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SOME STRUCTURE RESULTS FOR MARTINGALES IN THE
LIMIT AND PRAMARTS

BY MICHEL TALAGRAND

Université Paris VI

We show that an L'-bounded Banach-space-valued martingale in the
limit (X,) can be written X, =Y, + Z,, where (Y,) is an L'-bounded
martingale and where (Z,) is a martingale in the limit that goes to zero a.s. in
norm. This theorem still holds for a new class that generalizes martingales in
the limit. We show that a real-valued L'-bounded pramart (X,) can be
written X, = Y, + Z,, where Y, is an L'-bounded martingale, and Z, has
the following property: For each ¢ > 0, there is an m, an =, -measurable
subset A of {, and a supermartingale (T,), ,, on A such that [,T, dP < ¢
and |Z,| < T,,on A for n > m.

1. Introduction and results. Let (2, =, P) be a complete probability space,
(2,)) an increasing sequence of ¢ algebras. A stopping time is a random variable 7
assuming positive integer values and such that for each n, {r = n} € Z,. The
collection of bounded stopping times is denoted by 7. Let F be a Banach space.
A sequence (X,) of F-valued random variables is called adapted if X, is
2 -measurable. For an integrable F-valued random variable Y, we write E™*(Y) =
E(Y|Z,). If 7 is a bounded stopping time, we define X, by X (v) = X, ,(@). A
martingale in the limit is an adapted sequence of integrable F-valued random
variables such that there is a sequence (4,) of measurable functions, A, valued
in [0, 0], A, — 0 with

Vm=>n, |EY(X,)-X,|<h, as.
If moreover we have
VreT,r>n, |EYX,)-X,|<h, as.

we say that (X)) is a pramart.

Martingales in the limit have been introduced by A. G. Mucci [8], who proved
that real-valued L!-bounded martingales in the limit converge. Pramarts have
been introduced and extensively studied by A. Millet and L. Sucheston [7].
Although a more restrictive class than martingales in the limit, they enjoy much
better probabilistic properties, e.g., the optional sampling property.

The main theorem we shall obtain still holds for a class more general than
martingales in the limit that we now introduce.

DEFINITION 1. We say that an adapted sequence (X,) of Banach-valued
random variables is a mil if for each ¢ > 0, there exists p such that for each
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STRUCTURE RESULTS FOR MARTINGALES 1193

n > p we have

P(sup (I, - E%(X,); p<a<n)>e)<e
q

In [7], A. Millet and L. Sucheston use the name mil for martingales in the
limit. However, the notion introduced in Definition 1 is more general than the
notion of martingales in the limit, while its convergence properties seem to be as
good. Since Professor Sucheston himself suggested that the best notion should
have the best name, we shall henceforth use the name mil as in Definition 1.

If (X,) is a martingale in the limit, for each ¢ there is a p, and a measurable
function A,, with P(h,>e) <e, such that || X, — EYX,)| < h, whenever
P < q < n. In particular, a martingale in the limit is a mil.

Mils constitute a large class, as the following show.

THEOREM 2. An adapted Banach-space-valued sequence (X,) that con-
verges a.s. and in L' is a mil.

EXAMPLE 3. There exists a real-valued L'-bounded mil that is not a
martingale in the limit.

THEOREM 4. A real-valued mil (X,)) such that liminf E|X,| < co converges
a.s.

It should be mentioned that the proof of this theorem is not a stopping time
proof.

) COROLLARY 5. An adapted equi-integrable real valued sequence (X,) con-
verges a.s. if and only if it is a mil.

A classical result states that an L!-bounded F-valued martingale (X,) that
goes scalarly to zero [i.e., x*(X,) — 0 a.s. for each x* € F'*] goes to zero a.s. in
norm. The proof is based on a lemma of Neveu [9]. Using an extension of Neveu’s
lemma, Egghe could prove that an L!'-bounded F-valued pramart that goes to
zero scalarly goes to zero in norm [4]. It is not possible to extend this method of
proof to martingales in the limit, because for a martingale in the limit (X)) the
sequence (]| X, ||) does not seem to have any useful property (even in the real-val-
ued case, as was already shown in [2]). Nevertheless, we shall prove:

THEOREM 6. Let (X,,) be an F-valued mil such that liminf (|| X, ||dP < + oo.
If x*o X, — 0 as. for each x* in E*, then || X,|| - 0 as.

It would be useful to have a simple description of F-valued L'-bounded mils
that converge to zero. The following example shows that even for pramarts, the
Banach-space-valued situation is more complicated than the real-valued situation
(that will be described in Theorem 10.)
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EXAMPLE 7. There exists an /%valued L'-bounded pramart (X,) with || X,|
— 0 as. and (]| X,|)) is not a mil.

The convergence of vector valued mils is best handled by the following
structure theorem. (Special cases were obtained in [5] and [10].)

THEOREM 8. Let (X,) be an F-valued mil such that liminf || X, || dP < oo.
Then there is a unique decomposition X, = Y, + Z,, where Y, is an L'-bounded
martingale, and Z,, is a mil with Z, — 0 a.s.

COROLLARY 9. All F-valued L'-bounded mils converge if (and only if ) F has
the Radon—Nikodym property.

We now turn to a characterization of real-valued pramarts that is similar to
the Ghoussoub—Sucheston characterization of amarts [6].

THEOREM 10. Let (X,) be a real-valued pramart such that liminf [| X, |dP
< oo. Then there is a unique decomposition X, =Y, + Z,, where Y, is an
equi-integrable L'-bounded martingale, and T, = |Z,| is a positive pramart that
goes to zero. Conversely, if X, can be written as Y, + Z, where Y, is a
martingale and where |Z,| < T,, T, being a positive pramart that goes to zero
a.s., then X, is a pramart.

The following result characterizes positive pramarts that go to zero a.s.

THEOREM 11. An adapted sequence of positive random variables (T,) is a
pramart that goes to zero a.s. if and only if for each ¢ > 0 there is ap > 0, a set
A € 2, with P(A) > 1 — ¢, and a positive supermartingale (S,), . , on the space
(A, 2|A, P|A) such that

[S,dP<e and T,<S, onAforn>p.
A

A consequence of Theorems 10 and 11 is that if (X,), (Y,) are L'-bounded
pramarts, (X, V Y,)is a L'-bounded pramart.

ExXAMPLE 12. There exists an L'-bounded martingale in the limit (X,,) with
X, — 0 a.s. such that | X, | is not a mil.

2. Proof of Theorem 2 and construction of Example 3. If (X)) converges
in L', let Y be its limit. Let Y, = E"(Y). Since both X, and Y, converge a.s. to Y,
Z,=X,— Y, goes to zero in L' and a.s. Let £ > 0. Since (Z,) goes to zero a.s.,
there exists p, such that

P( sup ||Z,]| = e) <e
q=zp,
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Since (Z,) goes to zero in L', there exist p > p, such that ||Z,||, < 2 for n > p.
The maximal inequality shows that

P( sup||EY(Z,)| = e) <e

gsn

So, for any n > p, we have

P( sup |E%(Z,) - Z,|> 28) < 2e.
pP=<g<n
This shows that (Z,) is a mil, whence it follows that X, = Y, + Z, is a mil.
Theorem 2 is proved.

We now produce an example of a positive adapted sequence (X,,) such that X,
goes to zero in L' and a.s., but is not a martingale in the limit. For n > 1, let
a, =1II,_,2"=2nn*1/2 and let a,=1. For n > 0, let @, be the partition of
[0,1] in a, intervals of equal length. Let b, = =, _ ,a,. For n > 1, let =, be the ¢
algebra of [0,1] generated by @,,,; where m is the unique integer such that
b,-1<n<b,. (For n =1, we take m = 0.) We let X, =1 and for n > 1 we let
X, = 0 everywhere except on the first interval of @,,., that is contained in
[(n bp_1—1/a,,(n—05, ,)/a,]. In this interval we take X, constant,

equal to a,, ,/m. We have that (X,,) goes to zero in L'. Moreover, for each m,

P( sup || X, || > o) <2 m 1
bm—] <ns< bm
so we also have that (X,,) goes to zero a.s. However if ¢ = b,,_,, we have
sup EU(X,)=a,/m,
b, ,<n<b,
since X is the algebra generated by @,,. This shows that (X,) fails to be a
martingale in the limit.

3. Proof of Theorem 4. Let (X,) be a mil that does not converge a.s. We
shall prove that lim,E|X,| = oo, proving Theorem 4. We can find a < b and a
set A €2 with P(A)> 0 such that limsup X, (w) > b, liminf X (w) < a for
w € A. By adding a constant, we can suppose a > 0. The main point of the proof
is the following.

CramM. Let n, €N, &> 0. Then there exist n, > n, such that for each
De 2,, P(D) < P(A)/2 and each n > n, there exists E € 3, , With P(E) <,
E N D= & such that [;|X,|dP > (b — a)P(A)/12.

Proor. We first find £ > n, and A, € 3, such that P(AaA)) < ¢/2. We
can assume ¢ < P(A)/4, and assume that % is so large that for n > &

(1) P( sup |E1’(Xn)—Xp|>(b—a)/3)<e/2.

k<ps<n
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We then construct a sequence k < p, < --- < p, such that if for : </
= ({x,,> 8} nA)N U (X, > b}
Jj<i

we have T,_,P(B;) > TP(A)/8. Note that B,€XZ,. Let B =U,_,B;. Since
B c A,, we have P(B\ A) < ¢/2. Since hmlan < a on A, we can find a
sequence p; < ¢, < -+ < g, such thatif for j <m

C = ({X <a}mB)\U{X <a}

i<j

we get ¥, _,P(C;) > P(B) —¢/2.
We set n,=4q, Let n>n,, and let De X, with P(D) < P(A)/2. For
i<l let

H, = {|E?(X,) - X,| > (b—a)/3}.

It follows from (1) that P(U,_,H;) <e/2 < P(A)/8. If we set B! = B;\
(H; U D) we have B} € 2, and X, _,P(B;) > P(A)/4. Let B! = U,<,Bl We
have B} € 3. For j < m, Tet

={IEv(Xx,) - X,|> (b~ a)/3}.
It follows from (1) that P(Uj<mK ) <e/2. Let C! = B' N (C;U H)). Then

C}! € £, , and we have X .P(C)= P(Bl) — &
Let us fix i < I. We have

(2) lendP = fIEP»(Xn) dP > (2b + a)P(B!)/3

since EP«(X,)> X, —(b—a)/3 > (2b+ a)/3 on B}. For _] <m,let L, ;= B}
N C}, and let M; = B‘\U1<mL . We have, since L, ; € X

[ x.ap=| E'%(Xn)dPS(b+2&)P(Li,j)/3
Li,j th

since E%(X,) < qu +(b—a)/3 <(b+2a)/3on L, ;. Summation over j < m
gives

(3) f X, dP < (b + 2a)P(B!\ M;)/3 < (b + 2a)P(B})/3.
BI\M,

Together with (2), we get

(4) ansz (b-a)P(B})/3

Let E = U, _,M;. Since M; € 2, wehaveE SRS 2 , and of course EN D =
@ . Moreover P(E) = P( B1 \U j=nCH <e Flnally, summatlon of (4) over i <1
gives

fEXndP > (b - a)P(A)/12,

and that proves the claim.
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To prove the theorem, we now construct by induction an increasing sequence
n, with the following property: whenever D € En , P(D) < P(A)/2, and n >
n p+1 thereexists E € 2, with P(E) <2 pP(A) EnNnD= g,and jE|Xn| dP
> (b —a)P(A)/12. Now Tet n > n,. We construct by lnductlon for i < p dis-
joint sets D, € 2,, with D, = Q P(D,) < 27'P(A), and Jp|X,|dP >
(b — a)P(A)/12. It follows that E|X | > (p — 1)(b — a)P(A)/12 Hence
lim,E|X,| = co. The theorem is proved. O

4. Proof of Theorem 6 and construction of Example 7. The proof will be
very similar to that of Theorem 4. Let (X,,) be an F-valued mil that converges
scalarly to zero, but that does not converge a.s. to zero. We shall prove that
lim , E||X,|| = oo, and that will prove Theorem 6. We can find ¢ > 0 and a set
A € 3 with P(A) > 0 such that lim sup|| X,(w)|| > a for w in A. The main point
of the proof is the following:

CrLaiM. Let n, €N, ¢ > 0. Then there exists n, > n, such that for each
D e 2, with P(D)< P(A)/2, and each n > n,, there exists E € 2, with
P(E)<e¢ ENn D= g suchthat (| X,||dP > P(A)/16.

Proor. We first pick £ > n, so large that for n > & we have

(5) P( sup ||EP(X,) - X,|> a/4) <e/2.
k<p<n
We can of course assume ¢ < P(A)/4. We then construct 2 < p, <p, < --- <p,

such that if for i </
B, = {I1X,] > a}\ U {IX,| > a}

J<i
we have ¥, _,P(B;) > TP(A)/8. We note that B;€ 2,. We can find a finite
subset G of the unit ball of F* such that if we set

B! = {3x* € G; x*(X,) > a} N B;
we have X, _,P(B}) > TP(A)/8. Note that B} € L, . Let n, be large enough that
P(C) < ¢/2 where
C={3x* e G; x%(X,,) > a/4}.

The existence of n, follows from the fact that we assume that (X ,.) goes scalarly
to zero. Now let n > n, and D € ¥, with P(D) < P(A)/2. For i </, let

H;= {|E*(X,) - X, || > a/4}.

It follows from (5) that P(U, _,H;) < /2 < P(A)/8. For i < I, we set B} = B;\
(H; U D). We note that B} € 2, and that E,<,P(B3) > P(A)/4. Let

{||E"2(X ) = X, |l > a/4}.
If follows from (5) that P(K’) <¢/2. Let K=K’ U C. We have K € 2, and
P(K) < &. Let us enumerate the elements of G as x},...,x*. For j < m, let

S, ;= B} ﬂ{xj*(Xp‘) >a,Vs <j,x;“(Xpl) < a}'
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We have S; ;€ 2, and the sets (S; ;); form a partition of B3. We have, since

© fs l'jxj*(X,,) dP = fs Jx}’.“( EP(X,))dP > fs ,,(x‘*( X, ) - a/4) dP
> 3aP(S, ;) /4.

Since S; ;\ K € 2, , we have

f x¥(X,)dP= [ x¥E™(X,))dP.
S, \K S, \K

(N

Since || E™(X,) — X, || < a/4 and x](X,,) < a/4 outside K, we get

[ xx(X,)dP<aP(s, ;)2
\

tJ

Together with (6) we get

[ IXJdP= [ xX(X,)dP>aP(s,,)/4.
S NK SI‘I(\K

LI

and summation over i and j gives
JIX,lIdP > aP(4)/16,
E

where E = K N U;B}. And we have P(E)<eand E€ =, , END= @. The
claim is proved. The rest of the proof of Theorem 6 is identical to the end of the
proof of Theorem 4. O

We now go to the construction of Example 7.

Using Dvoretzky’s theorem, the following construction could be performed in
any infinite dimensional Banach space; but, for simplicity we shall perform it
only in /2.

Let a, = I, _,4% @, be the partition of [0,1] in a, equal intervals, and 3, be
the algebra generated by @,. We denote by (e,) the canonical basis of I2. We
define X, in the following way: For any interval I of @,_,, and for j < 2", X, is
constant equal to a,_,2",, . ; on the jth interval of @, that is contained in I
and X, is zero on the other intervals. Since P(X, # 0)= 27" we see that
|X,|| = 0. Also, since E"(|| X,,,,|)) = 1, we see that (]| X,,||) is not a mil.

Now, if 7 is a stopping time with 7 > n, we have

En(X‘r) = XnX{‘r=n} + Z En(XqX('r=q))'

q>n

It is clear that

L E(XX(r-q)

q>n

< T JE(x,)]
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and direct computation gives | E™(X,)|| = 279/2 It follows that
[E*(X,) - X,|| < sup|| X,| +5 27"/

q=n

and this shows that (X,,) is a pramart since X,, — 0.

5. Proof of Theorem 8. Let (X,) be an F-valued mil such that
liminf E|| X, || < co. From Theorem 4 we see that for each x* in F*, the limit
lim ,x*(X,) exists. Fatou’s lemma shows that it is an integrable random variable.
Without loss of generality, we can assume F separable. Let (x,) be a dense
sequence in F. For each n, let

V,={x*e F* |x* <1,Vi<n, |x*(x;)| < 1/n}.
For each x in F, write
llxll,, = sup{x*(x); x* € V,}.

This is a norm on E, and for x in E, we have lim||x||,, = 0. We now fix q in N.
Let A = liminf|| X, ||. By Fatou’s lemma, A is integrable. Let g = E 9. We note
that for x* in F*, |lx*|| < 1, we have lim x*(X,) < h. We can define g, by

&, = esssup{quimx*(Xs); x* e I/;l}.
S
We have g, < g. The sequence g, is decreasing.
MAIN FacT. lim,g, = 0 as.

The proof of the main fact follows the pattern of the proof of Theorems 4 and
6. If the Main Fact is not true, there is @ > 0 and A € = with P(A) > 0 such
- that for each n, g, > a on A. Let n > 0 be such that for D € = with P(D) < 39
we have [,gdP < aP(A)/8. We can assume n < P(A)/2.

CramM. Let n, €N and & > 0. Then there is n, > n, such that for n > n,
and each D € 2, , with P(D) < n there exists E € 2,,with P(E)<e, END
= @, and [g||X,||dP > aP(A)/8.

Proor. We can assume ¢ < 7. We pick k& > n, so large that for n > & we
have

(7) P( sup |E?(X,) - X,|> a/8) <e/4.
k<p<n

Since for x in F we have lim,,||x||, = 0, there exists ¢ >.% such that

(8) P(I| X, > a/6) < e/4.

We.know that g, > a on A, so there is a sequence x},...,x} of V, such that if
for i < I we set

B, = {quiinx;"(Xs) > a;Vj<i, E%limxy(X,) < a}
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we have X,_,P(B;)> 3P(A)/4. Note that B,€ 2 . For 1</, let [, =
lim x*(X,). We have lim,E"(f;)=f; as., so for n, large enough we have
P(K,) < g/2, where

K, = {suplx#(X,,) = E™(£)| > a/6).

i<l
Now let n > n, and let D € =, with P(D) < P(A)/2. Let
K, = {IX,, — E™(X,)| > a/6}

and let K = K, U K,. Note that K € 2, and that (7) implies that P(K) <.
Let

L= {|EXX,)I,> a/3}.

We have L € 3. Since || - ||, < - ||, it follows from (7) and (8) that P(L) < ¢/2
<n.Let M=LUD,so MeZX, and P(M) <2q. For i <, let B/ = B\ M.
We have

[ Ee(t)dP= [ f,dP > aP(B,).
B, B,
Since |f;| < g a.s,, wehave,if N=KUM=KULUD
[ f:dP > aP(B;) - gap.
B! NNB,

On B;\ K, we have |x}(X,,)) — E™(f;)| < a/6 and |x}*(X,,) — x*(E™(X,))| <
a/6, so we have |E"(f,) — x}(E™(X,))| < a/3. It follows that

[ xx(E™(X,))dP> [ (E™(f)~a/3)dP
B\K B\K

= [ f,dP— aP(B;)/3
B\K

[ xr(E™(X,))dP > 2aP(B,)/3 - [ gadP.
BN\K NNB,

On the other hand, since B} € 2, we have
[ xx(E™(X,))dP = [ x¥(E*(X,))dP < aP(B,)/3
B B
so it follows that

[ 1XaP=[ xr(E™(X,))dP=>aP(B)/3~ [ gdP.
KNB! KNB NNB,

Since P(N) < ¢ < 1, we get [ygdP < aP(A)/8. Let E = U,_,K N B. We have
E€Z,, P(E)y<e END= g, and by summation [g||X,||dP > aP(A)/8.
The claim is proved.
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To show that the claim implies the Main Fact, one proceeds as in the proof of
Theorem 4, to show that the claim implies liminf E|| X, || = oo, a contradiction.
The Main Fact is proved.

Let us fix & > 0. Egoroff’s theorem shows that thereis B, € = with P(B,) >
1 — 1/k such that g, goes to zero uniformly on B,. Consider now the operator T
from F* to L® = L*(B,,2,|B,, P|B,) given by T(x*) = E%lim ;x*( X,)). The
restriction of T to the unit ball of F* is weak* to norm continuous. It follows
that there is a compact operator V from L(B,,Z,|B,, P|B,) to F such that
T = V* Since V is compact, it is representable [1], that is there is a bounded
Bochner measurable W*: B, — F such that V(¢)= [¢W*dP for ¢ € L. It
follows that x* o W* = T(x*) for x* € F*. Patching the pieces we get a = gsmea-
surable map Y, such that ||Y,|| < g and x* Y, = E%lim ;x*(X,) for x* E F* It
is obvious that (Yk) isa martmgale, that is L1 bounded. If weset Z, = X, — Y,
we see that Z, is a mil with liminf £||Z,|| < oo, and that Z, goes scalarly to zero.
So Theorem 6 shows that (Z,) goes in norm to zero, and 'I‘heorem 8 is proved. O

6. Proof of Theorem 10. It follows from Theorem 4 that (X, ) converges a.s.
Let X be its limit. Let Y, = E”*(X). Then Y, is an equi-integrable martingale,
and Z, = X, — Y, is a pramart such that liminfE|Z,| < + o0 and Z, goes to
Zero a.s.

MaIN FacT. For each ¢ > 0, there is p such that
Vp<qs<n, P(EY|Z,)) >¢)<e.

Otherwise, there is a > 0 such that for each p, there exists p < ¢ < n with
P(EY|Z,) > 2a) > 2a.

CLaiM. Let n, €N and D€ X, with P(D) < a/2, and let ¢ > 0. Then
there exists n, and £ € 2,  with P(E )<é¢& EN D= & such that for each
n > n, we have (5|Z,|dP > a2/16

ProoF. We can assume ¢ < a/4. Let p > n, be such that we have
P( sup |EYZ,)| > a/4) <e.
p<gsr
Let n, > ¢ > p with P(E%(|Z, |) > 2a) > 2a. For definiteness, assume P(A)
> a, where A = (E%(Z, ) > a}. Let

E, = {2, < —a/4}, H {sup|E"(Z ) > a/4}

q<‘l'

and let E=(ANE)\(HUD). Then P(E)<e¢, END=0, E€Z,. Fix
n > n,, and let = be the stopping time given by r = n, on X\ E, and 7 = n on
E, Let A =AN\(HUD),s0o P(A’) > a/4.Let B={—-a/4 <Z, <0}. We get

EUZ,)=EZ})+E%Z,xs) + EYZ,xz,)-
On A’ we have |[EYZ,)| < a/4, EYZ,)> a, and |EYZ,,xp)| < a/4, so in-
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tegration over A’ yields
fA,Eq(ZnQXEl) > aP(A’)/4 > a?/16,
SO
fE Z, dP = fA Z, Xz, dP > a%/16,

and this proves the claim. The Main Fact follows from the claim and the
hypothesis that liminf E(X,,) < oo.

We now complete the proof of Theorem 10. If 7 is a stopping time greater than
q, let A={Z >0}, le¢t n>r, and let 7/ be the stopping time given by
T/ = TX4 + nX x\ 4 We have

Eq(Z:) = Eq(ZfXA) = Eq(ZT/) - Eq(ZnXX\A)
1)
|E(Z)| < |EUZ,)| + EU(|Z,)).
A similar argument with 7 = 7x y\ 4 + nx 4 shows
EY(Z.)) < |EYZ,)| + |E)Z,.)| + 2E(|Z,]).

Observe that the set of E9(|Z,|) for 7> q, 7 € T is filtering increasing. Let
h, = esssup, ., ,E9|Z,). Then the main fact shows that the A 4 8oes to zero in
measure. Given ¢ > 0, there is q such that P(A ¢)=1—¢whereA = {(h, <1}.
But it is obvious that on A,, the sequence (4,), . ¢ 1s a submartingale with
respect to the restriction of 2, to A . So it converges a.s. on A,. This shows that
(h,) converges a.s. so it must converge to zero. Hence (|Z,)) is a pramart, and the
result is proved. O

7. Proof of Theorem 11 and construction of Example 12. We first prove
the necessity. Let (T},) be a positive pramart that goes to zero. For each n, notice
that the set of functions E*(X,) for 7 > n is upward directed. Denote h, its
essential supremum. Then A, — 0 a.s. Given & > 0, there is p > 0 such that
P(A)>1 — ¢ where A = {h, < €e}.Form > n > p, it is clear that E"(h, x ) <
h,, that is (h,),., is a supermartingale on the space (4, Z=|A, P|A), and
h,>T,on A. ,

We now prove the sufficiency. Let ¢, A, p be as is in the statement of the
theorem. For > n>p we have T, < S, on A, so ET,)< E*S,) < S,. For
each n, let A, =esssup,,,E"(T,). For n>p, we have h,<S, on A, so
limsup,S, < limsup,S, on A. It follows that

j limsuph, dP < e.
A

As ¢ is arbitrary, we have lim A, = 0 a.s. Since T, — 0 it follows that (T}) is a
pramart, and the theorem is proved.

We now construct Example 12. Let a,, = I, _ ,2¢, and let @, be the partition
of [0,1] in @, intervals of equal length. Let =, be the algebra generated by @,
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For an interval I of 2, _,, we define X,, = 2"~ ! on the first interval of @, that is
contained in I, X, = —2""'on the second interval of @, that is contained in I,
and X, = 0 elsewhere. We have P(X, # 0)=2""*! so X, - 0 a.s. We have
E™"(X,)=0 for n<m, so (X,) is a martingale in the limit. However,
E™"(|X,,.) =1, so |X,|is not a mil.

Acknowledgment. The author is indebted to N. Frangos and L. Sucheston
for bringing this question to his attention and for enlightening discussions.
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