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SYMMETRIC EXCLUSION PROCESSES: A COMPARISON
INEQUALITY AND A LARGE DEVIATION RESULT'

BY RICHARD ARRATIA

University of Southern California

We consider an infinite particle system, the simple exclusion process,
which was introduced in the 1970 paper “Interaction of Markov Processes,”
by Spitzer. In this system, particles attempt to move independently according
to a Markov kernel on a countable set of sites, but any jump which would
take a particle to an already occupied site is suppressed. In the case that the
Markov kernel is symmetric, an inequality by Liggett gives a comparison, for
expectations of positive definite functions, between the exclusion process and
a system of independent particles. We apply a special case of this inequality
to an auxiliary process, to prove another comparison inequality, and to derive
a large deviation result for the symmetric exclusion system. In the special
case of simple random walks on Z, this result can be transformed into a large
deviation result for an infinite network of queues.

1. Introduction. Let p(x, y) be the transition probabilities for a Markov
process on a countable set of sites S. For example, p may be simple random walk
on the lattice of integers: S = Z¢ and p(x, y) = 1/(2d) if x and y are nearest
neighbors. We consider the simple exclusion process based on p, which was
introduced in Spitzer (1970). This is a Markov process, with state space {0, 1}
= {5: n C S}, where 7 represents the set of occupied sites in a system of identical
particles, with at most one particle per site. A particle at site x € S waits for an
exponentially distributed time with mean 1, then chooses a site y with probability
p(x, y). If y is vacant at that time, the particle at x jumps to y; otherwise it stays
at x. All the holding times and choices according to p are independent. Thus, a
system with only one particle gives a copy of the original Markov process p, but
if the system starts with all sites occupied, then there is no motion ever. Surveys
of results for this system are given in Liggett (1977) and (1985).

Henceforth we assume that p is symmetric: p(x, y) = p(y, x). For each
p € [0, 1], product measure »,, with marginals

v,(fn:x €En}) =p VxES,

is invariant for the symmetric exclusion process. There are other extremal
invariant measures iff p has nonconstant bounded harmonic functions; see
Liggett (1974). David Griffeath conjectured that for the exclusion system of
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54 R. ARRATIA

simple random walks on Z, running in equilibrium », for p € (0, 1),
(1) —log PO&n, Vs<t)~ct/? as t— o,

for some constant ¢ depending on p. In this paper we verify that for the
exclusion system of simple random walks on Z in nontrivial equilibrium,
t™?[—log P(0 & 7, Vs < t)] remains bounded away from 0 and o, but the
conjecture (1) remains open.

Theorem 1 deals with the exclusion system corresponding to a symmetric
Markov process p, running in its equilibrium »,. Using methods which ignore the
geometry of p, we prove that the log of the probability that a fixed site remains
empty throughout the time interval [0, t], divided by the expected range of a
single trajectory run for time ¢, has all of its limit points as ¢t — o in the interval
[log(1 — p), —p]. Thus in the context of (1), with p a simple random walk on Z,
we have proved that for all ¢ > 0, for sufficiently large ¢,

(2) (1 - e)p(8t/m)2 < —log P(0 & n, Vs < t) < (1 + ¢&)[-log(1 — p)](8t/m)"2.

Theorem 1 may be recast as a statement about the motion of a tagged
particle. Consider the exclusion system starting from equilibrium »,, con-
ditioned to have a particle at the origin at time 0. Let y(t) denote the position
of this particle at time ¢. In the case of simple random walk on Z, the tagged
particle is “trapped” between its neighbors; Arratia (1983) proved that
var(y(t)) ~ (2t/7)*(1 — p)/p. In the case of simple random walk on Z¢, d = 2,
Kipnis and Varadhan (1984) proved that var(y(t)) grows linearly with t. Now
the set of empty sites, S\, evolves according to exactly the same dynamics as
the symmetric exclusion system 7, itself. Thus the event {0 & 5, Vs = t} for
the exclusion system starting in equilibrium », is equivalent to the event
{0 € n, Vs < t}, for the exclusion system in equilibrium »,_,. Theorem 1 may be
restated as: for the exclusion system corresponding to a symmetric Markov
process p, running in its equilibrium »,, the log of the probability that a tagged
particle remains motionless at the origin throughout the time interval [0, t],
divided by the expected range of a single trajectory run for time-t, has all of its
limit points as t — o in the interval [log p, p — 1].

The key to Theorem 1 is a remarkable inequality from Liggett (1977, pages
226-228) which states that, for any symmetric positive definite function on S”,
evaluated at the positions of an n-particle system at some fixed time, the
expectation does not decrease if the exclusion interaction is replaced by inde-
pendent particle motions. (This result for n = 2 particles appears in Liggett,
1974. A bounded symmetric function g(x, y) on S? is called positive definite if
2y B(x)B(y)8(x, y) = 0 whenever ¥, | 8(x) | < ® and 3. B(x) = 0. For n > 2, a
bounded symmetric function on S” will be called positive definite if it is a positive
definite function of each pair of variables. In the special case where the symmetric
positive definite function is

f(xl’ M) xn) = Hi l(xl EA)’

this inequality says: for one fixed time s, for any initial configuration B C S of
size | B| = n, for any A C S, the set 52 of sites occupied by the exclusion process



SYMMETRIC EXCLUSION PROCESS 55

satisfies
3) P(n? C A) = [l.es P(&(x, s) € A).

Here, £(x, -) denotes the one particle Markov process governed by p, starting
from x. Now to get the large deviation bounds of Theorem 1, all that is needed is
an inequality like (3), applied to A = S\{0}, but with the quantification “Vs < t”
inserted into every event: ’

(4) PhBCAVs=<t)<lws Pk, s) EAVs<t).

The idea for deriving (4) from (3) is to introduce an auxiliary process with lots
of additional sites connected to each site of S\ A, so that a particle moves in A
as before, but if it leaves A before time ¢, then with high probability it wanders
off among the additional sites and is still “lost” at time ¢.

2. Comparison inequalities. We note that the proof in Liggett (1977) of
the comparison inequality for symmetric positive definite functions remains valid
whenever the one particle motion is a Markov process on a countable state space
with bounded, not necessarily time independent, symmetric transition rates.

Couple the family (n®; B C S) of exclusion processes with various initial
configurations B, using a system (£(x, t); x € S, t = 0) of random stirrings of
pairs of particles, by setting:

(5) for BCS, %5(t) = {&(x, t): x € B}.

For the stirring system, £(x, t) represents the position at time ¢ of a particle
which starts at site x. At rate p(x, ), independently for all x, y € S, the particles
sitting at x and at y are interchanged. Thus for each x, £(x, -) is a realization of
the original one-particle process starting from x, while for fixed ¢, £(., t) is a
permutation on S. Notice that, via the coupling (5), Liggett’s inequality for the
exclusion system can be restated as an inequality for the stirring system. The
stirring system was introduced in Harris (1972); a recent exposition is given in
Griffeath (1979). Random stirrings of a finite set S are studied in Diaconis and
Shashahani (1981), and in Flatto, Odlyzko, and Wales (1984).

LEMMA 1. Forany B C S, for any A C S, and fixed time t,
PnB CAVs <t) <[l P(x, s) E A Vs <t).

PROOF. Assume that B is finite; the case of B infinite will follow by taking
limits. (That the left side is monotone decreasing in B can be seen from the
coupling (5).) In order to keep the notation simple we fix a distinguished site
0 € S and give the proof for the case A = S\{0}. The idea is to attach lots of
additional sites to the site 0. For the convenience of arguing with transience, we
let the additional sites be a copy of Z° The distinguished site 0 in S and the
origin 0 in Z3 are identified. A particle performs simple random walk on the copy
of Z* at rate c, so that in the limit as ¢ — =, a particle “disappears from S”
immediately after it hits 0. More precisely, we let the state space for the auxiliary
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process be S* = {(x, ) € S X Z*: a = 0 or x = 0}; the site (x, 0) in S* corresponds
to the site x in S, while the site (0, a) in S* corresponds to the site a in Z3. Let
the transition rates for the process on S be denoted by g(x, y). The transition
intensities for the auxiliary process are

q*((x, 0), (¥, 0)) = g(x, y) unless x=y=0
q*((0, a), (0, b)) = ¢/6 if la=-b|=1
=0 if la—b|>1,

with the appropriate negative values for ¢* on the diagonal of S* X S*. This
specifies a symmetric Markov process on a countable state space, so that the
special case (3) of Liggett’s inequality may be applied, in particular with A in (3)
taken to be A* = {(x, @) € S*: a = 0 and x # 0}. This yields, for the auxiliary
exclusion process n* starting from B X {0}, that

(6) P(n! C AY) = [lies P(E*((x, 0), t) € A¥).

In the above formula, £* denotes the one-particle process governed by g*. The
processes £*((x, 0), -) and £(x, -) can be coupled so that they agree until the first
time that &(x, -) hits 0. It is clear that as ¢ — o,

P(t*((x, 0), t) € A*) = P(£*((x, 0), s) E A* Vs < t)
= P(&(x, s) € S\{0} Vs < t).
Combining this with the coupling specified in (5), it follows that
P(n¥ C A*) —» P(n¥ C A* Vs < t) = P(y, C S\{0} Vs < t).

Taking the limit of (6) as ¢ — o yields the statement of this lemma. 0

. The following lemma, which is a slight generalization of Lemma 1, should be

useful for giving bounds on the moments of occupation times for the symmetric
exclusion process. See Cox and Griffeath (1984) for the computation of moments,
and large deviation results, for occupation times of systems of independent
random walks in equilibrium.

LEMMA 2. ForanyBCS,Vt,< ... <ty, VA,, ---, A, C S,
(7)  P®(t) CAifori=1tok) =< [lues P((x, t) € A; for i = 1 to k).

ProoOF. Begin with the case that Biis finite; the general case then follows
by approximation. We give the proof for the case with each A; = S\{0} in
order to keep the notation simple. Let S* be as in the proof of Lemma 1; let
A* = {(x, a) € S*: a = 0}. The idea now is to choose time inhomogeneous rates
for the auxiliary process so that away from the times t;, we have a copy of the
original process, with no chance te move off among the additional states; while
immediately after the times ¢;, the random walk on the additional sites runs so
fast that, if a particle is at (0, 0) at ¢;, then with high probability it gets lost
quickly among the additional states. Formally, for a fixed value of the parameter
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c we set
qt((x, 0), (3, 0)) = q(x, y) unless x=y=0
q¥(0, a), (0, b)) = c%/6 if |la=b|=1and t €[t t; + 1/c] for some i
=0 if Jla—-b|>1 )
=0 if t—¢>1/c foralli, andnot a=b=0,
with the appropriate negative rates on the diagonal of S* X S*. Fix any t > t,.
Now the auxiliary process £* and the original process £ can be coupled so that
for each x € S, with probability tending to 1 as ¢ — o, on the event {£(x, t;) € A;
for i = 1 to &}, the trajectories £*((x, 0), -) and £(x, -) agree for all time, while on
the complementary event, we have that £*((x, 0), t) € A*. Combining this with
(5), the finite exclusion systems # and »* can be coupled to show that, as ¢ — o,
P(n¥ C A*) — P(9B(t;) C A; for i = 1 to k). Taking the limit of (6) for the time-
inhomogeneous process #* yields (7). 0

3. A large deviation result. We will express our large deviation proba-
bilities in terms of ER,, the expected range of a single random trajectory starting
from 0. Formally, define the random variable R, which is the number of distinct
sites visited up to time ¢, by a particle starting at the origin: R, = ¥,es 1(£(0, s)
= y for some s < t). Let h/(x, y) = P(£(x, s) = y for some s < t), so that

(8) ER; = Y.es hi(0, x) = Y.es hu(x, 0).

In case p is simple random walk on Z¢ ford = 1, 2, 3, - - -, the expected range of
a single particle satisfies, asymptotically as ¢t — o,

ER, ~ 4(t/2m)? d=1
9) ~atflogt d=2
~ gt d=3

where v, is the probability that a d-dimensional simple random walk never

returns to its origin. (See Dvoretzky and Erdos, 1951, for the cases d = 2 above.)

THEOREM 1. Consider the simple exclusion process governed by a symmetric
Markov kernel on a countable set S, starting in its equilibrium state v, = product
measure with density p € (0, 1). Let p,, = P(0 & », Vs < t) be the probability that
site 0 is empty throughout the time interval [0, t]. Then for any t = 0,

(10) (1 = )™ = p, =< [lses(l = phi(x, 0)) < exp(—pER,),
and hence (log p.,)/ER; has all of its limit points, as t — o, in the interval
log(1 = p), =p].

PROOF. From now on, write B = 75, for the initial configuration of the
exclusion process, so that B has distribution »,, and B is independent of the
stirring system.



58 R. ARRATIA

The lower bound on the large deviation probability in (10) is easy to obtain.
Let H, be the set of all sites x € S for which the stirring path starting from x has
hit 0 before time ¢:

H,={x € S: &(x, s) =0 for some s < t},

so that H grows with ¢ and by the symmetry of p, E | H;| = ER,. Using Jensen’s
inequality,

POy Vs=<t)=PH,NB=)=E((1 - p)H)
> (1 = p)FHd = (1 = p)P*:

The upper bound is an easy consequence of Lemma 1. For a deterministic
initial configuration B, taking A = S{0}, and using the notation h,(x, y) defined
in (8), Lemma 1 says that

PO &9, Vs < t) < [lien(1 — hu(x, 0)).

Averaging this with respect to the distribution », of B yields p,, =
HxGS (]- - pht(x, O)) D

The basic upper bound in Theorem 1, [[.es(1 — ph:(x, 0)), comes from and is
exactly the probability that 0 is not reached by any particle before time ¢, in a
system of independent particles, starting with the initial distribution »,—product
measure with intensity p, and at most one particle per site. If the same inde-
pendent particle system starts with another initial distribution with intensity p,
namely the Poisson distribution, then the number of particles to have hit the
origin by time ¢ is Poisson, with expectation p ER;. For this system, the probability
that the origin has not been hit by time ¢ is exactly exp(—pER,), which is the
secondary upper bound in Theorem 1.

To further analyze the difference between our two upper bounds, use
the expansion log(l — y) = —y — y%/2 — y*/8 — ..., so that our basic upper
bound becomes log p;, < S.es log(l1 — phu(x, 0)) = —Yi<1 ck,/k, where ¢, =
Yes (he(x, 0))%. The first coefficient is ¢c; = ER,, so our two upper bounds give
the same bound on lim sup;_.(1/ER;)log p;, iff p has the property: cz/c; — 0 as
t— o, :

In the case that p is one-dimensional simple random walk, the reflection
principle yields h;(x, 0) = P(£(0, t) & [—x, x)), so with X a standard normal,

4
t‘l/zERtefPX —a, da = —,
A (X & (—a, a)) da o
and
=4(2—«/§)

t™ V2, — JI; (P(X €& (—a, a)))? da o
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Thus an expansion with two terms gives the large deviations bound

. 1 (2 = V2)p2
11) lim supt_,w<E—Rt)log Py < —p — ___2i

4. A network of queues: the zero-range process. A certain queueing
network can be realized as a sample path transformation of the exclusion system
of simple random walks, so that a server with n customers corresponds to a block
of n adjacent occupied sites. As a corollary to Theorem 1 we get a large deviation
result for this queueing network.

Consider a queueing system in which there is a server at each site x € Z; let
M,(x) = 0 be the number of customers at x at time ¢, including the customer
currently being served. The service times are all exponentially distributed with
mean 1. As soon as a customer has been served at x, he chooses to move to
x + 1 or x — 1 according to a fair coin, joining the queue at that site. Customers
never enter from outside the system and never leave the system. All the service
times and coin tosses are independent. This system M, = (M,(x); x € Z) is a
special case of the zero-range process introduced in Spitzer (1970); see Andjel
(1982) for a recent discussion. The system M, is a Markov process with state
space {0, 1, 2, ---}%. It has a one-parameter family u, of extremal equilibrium
measures (Liggett, 1973). The measure u, is a product measure, with geometric
marginals with parameter 1 — p:

(12) r({M: M(x) = k}) = p*(1 — p), Vx€EZ.

COROLLARY 1. For the queueing network M described above, in its equilibrium
u,, the probability that a given server remains idle for time t satisfies

(13) P(M,0) =0Vs<t)=p,,,

where p,, is the probability that simple symmetric exclusion on Z, in its
equilibrium v, , has no particle at 0 throughout the time interval [0, t]. In particular
(7/8t)*log P(M,(0) = 0 Vs < t) has all of its limits, as t — ®, in the interval
[log(1 = p), =p — (1 = 1/¥2)p?].

PrROOF. Consider the exclusion system of simple random walks on Z, realized
via the coupling (5). Let B C Z have distribution »,, with B independent of the
stirring system, and let C = B\{0}. Tag the “hole” initially at the origin in 7,
and let z(t) be the position of this hole at time ¢. Note that the hole moves only

by exchanging positions with an adjacent particle. On the event {Vt =0, | Z*\n, |
=|Z\n,| = o}, for each fixed t = 0, label the translated configuration n{ — 2(t)

and define M, so that
e —2(t) ={---, a_s, a_y, G0, Gy, -}
(14) ‘with .- <as<a1<a<0<a, < ---;
M(x)=|{i€Z:a;—1=2x}|, VxELZ.
It can be checked that M defined by (14) above evolves as the network of queues,
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and the distribution of M is u, as specified at (12). We note that a similar
transformation is used in Rost (1981).
Our theorem will follow from two relations:

{M0)=0Vs=<t}={z(s) =0and 1 & 5%, Vs <t}

15

(15 =1{0,1¢ 7S Vs =t
and

(16) PO,1¢nSVs<t)=P0O¢&n2Vs=<t).

To see (15), note that the tagged hole initially at the origin can move only by
trading places with an adjacent particle. To prove (16), define a transform ¢, of
the sample paths of 7€,

G=lx:x€E€nfandx<0,0orx+ 1€ 7 and x > 0}:

Until the first time that 0 or 1 € 3¢, ¢, evolves like the simple exclusion system,
and the distribution of {, is »,. Thus

0,1 nf Vs <t} ={0€& ¢ Vs =t
and

POE ¢ Vs<t)=PO&nPVs=<t),
which proves (16).0
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