™@a, aw)P™"™(an, b)/P**"(a, b)
and
PR(my n» am» am+n’ b) = Pn(am’ am+n)Pm(am+n, b)/Pn+m(am» b)'
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If 7 is the stationary measure for P then since P*(x, y) — w(y) as n — ® we
may take mo and ng so large that

(1'36) SUPg,b Za,,,o IPL(mO, no, a, amoy b) - W(amo) l < 6/3?
(1.37) SuPa,,,n_,, 20,,,04.,.0 IPR(mO, No, Amy, a”lo+n07 b) - 7r(amo+no) l < 6/31

and
(1.38) 2mo/(2mo + no) < /3.

To simplify the notation fix m = my, n = no, and set P.(a, a,, b) =
Pr(m, n, a, ap, b) and Pr(am, @m+n, b) = Pr(m, n, Gm, Gnin, b).
Now set

Q.((a, a’), (am, an), (b, b’))
Pi(a, an, b) A Pr(a’, an, b') if a,=a,
=< [(PL(a, am, b) — P(a’, am, b"))]*
X [(Pr(a’, am, b') — Pr(a, an, b))1*/Z((a, a’), (b, b")) if am # an,

where Z((a, a’), (b,b’)) =1 — ¥ Pr(a, ¢, b) A Pr(a’, ¢, b’).

Define Qr((@m, @), (@m+n, Qm+n), (b, b’)) similarly except replace (a, a’)
by (am, @n); (@m, @) bY (@m+n, Am+n); and P, by Pg throughout.

Note that

(1.39) Yo Qu((a, @’), (@m, an), (b, b")) = Pi(a, am, b)

(1.40) Yo QL((a, @’), (am, an), (b, b’)) = Pr(a’, ap, b’)
(1.41) 2 AR(@ms @)y (@many Aman), (b, b)) = Pr(am, Gman, b)
and

(1.42) X, Qr((a@m, an), (@men, men), (b, b)) = Pr(am, @msn, b’).

Now set

U((@m; an), (@me1; @msr), <+ 5 (Qmany Gman))
(IT72~ P(ax, @x+1))/P™@m, msn)  if ax=ai k=m,---,m+n
pn=t Plag, arer) [1J20 7" P(ajajss)
= o o) Par. ame) if an#an, Or Quin# Amen
0 otherwise,
and note that
) Za.’..ﬂ,...,a,',.‘,._, U((a,,,, (34 R ’ (@m+ny Aman))
(1:43)

= (H:l:,:_l P(aky ak+1))/P"(am9 am+n)y

and similarly for the summation over ap,+1, +** , Gman-1.
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Next set ao = @, a§ = a’, apiom+1 = b, @}yom+1 = b’, and
Vi((ao, @d), (a1, ai), - -+, (@m, @n), (@ns2m+1, Arsom+1))
[l Plaw, awsy) 11725 P(a/, ajs1)
= P™(a0, am) P™(as, an)

: QL((am 06), (am, arln)» (an+2m+1y> ar,1+2m+l))

and
Ve((@my @n)s @mins Gmin)s (@mint1y Cmans1)s -+ 5 (@nezm+1, Qrrone1))
= Qr((am, am), (@m+ny Gmtn)s (Bntzme1, Grezm+1))
Hk s P(an+n+e-1, am+n+k) H,’T{l P(ar’n+n+k—1, Amsn+k)

Pm+ (an+m, an+2m+1) Pm+l(ar’1+m» ar/z+2m+1)

X

Finally take N = ny + 2m, and set
R((ay, a3, -+, an), (a1, az, -+, an) | (a, @), (b, b’))
= Vil(a, a'), (a1, ai), - -+, (@m, an), (b, b)) U(@n, an), -+, (@nin, Gm+n))
X Ve((@m, am), @mins Gmsn), -+, (an, a), (b, b)).

It now follows immediately from the definitions of V;, Vg and U together with
(1.39)—(1.41) that (1.33) and (1.34) hold. To see that (1.35) holds note that for
m<k<m+n.

R(a. # ai|(a, a’), (b, b'))

< R(an # a,|(a, a’), (b, b’))
+ R(am+n # ansn| (a, a’), (b, b))

= Yonrar, QL((@, @'), (am, ar), (b, b))
+ Yo Danetanen AR(@my @), (Amsn, Gnsn), (b, b))
- Qul(a, a’), (am, an), (b, b"))

=1- 3. Pr(a,c, b) A\ Pr(a’, c, b’)
+ Yonan (1 — 2 Pr(an, ¢, b) A Prla’, c, b))

- Qu((a, @), (am, ap), (b, b")).
But
Y. Pr(a, c, b) A Pr(a’, c, b’)
= Y%[¥. (Pr(a, ¢, b) + PL(a ¢ b)) — 2 IPL(a, ¢, b) — Pr(a’, ¢, b")|]
=1-%7Y.|Pwla,c b) — P.(a’,c,b’)| >1— (5/3).
The last inequality follows from (1.36) and is uniform in (a, a’), and (b, b’).
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Similarly from (1.37)
Ye Pr(am, ¢, b) N Pr(an, ¢, b’) > 1 — (8/3)

uniformly in (a., a.), and (b, b’).
Thus for m = k< m + n, R(a, # aj, (a,a’), (b, b)) < 28/3.
Forl=k<morm+n<k=N,R(a,#at](a,a’), (b, b")) =1, and therefore
YA R(ax # ai] (a, a’), (b, b")) < 2mo + (26/3) no < ON,

where the last inequality follows from (1.38). 0

2. The attractive case. Recall that we defined what we mean by attractive
flip rates just before the statement of Theorem (0.6). The property of attractive
systems which we need is preservation of monotone functions by the semigroup,
T;. That is if f € C(E) satisfies f(n) < f(n’) whenever y < 5’ then for all ¢ = 0,
Tif (n) = T.f(n’) whenever 7 < 5’ (see [4]).

Suppose that the semigroup T preserves monotone functions on E. Since

xa(n) = [liean(®) = [liea(-1 + (n(R) + 1)) = Zpca (-1)'®! [1,ep(1 + n(k))

is a linear combination of monotone functions of the type wg(n) =
mrep(1l + n(k)), and every function f € D is a finite linear combination of x,’s, it
follows that every f € D is a finite linear combination of wg’s. Also for all finite
B, 23! ¥1ep wr(n) — wp(n) is an increasing function. Thus letting +1 be the

maximal element of E and —1 be the minimal element of E we have
2.1) 0 =< Ti(2'8' Thep wr(-) — wp(-))(+1)
= Ty(2'"B Thep wr(-) — wp(-))(=1).

Hence because of translation invariance
0 < T,wp(+1) — Twp(=1) < 2'8! Fyep (Tiwr(+1) — Tiwr(=1))
= | B| 2'2(Tiwo(+1) — Tiwo(=1)).
Also since for all n € E, T,wp(—1) < T,wp(n) < T.wp(+1), and

(w3)=fw3dn=thdeu,

we will have proved Theorem (0.6) if we show that there is an A < ® and a
6 > 0 such that

(2.2)

(2.3) Tiwo(+1) — Two(=1) < Ae™.
In order to prove (2.3) we compare the stochastic Ising model on Z with finite
ones on A(0, n), n=1, 2, --.. We define the finite stochastic Ising models by

first defining mr:E— E by

. _ k) it ke a0 n)
(2.4) ma(n)(k) = |+1  if k€& A0, n).
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Then define

oy _ JaGEm) if k€ A, n)
ek’ (n) = 10k otherwise,
and
Qrf(n) =k () (f*n) = F(0)).

For each n, Q; generates a semigroup T7* and it is easily checked just as in
Lemma (1.3) that

f f(n)Qrg(n)paom(dn| +1)

(2.5) = —Yreaon) f (Zecem (8(mE) — g())pr(&] w7n))

(Zierw (f(nE) — f()or(€] man))dE" (n)pacm (dn | +1),

where d}* (n) = du(77 (7).

If we replace + by — everywhere in the above paragraph then we get operators
T? and Q;, such that (2.5) with + replaced by — still holds.

We need the following fact, which can be found proved in [4].

If f is increasing on E then for all n and all y € E

(2.6) T f(n) = Tef (n) = TP f(n).

Our goal is to prove (2.3) and the method will be to prove that the semigroups
T7?* converge uniformly exponentially fast in the L? space of their stationary
measures. Then we use this to obtain a statement about pointwise rates of
convergence and use (2.6) to bound the expression on the left side of (2.3) by a
term going to zero exponentially fast and a term involving integrals with respect
to paw,n (- | £1). Finally we note that the dependence on %1 in the integral of w,
with respect to paq,» (- | £1) goes to zero exponentially fast in n and then we let
t and n go to infinity simultaneously.

We denote the L? space of paon (- | £1) by L%(n, £). If f € L%(n, %) then set
(fYz = [ f(n)paom(dn| £ 1) and denote the norm of L:(n, +) by || - |I;.

LEMMA (2.7). There is a 6, > 0 such that foralln =1,2, --. and all f €
L¥n, %),

(2.8) —f f(ﬂ)ﬂri;f(n)PA(O,n)(d";li-_l_) >0(lf = (fYall>
PROOF.
—f f(m)Qzf (n)paom(dn | £1)
= Yreaon f (Zeerw (f(nE) — f(m)pr(€]m)*di*(n)psom (dn | £1)

> inf dffi(ﬂ) ZkeA(O,n) f (Ze (f(n&) — f(n))pe(£] ?7))2PA(o,n)(d?7 | i_l)-
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Now from (0.1) it is easily seen that there is an a; > 0 such that for all o,
¢’ €E, all n,and all € E(A(0, n))

(2.9) paom(n| o) > aipaom(n]a’).

Letting o, = inf,d§* (), we have

_f f(n)Qnf (n)paom(dn| £1)
(2.10)
= o0 Ykeao,n) f Secrw (F(nE) — F()pr(&|10))2pacom(dn| o)

for all ¢ € E. Integrating the right side of (2.10) with respect to u(deo) and
applying the results of section one we obtain

- f F Q3 (psom(@n| £1) > crary If = (f) 13
for some vy > 0. Finally by (2.9)

If = (f) I3 = inf, f (f(n) — ¢)?u(dv)
= inf, f f (f(n) = ¢)2paom(dn| o)p(do)

= inf, f (f(n) = ¢)%a1paom(dn| £D)u(do)

= a(lf = (HHFID™

Thus the lemma is proved with §; = a2y > 0.0
LEMMA 2.11. There is a constant A\ < « such that foralln=1,2, ... and all
t=0
| T?iwo(.i_l) - (wo),fl =< 2€>\n—5lt.

PROOF. Since || woll, = 2, Lemma (2.7) implies that
| TFwo — (wo)illn < 2e™.

From (0.1) one sees that there is a A < o such that for all n, pae,»(£1|£1) >

e " Thus ' /
1/2

nto(£1) — £ = | (pnty (+1) — +yof Pawom (1| £1)

| Tt wo(—_l) < 0)0>n I [(Tt wo(__]_) (o)o)n) (p————-—-—-=A(o’") (i_]_ | E)

1/2
< e""(f (T wo(n) — (wq)i)%mo,n)(dnlgl))
< eM2e %t 1
LEMMA (2.12). There is a 6, > 0 such that

0= f wo(n)pacm (dn| £1) — f wo(n)paom (dn| =1) < 27",
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PrOOF. This is well known for one-dimensional Gibbs states with finite
range potentials. A proof can be given by considering consecutive intervals of
length L and reducing the problem to one involving finite state space Markov
chains with strictly positive transition matrices as in (1.30) and (1.31). Once this
reduction is made the proof is an elementary computation based on the Frobenius
Theorem. We leave the details to the reader.

ProoOF OF (2.3). By the monotonicity of T;wo(-), (2.6), and Lemmas (2.11)
and (2.12), for all n = 1 and all ¢ = 0 we have

0 < Tiwo(+1) — Tiwo(=1) = TF wo(+1) — T¢ wo(=1)

Tt wo(+1) — f wO(n)pA(O,n)(dﬂl_ﬂ)|

(2.13) TP wo(=1) — f wo(n)pA(o,n)(dnl—_1)<

+ f wo(n)paom(dn|+1) — f wo(n)pmo,n)(dnl—_l)|

< 4™t 4 2¢70n,

Letting n = (6,t)/(\ + 8,) we bound the right side of (2.13) by Ae ™ where A =
4+ 2862, and 6 = 5152/()\ + 62). 0

REMARK (2.14). While we have used the assumption that the dimension is
one several places in this section, only in Lemma (2.12) is thls assumption crucial.
In that lemma one would have to replace e™®" with e =" in d dimensions. In
other words if one could check Assumption (1.18)—(1.20) one could give different
proof of everything in this section up to Lemma (2.12). With the new version of
Lemma (2.12) the conclusion of Theorem (0.6) would be

I Tef = CF) | < Ae™™
(again assuming (1.18)—(1.20)).
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