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A NOTE ON A LIMIT THEOREM FOR
DIFFERENTIABLE MAPPINGS

By K. A. BOROVKOV

Steklov Mathematical Institute

The main purpose -of this paper is to draw attention to a simple and
useful general “continuity theorem” type result, from which a great deal of
limit theorems follow as almost immediate consequences. As an example, we
give a new very short and transparent proof of the recent result by H. Teicher
and C. Hagwood (A multidimensional CLT for maxima of normed sums); in
fact, a much more general assertion is proved here. Another application of
the main result establishes a correspondence between the convergence of
empirical and quantile processes. (A similar result holds for the renewal and
partial sums processes.)

In a recent paper [4], a multidimensional analog of the following assertion was
proved. If X;, X,, -+ is a sequence of i.i.d. random variables, EX; = u > 0,
o2 =Var(X;) <o, and S, = ¥ -1 Xk, then for any a € [0, 1)

Y, = n* Y?(max<,Spk™* — un'"*) = No,2 as n — @

(here = stands for weak convergence of distributions, No,z is the normal
distribution with parameters 0, o). At first sight this result looks strange and
even intriguing. However, after rewriting Y, in the form

n~Y2(maxp<, (S + uk)(n/k)* — un),

S$ are sums of X} = X, — u, it becomes clear that the maximum is attained on
the value of k, which is very close to n and is equal approximately to S,.. (In fact,
the only needed property of {X3} is that the weak invariance principle holds for
this sequence, i.e., S,(t) = n~28},; = ow(t) in Skorokhod space D[0, 1], where
w(t) is the standard Wiener process.) Now it is easy to find a straightforward
proof of Theorem 1 in [4], which is very short and transparent (unlike the original
one). Similar proofs are valid not only for the case of norming factors 2~ (this
restriction apparently is due to the method of proof in [4]), but also for a wide
class of norming sequences. The best understanding of the idea of all these proofs
can be achieved when using the following approach.

We'formulate below a simple general assertion for random elements of normed
spaces, from which the main result of [4] and many similar ones follow readily
as consequernces.

Let 2, % be arbitrary normed spaces endowed with ¢-fields of Borel sets, and
let a separable subspace . C 2 Suppose that a measurable mapping F: & — %
satisfies a Lipshitz condition in a neighbourhood of some point x, € £ and
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F(xo + x), x € % has a Gateaux differential at 0, i.e.,

(i) 3e>0,K<o: [|[Flxo+ h) —Fx)| <K h|if|h] <e;
(ii) Vh €% 3 lim,ot 1 (F(xo + th) — F(x)) = U(h).

It is easy to see that these conditions will be met if F has Frechet derivative
at Xo.

PROPOSITION. Let {u,, a,}.=0 be a sequence of random elements u, € Z,
a, €ER, a, # 0 a.s., such that u, = uy, a, = ap as n — o, and P(uy € .% ap = 0)
= 1. Then a;* (F(xo + ant,) — F(x0)) = Ulug).

PROOF. Since (u,, a,) = (uy, ao), it follows from a variant of the Skorokhod
theorem (see [5]) that this sequence can be redefined on a common probability
space so that (u,, a,) — (uo, ay) a.s. To complete the proof it suffices to note
that

a; (F(xo + anu,) — F(x))
= a; (F(xo + anlo) — F(x0)) + an" (F(xo + anun) — F(xo + ani)),

where the first term in the right-hand side converges a.s. to U(uy) and the norm
of the second one for sufficiently large n does not exceed 2K | u, — uo|| — 0 a.s.
(This Proposition can be easily derived, e.g., from [1, Theorem 5.5] as well.)

REMARK. A similar assertion (proved in an entirely different way) was used
in [2, Section 1.8], where the convergence of differentiable functionals of empir-
ical distribution functions was considered. Note also that instead of weak differ-
entiability of F we could assume that, say, for some a € (0, 1) this function
belongs to Lip,-class and that there exists lim;_,ot™*(F(xo + th) — F(x,)) = U(h),
or we could consider more general spaces, etc. But for our present purposes it is
enough to use the Proposition in its present form.

We could have shown how Theorem 1 of [4] follows from the Proposition, but
we would rather prove a more general assertion.

THEOREM 1. Let X1, X,, - - - be i.i.d. random vectors in R® with mean u and
covariance matrix o2, and let yv; € R®, f;, g € C[0, 1], g(0) =0,i=1, ---, £
Suppose that for all i

m; = maxXo=,<1(fi(t) + (yi, n)&i(t)) >0,

and let inf M; > 0, where M; = {t: f;(t) + (y;, u)g(t) = m;} and (-, +) denotes an
inner product. Then

n'2{maxg<.(fi(k/n) + g k/n)k™' (yi, Sk)) — mi}izy
= {maxer, 8 ()t (i, ow(t))}ie1, n— oo,

where w is the standard d-dimensional Wiener process.
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The main result of [4] is a particular case of Theorem 1 with # = d, {y;} being
an orthonormal basis in R4, f; =0, gi(t) = t'™%, a; € [0, 1), u; = (yi, u) > 0.

PROOF. Since the argument in the general case does not differ from that in
the one-dimensional case, we consider here only the latter one (d =/ =y, = 1).

First note that there exists an ¢ > 0 such that P(max,,<k<,Arn = Maxp<p,As )
— 1, where

Apn = f(k/n) + g(k/n)k™'S, = f(k/n) + ug(k/n) + g(k/n)k™'S}.
Indeed,
SUPr<ng (k/n)R™ S} < sup;<;g (t)supr=1k 'SP + sup.<1&(t)supr=nsk ' S%,

and the first term in the right-hand side can be made (for almost every elementary
event w) less than an arbitrary small number by the appropriate choice of
6 = 6(w), and the second term a.s. vanishes as n — o for any 6 > D (we used
here the fact that by the strong law of large numbers lim,_.sups=,k 'S}
=0 a.s.). Hence sup<,g(k/n)k~1S% — 0 a.s., and our assertion follows from the
continuity of f + ug and the condition inf M > 0.

Further,

n2(max,,<knlpn — m) = a7 (F(xo + a,u,) — F(x)) + 0O(n™Y?),

where

-1/2
I

a,=n F(x) = sup.<;=1%(t), xo(t) = f(t) + ug(t),

and
Un(t) = g7 [ntn[nt] s, (t) = uo(t) = og(t)t ' w(t)

in & = Dle, 1] (with the uniform norm) by the invariance principle. Now a
simple calculation shows that the Lipshitz function F: 22 — % = R has at the
point x, Gateaux differential U(h) = max,epmh(t), h € & = Cle, 1], and to
complete the proof it remains to apply our Proposition.

As we mentioned above, assertions of this type proved to be useful in statistics,
and here is another result in this field.

Let {X{”, ---, X}, n = 1, be a sequence of increasing samples of random
variables ranging in [0, 1]. Suppose that

(1) U (t) = n2(G™(t) — t) = uo(t), n— ,

in the space D[0, 1], where G is the empirical distribution function for the nth
sample and u, is some continuous process (this is the case, e.g., when X}") =X;
and X; form the sequence of independent uniformly distributed in [0, 1] random
variables; in this case uo is a Brownian bridge). Define the mapping F by

(F(x))(p) =1 Ainf{t = 0: x(t) = p}, p €0, 1],
for x € DI0, 1]; obviously, (F(G™))(p) = @™ (p) = X{{);+1), where X is the
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kth order statistic in the nth sample. It is easy to see that | F(x, + k) — F(xo) |
< ||h|l, where x(t) = t, x| = supose=1|x(¢)|, and that F(xo + x),
x €% =Cy= C[0, 1] N {x: x(0) = x(1) = 0}, has the Gateaux differential
(U(h))(p) = —h(p) at x = 0. Now it follows from the Proposition that (1) implies
convergence v,(p) = n'2(Q™(p) — p) = —uo(p); the same argument shows that
the converse implication is true as well. (Note that in the general case G* is not
the random element of 2 = D = [0, 1] with sup-norm, but this difficulty with
measurability can be easily overcome, e.g., by smoothing G™.) Therefore, we
come to the following result, relating convergence of empirical and quantile
processes (here = means weak convergence in the space D[0, 1] with Skorokhod
metric).

THEOREM 2. Assume that uy € Co. Then u, = uy iff v, = —uo.

If uo is a Brownian bridge, as in the standard situation, uo = —u, in distribution,
and it is not difficult to show that in this case the difference between the rates
of convergence of u, and v, to uUp (in minimal metric, corresponding to the
uniform distance in D[0, 1]) does not exceed n~/* (up to a logarithmic factor).

Using a function F of the same type it is easy to establish a similar correspond-
ence between the convergence of renewal processes and the convergence of partial
sums processes in the invariance principle type theorems (both weak and strong).
For other approaches to this probem see, e.g., [3] and [1, Theorem 17.3].
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