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SOME EXAMPLES OF NONLINEAR DIFFUSION PROCESSES
HAVING A TIME-PERIODIC LAW

BY MICHAEL SCHEUTZOW

Universitat Kaiserslautern

In this paper it is shown that contrary to “linear” homogeneous nonde-
generate diffusion processes, “nonlinear” diffusion processes can have a time-
periodic law. We study four qualitatively different simple examples: a law-
dependent Ornstein-Uhlenbeck process, a deterministic example, a one-di-
mensional example with a “semilinear” drift and a two-dimensional example
with a linear drift.

It is well known that regular (i.e. nonexploding) solutions of equations of the
type
1) dX(t) = b(X(t)) dt + o(X(t)) dW(t)

with b:R? — R? locally Lipschitz continuous, ¢:R¢ — L(R™, R?) locally

Lipschitz-continuous and nondegenerate (i.e. the eigenvalues of A(x) =

(@ (%)) 15ij=m @i (x) = D=1 o (x) ox(x) are strictly positive on R?) and (W(t)):=0

an m-dimensional Brownian motion cannot have a time-periodic law since they

are either positive recurrent, null recurrent or transient (see Hasminskii, 1980).

In the case d = m = 1 periodic laws cannot even occur if o is degenerate.
Solutions of certain equations of the type

2 dX(t) = a(X(t), Z(X(¢)))dt + b(X(¢), L(X(¢)))dW(¢),

Z(+) denoting the law, however can have a periodic law, as we show in this
paper. Solutions of (2) are usually referred to as “nonlinear” diffusion processes
since the associated Fokker-Planck-equation is a nonlinear PDE. They have
been studied by a number of authors, among them Dawson (1983), McKean
(1969), Scheutzow (1983), Sznitman (1983) and Tanaka (1982). Quite frequently
they appear as limiting equations of systems of N interacting particles as
N — o (Dawson, 1983, Sznitman, 1983). One particular case for which the
existence of a periodic law has been shown is the stochastic mean-field
“Brusselator,” a model for a chemical reaction described by the following pair of
equations:

dX(t) = (@ — (b + DX(t) + X*(t)Y(t) + D{(EX(¢) — X(t)))dt + g:(X(t))dW(t)
dY(t) = (bX(t) — X*(t)Y(t) + DAEY(t) — Y(2)))dt + g:(Y(t))dWa(t)

where the parameters a, b, D; and D, and the functions g; and g, have to satisfy
suitable conditions (see Scheutzow, 1983).
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Before we discuss examples of nonlinear diffusions with a time-periodic law
let us note that one-dimensional equations of the type

()  dX(t) = (f(EX(t)X(t) + g(EX(¢)))dt + h(X(¢), EX(t))dW(t)

with f and g locally Lipschitz-continuous and h Lipschitz-continuous and
bounded, cannot have a periodic law. To see this integrate both sides of (3), take
expected values and differentiate again. Then we have

(d/dt)EX(t) = f(EX(¢))EX(t) + g(EX(t)).

This is a one-dimensional ODE with locally Lipschitz-continuous right hand side
which cannot have a (nondegenerate) periodic solution i.e. if (3) has a periodic
law, then EX(t) must be constant. Inserting a constant for EX(¢) in (3) results
in an equation of type (1) which cannot have a periodic law. (The boundedness
of h can of course be relaxed. It was introduced only to avoid complicated
arguments showing that the expectation of the stochastic integral is zero.)

To get periodic laws we either have to consider a drift which depends on
Z(X(t)) not only through EX(t) but which may be linear in X (Example 1) or
the drift only depends on X and EX but is nonlinear in X (Examples 2 and 3) or
we have to consider the multidimensional linear case with coefficients depending
on EX (Example 4).

Let VX := EX? — (EX)? denote the variance of a random variable X.

EXAMPLE 1. Let us consider the following SDE.
(4) dX(t) = (L(EX(¢), VX())(X(t) — EX(t)) + fo(EX(t), VX(¢)))dt + dW(2)
Z(X(0)) = p.
(4) has a periodic law if and only if the following ODE (5) has a periodic solution
(m(t), v(t)) satisfying v(t) > 0 for any ¢ = 0.
5) (@/dtym(t) = fo(m(2), v(®))
(d/dt)u(t) = 2fr(m(t), v(t))v(t) + 1.

Accordingly, if we start from the following ODE (6) which has a periodic solution
(m(t), v(t)) satisfying v(t) > 0 for any ¢ = 0,

(6) (d/dt)m(t) = bi(m(2), v(t))
(d/dt)v(t) = ba(m(t), v(t)),

we obtain a nonlinear diffusion process defined by (4), setting fi(m, v) =
(b2(m, v) — 1)/2v and fo(m, v) = b1(m, V).

PrOOF. If (4) has a periodic law p, it is easy to see that m(t) = E,X(t) and
v(t) = V,X(t) is a solution of (5) satisfying v(t) > 0 for any ¢ = 0. Conversely,
for any periodic solution of (5) (m(t), v(t)) satisfying v(t) > 0 for any ¢t = 0, it is
obvious that if #(X(0)) = .#(m(0), v(0)) Z(X(t)) = #(m(t), v(t)) holds for any
t = 0, noting that {X(t)} is a Gaussian process.
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EXAMPLE 2. Let us first give a very simple example of an equation with a
nonlinear (but semilinear i.e. linear on R, and on R.) drift and ¢ = 0 i.e.
randomness only enters through the initial condition.

We want to have the following solution:

X(t) = _fsin t — 2 with probability %
" |cos t + 2 with probability V.

The expectation of X is then given by
EX(t) = %(cos t + sin t).
Therefore X, which has a periodic law, is a solution of the equation
dX(t) = f(X(¢), EX(t))dt
Z(X(0)) = Ya(e—s + €3) (e, denoting a unit mass in x)
with
I'2y—x—2 if x<0
f,y)=1-2y+x—2 if x>0
10 if x=0.

Of course one can change f arbitrarily outside the range of X and EX.

ExXAMPLE 3. The following example is based on the same idea as the previous
one namely to separate the state space R into two parts, neither of which can be
reached by the process if it starts in the other one, but it is less trivial because
we allow nonzero diffusion.

We consider the equation

(N dX(t) = f(X(t), EX(t)) dt + g (X(¢)) dW(2)
with g Lipschitz-continuous and bounded, g (0) = 0 and

—x+ay+p if x>0
flx,y)=1-2x+yy+6 if x<0
]0 if x=0

where we want to choose the constants q, 8, v, 8 in such a way that for a suitable
initial condition, (X (t)) is periodic. (Obviously we cannot take the same f as
in the previous example because for x > 0 the drift is linearly increasing in x.)

Let us first look at a solution X, () of (7) where EX(t) is replaced by some
deterministic continuous function e(t) and which satisfies P{X;(0) > 0} = 1 and
EX;(0) < . Define e;(t) := EX;(t). Then

ei(t) = —e(t) + ae(t) + 8

provided inf;-oae(t) + 8 = 0 to guarantee that P{X;(t) = 0 for all ¢t = 0} = 1.
Similarly define X, with P{X,(0) < 0} = 1 and EX,(0) > — and e, (t) := EX,(t).
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Then
es(t) = —2ex(t) + ve(t) + 6
provided sup;=ove(t) + 6 < 0. Now define
[X.(+) with probability %
le(') with probability Y.
X solves (7) if EX(t) = Y2(e;(t) + es(t)) = e(t). To show that EX(t) is periodic
in t we have to show that
®) ei (t) = —ei(t) + (a/2)(er(t) + ex(2)) + B
es(t) = —2e5(t) + (v/2)(er(t) + €x(¢)) + 6
has a periodic solution with
) ming.o(e/2)(ei(t) + ex(t)) + 8=0 and
max.=o(v/2)(e1(t) + ex(¢)) + 6 < 0.

X(o) =

It is well known that (8) has a periodic solution if and only if the matrix
M= [-1 +(a/2)  (2/2) ]
(v/2) (v/2) — 2

has a pair of purely imaginary (nonzero) eigenvalues. It is easy to check that this
is the case if « + v = 6 and a < —2. Let us choose « = —4 (and v = 10). This
implies that the period of the solutions of (8) is 2x. The solutions of (8) (after a
suitable phase shift) are of the form

e(t)=—-2Asint — 38— 26
ex(t) =3Asint+ Acost+ 58+ 36.
Conditions (9) are
—2(|A|V2+28+8)+8=0
and
5(|A| V2 +28+68)+6=<0.

These are satisfied e.g. for 6 = 0, 3 = —1 and A = 1. So we have shown that (7)
with N
—x—4y—1 if x>0
f(x, y) =1 —2x + 10y if x<0
]O if x=0
has a solution with the periodic expectation function
EX(t) = Y(sin t + cos t — 2).

To see that there exists an initial condition such that not only EX(¢)
but also .#(X(*)) is periodic, consider the SDE (7) with EX(t) = e(t) =
Y(sin t + cos ¢t — 2) on the half line (0, +). Denoting by X; (¢) the solution of
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(7), {X1(27n)}.en, is a homogeneous time Markov chain on (0, +), the transition
function P(e, , *) of which satisfies the Feller property. Assuming EX;(0) = 3,
EX,(0)? < 4+ and EX;(0)™! < + it is easy to see that EX;(t) = ei(t) =
—2 sin t + 3, sup;=0EX1(t)? < +% and sup,»oEX;(¢)™" < +. Hence

{Pn(°) = ‘:; Y=t J; P(xo, k, *) dFXI(O)(xO)}

is tight as a family of probability measures on (0, +) and any limit ; of {P,} is
an invariant probability measure of {X; (27n)}.en, and [§ xu; (dx) = 3. Therefore
w1 is a periodic law on (0, +%) of (7) with EX(t) = e(t) and E, (X1 (t)) = e\ (t).
In the same way we obtain a periodic law u, with the same period as u; of SDE
(7) on (=, 0) with EX(t) = e(t), and E,,,(Xz(t)) = e;(t). Thus we see that u =
Yo(u, + p2) is a periodic law of (7) since e(t) = Y2(e;(t) + ez(t)) holds.

REMARKS. (a) If we choose A = 0 in the proof of the example, then EX(t)
= —1 for all £ = 0 which shows (using similar arguments as before, for details see
Hasminskii, 1980) that (7) also has an invariant probability measure.

(b) The proof also shows that (7) has infinitely many periodic laws because
A can be any real number which is sufficiently small.

(¢) The time evolution of the e;(t) and e;(t) do not depend on the diffusion
g at all. In particular the case g = 0 is also covered by Example 3.

(d) Although, due to the fact that X is a nonlinear diffusion, the law of the
solution of (7) with initial condition Au; + (1 — N)uz (1 > X > 0 and p; and ps
being probability measures on RR) is not the same as the same convex combination
of the solutions with initial conditions u; and u., this is true for the expected
values because (8) is a linear system.

ExAMPLE 4. Using a slight modification of Example 3 we can construct a
two-dimensional nonlinear diffusion process with a periodic law satisfying a pair
of equations with a drift which is (contrary to Example 3) linear in X (and which
is also linear in EX):

dXi(t) = (=X, (t) + (a/2)E(X1(t) + X2(t)) + B)dt
+ 81(Xi(t), X2(t))dWi(t)
dX,(t) = (—2X2(t) + (v/2)E(Xa(t) + X,(¢)) + d)dt
+ £2(Xi1(t), X2(2))dWe(t)
where a, 8, v and & are chosen as in Example 3 and g; and g are bounded

Lipschitz-continuous functions.

The expected values e; (t) ;== EX; (t) and e;(t) := EX;(t) satisfy the same pair
of ordinary differential equations as before. Therefore (e;(¢), e2(t)) are periodic
with period 27 and by the same argument as before a periodic law exists. In this
example we do not have to worry about conditions (9). These results show that
Example 3 is a “disguised” two-dimensional example.
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