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LAWS OF THE ITERATED LOGARITHM FOR TIME CHANGED
BROWNIAN MOTION WITH AN APPLICATION TO
BRANCHING PROCESSES

By R. M. HucGGins!
La Trobe University

A functional law of the iterated logarithm for time changed Brownian
motion is given for stopping times that increase at a geometric rate. This
result is applied to various quantities associated with a Galton—-Watson
process.

Introduction. The work undertaken here is motivated by the desire to apply
embedding techniques to obtain laws of the iterated logarithm for quantities
associated with a supercritical Galton-Watson process. In the literature (for
example, Heyde [4], [5], and [6], Heyde and Leslie [7], and Brown and Heyde [2])
asymptotic results for such processes have been proven via Berry-Esseen-type
inequalities and in Scott [9] a functional central limit theorem for martingales
that are not uniformly asymptotically negligible was applied to branching
processes. This latter approach is rather long and complicated and seems to
imply that standard martingale results with uniformly asymptotically negligible
summands do not apply to branching processes. However in Asmussen and
Keiding [1] it was shown that by considering the offspring of each individual a
central limit theorem for a martingale difference array could be used to obtain a
central limit theorem for quantities associated with branching processes. The
major purpose of our work here is to similarly consider laws of the iterated
logarithm for branching processes and as these results require new properties of
Brownian motion and stopping times the bulk of this article is devoted to this
area, the desired results being applications of these properties.

1. Properties of Brownian motion and stopping times. Let ¢ be the real
valued function on (e, ) defined by

¥(t) = 2tloglogt = 2tlog,t.

We define {£(2),t > 0} to be a standard Brownian motion and (C, p) to be the
Banach space of all real valued continuous functions on [0, 1] with
p(x,y) = sup |x(t) —y(¢)l, x,y€C.
0<t<1
Let K be the set of absolutely continuous x € C such that x(0) = 0 and

'[)l[a'c(t)]zdts 1,
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where % denotes the derivative of x with respect to Lebesgue measure and is
determined a.e.

The question of prime consideration concerning stopping times and Brownian
motion is the following. For a sequence of random variables {7,;n > 1} what is
the fastest rate at which these variables can increase to infinity and the law of
the iterated logarithm still hold for the sequence (27,log,7,) " /2B(-,). We show
in Section 1 that this rate is at least that given by (1) and (2) below, i.e., the
sequence may increase at a geometric rate.

Our main result is the following theorem which is an extension of Theorem 1 of

Strassen [12]. ‘

THEOREM 1. Let {&(¢),t =0} be a standard Brownian motion and
{a,,n = 1} a sequence of constants increasing to o satisfying
(1) a,'a,.,~L, 1<L<oco.

If for some nondecreasing sequence of positive almost surely finite random
variables {1,,n > 1}, where w.l.o.g.1, > 3,

(2) a,', > W as. 0<W<ow a.s,

then the sequence

(3) {(21'nlog2'rn)_1/2£('rnt), tel0,1],n > 1}

is u])llt[}é probability one relatively compact and the set of its limit points coincides
with K.

Proor. Corollary 1 of Strassen [12] implies that the sequence in (3) is
relatively compact and the set of its limit points is at most K with probability
“one. To show that with probability one the set of its limit points is at least K we
proceed via several lemmas. The first is a corollary of Theorem 1 of Strassen [12].

LEmMA 1. Define for t € [0,1]

(4) £,(t) = ¥(a,) *t(aut).
Then, under condition (1), with probability one the sequence {{,,n > 1} is
relatively compact and the set of its limit points coincides with K.

ProoF. Corollary 1 of Strassen [12] again implies that almost surely the
sequence in (4) is relatively compact and the set of its limit points is at most K.
To show that this set of limit points is at least K set for any integer m > 1 and
any 8 > 0 '

(5) n;=int{k: @, > (L1 +8)m)’}.
Thexi for large enough j and any ¢ > 0,
(6) (L' —e) e, (L1 +8)m’) <1
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so that for large enough j,

(7) ala, >m.

nj i

For x € K and m > 1 an integer define

i (el 2) - S ~({2) L 2))

<éforalliwith2 <i< m}.
Now (7) ensures that for large enough J the events A:, are mutually indepen-
dent (for all j > ). Following Strassen (p. 214) we have
const

loga,/mlog,an

P(A¥) >

Thus from (12) we have
const

> : :
log(2Lm)’“\/m log,(2Lm)’*!
and as X ;1/(jylog j) diverges we see that

P(43,)

=)

Y P(A4r) = .
Jj=dJ

The proof may be completed using the Borel-Cantelli lemma as in Strassen

(p. 215).
The next step in our proof of the theorem is to strengthen this result to:

LEMMA 2. Let the sequence {a,,n > 1} be as in the theorem. Then for any
random variable W, 0 < W < oo a.s., if we define for t € [0,1]

(8) $lt) = $(Wa,) ™ *6(Wa,2),
the sequence {{,,n > 1} satisfies the conclusions of Theorem 1.

ProOOF. We first consider the case when
9) 0<a<W<b<o as.
For each integer m define for 1 <j < 2™
t™ = 27| — af
and random variables p,, by
D = max{j: t§™ < W}
By Lemma 1 for fixed m and J < 2™ the sequence {y(t{™a,)” " *&(t{™a t),

n > 1} is with probability one relatively compact and the set of its limit points
coincides with K. Therefore the same conclusion holds conditional on
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{ti™ < W < t{7}} for the sequence
~1/2
{xp(t}”‘)an\) Y §(tj(m)ant)l(t}"‘) <W< t}’f{), n> 1}

and hence for the sequence {¢(¢{™a,)”/?%(t{™a,t),n = 1}.
Now define, for ¢t € [0,1],

(e) = y(tima,) e (tma ).

Then for any ¢ > 0, x € K and for arbitrary but fixed m we have almost
surely

(10) sup () = S{(1)| < e
To complete the proof of the lemma when (9) holds note that
w(t5ma,) ™ e(Wa,t) - £(t5ma,t) |
< sup{xP(tgpan)—lﬂlg(sant) - i(té';”ant)l, tm < s < té’;’ll}

and after some calculation we have that for any & > 0, for large enough m, with
probability one,

(11) sup|x(t) - ¢(t;':)an)_l/2§(Want)‘ <e i.o,

which, as t(”” — W a.s., completes the proof under (9). To now obtain the lemma
it is sufﬁcwnt to note that for 0 < W < o0 a.s. we may choose a and b so that (9)
holds with arbitrarily large probability.

To prove the theorem note that for any ¢ > 0 and large enough n

¥ (Wa,) " [(n,t) - §(Wa,t))|
= Sup{¢(Wan)_l/2|£(St) - g(Want)l’Wan(l - 8) =s< Wan(l + 8)}

since we have |1, — Wa,| < Wa,e.
For Wa,(1 —¢) s < Wa,(1 + ¢) put
st

>
Wa,,

tl

then for any & > 0 for large enough n with arbitrarily large probability
v(Wa,)” |§(Wa,t') - §(Wa,t)] <e,

which is sufficient to prove the theorem. O

REMARK. Let 7(¢),t € [0, ) be any process taking values in C[0, o0) (the
space of continuous functions on [0, 00)) such that

(12) In(t) — £(¢)] = o((tlogyt)"”) ass.
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Then under the conditions of Theorem 1 the sequence
1.(t) = ¥(7,) " a(r2),  te[0,1],
satisfies the conclusions of Theorem 1.

COROLLARY 1. For n=1,2,... let {7,(t),0 <t <1} be a nondecreasing
stochastic process such that 1, = 1,(1) satisfies the conditions of Theorem 1 and

()
(13) R Pycyi

then the sequence {Y(1,)”'/%£(7,(+))} is a.s. relatively compact and the set of its
limit points is K.

t|— 0;

PrOOF. Note that

¥(1,) " lE(1(2)) = &(r(1)1) ]
< sup{¥(7,) " *)é(s) = &(r(1)e) |, (1)(¢ = &) <5 < 7, (1)(¢ + ¢) ]
< sup{¥(r,) E(n (D)) — &(n (W) ], (2= e) <t < (¢ + )},

which is sufficient to give the corollary.

REMARK 1. Note that the above results do not contain Theorem A of Hall
and Heyde [3] as their result does not require the existence of constants {a,}
satisfying (1) and (2), however they do require 7, '7,., - 1.

REMARK 2. Define for ¢ € [0,1],
() = 7, + p(¢),

where
a,t—a;

(Tj+1 - Tj)

p(t) =
Qjy1 7~ @

and
J = max{k: a;, < a,t}.
After some calculations (13) can be shown to hold. Thus if 7n(-) satisfies (12)

and the conditions of Theorem 1 hold then the sequence {n}*,n = 1}, where
n%(t) = Y(1,) " V2n(1,(2)), t € [0,1], satisfies the conclusions of Theorem 1.

COROLLARY 2. Suppose that n(-) satisfies (12) and the conditions of Theo-
rem 1 hold with .

(14) a'a,, >m,  m> 1.
v+ Forn=12,... let {b, ;,1 <k < n} be constants that satisfy

n
(15) limsup ) b, , < o
n k=1
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and
r—1
. Qp (k-1 ar (k-1
lim max{ ) |b, ,x L -, kX Ly )
r<n k=1 a, a,
(16) t,n— o0

r—1 a,_ a,_
. Z l:bn’kx( k)—b,’kx( k):l} = 0.
k=1 an ar
Define for x € C,

n—1 Qe a,_
g.(x)= X b, » x( - 1)) —x( k) ,
k=1 I |

a, a,

then

[ n T1/2
limsupg,(n*) = lim | ) &2 ,(m * DV —m™*)| a.s.
n— o0 noow|p_y

ProoF. Under the conditions of the corollary it is a straightforward matter
to show that for x € K, {g,(x)} is a Cauchy sequence in R and hence has a limit
&(x). Furthermore for any sequence x,, = x where {x,} and x are contained in C
it is easy to show that |g,(x,) — g,(x)| = 0 so that if x, — x where {x,} is
contained in C and x € K then g,(x,) = g(x). In view of the preceding remark
the sequence g,(n*) is as. relatively compact and the set of its limit points
coincides with K. In particular limsup, _, . &,(n}) is just sup, . xg(x) and as
&,(x) — g(x) uniformly on K this is just lim, ,  sup, c x&,(x). However (see p.
219 of Strassen [12])

up () = ([0 a)

xeK

where
n
Sn(t) = Z bn,kI[m_k,m'("'”](t)
k=1

so that

n 1/2
sup g,(x) = [ Y b (mm D~ m‘k)] a.s.
xeK k=1

This gives the corollary as from (15) the limit of this last expression is finite.

2. Application to branching processes. Let {Z,=1,Z,,Z,,...} be a su-
percritical Galton—Watson process with 1 < EZ, = m and 0 < varZ, = ¢ < o0.
It is well known for this process that m~"Z, - W < o a.s. and that {W > 0} =
{Z, # 0 for all n}. In this section as a notational convenience it is assumed that
P(W = 0) = 0 to avoid making trivial exceptions on the set of extinction. We
follow here the approach of Asmussen and Keiding [1].

Let 7, = Z, + -+ +Z, and represent the nth generationas {k €N: 7,_, <k
<) (N={0,1,2,...}) where here n = n(k) always represents the generation
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of k. The number of offspring produced by & is denoted by U, and
G, =o{U,l <k}, Fy=0{U,n<N}=¢G,.

The approach here considers our branching process as a sequence of indepen-
dently and identically distributed (i.i.d.) random variables {U,, £ € N} and time
change functions {7y, N > 1}. It is easy to see that for each / the random
variable 7, is a stopping time with respect to the o fields {G,, 2 > 1} and using
the Toeplitz lemma we have

T

I 5~ W as., O0<W< o as.
_m
j=1

Thus we take a, = £7_,m/.

REMARK. We have assumed here that the index & of the U, refers to the
order of appearance of individuals with a suitable convention to cover ties, i.e., U,
is the offspring produced by the kth individual.

Now define for ¢ € [0, o0)

n(t) = ([t] +1- t)S[z] +(t _[t])s[t]+1’
where

k
S,= X X, X =1

Jj=1

and [¢] as usual denotes the largest integer smaller than ¢. Theorem 2 of Strassen
[11] now implies

In(¢) - £(2)] = O((2¢logyt)"”) as.
and if we define for ¢ € [0, 1],

nn(t) = ‘P(’TN)_I/z"I(TNt),

the remark following Theorem 1 implies that {9y, N > 1} is relatively compact
and the set of its limit points coincides with K. An application of this is given by
observing that for a Galton-Watson process the maximum likelihood estimator
of m based on observing Z,,...,Z, is m=(Z, + -+ +Zy)/(Zoy+ -+ +Zy_)).
See for example Asmussen and Keiding ([1], p. 117). Thus

N N-1 T™N-1
Jj=1 Jj=0 k=1
As was shown by Strassen ([11] p. 218) the above invariance principle yields the
ordinary law of the iterated logarithm and hence

limsup7y/?,(202l0gN) *(m —m) = +1 as.

N—-oo
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Thus our invariance principle is sufficient to obtain the laws of the iterated
logarithm for the maximum likelihood estimator of the offspring mean of a
supercritical Galton—Watson process.

In fact using Corollary 2 more than this is given, e.g., if for £ < 0 by,..., b,
are constants then we have

limsupo'y(7y) " Ve Z bl[ZN -y~ Mmiy_ l]

N—oo
12
Z b (m Y —m™?) as.
=1
and letting b, = m'~, 1 < I < k, we have
limsupo ~W(ry) 42y — m*Zy_,) = mY(m* - 1)'? as,

N- o
which is equivalent to Theorem 2 of Heyde and Leslie [7].
Now let by , = 8% for § <1 and by , = (£}~,8%)7'6* for 1 < § < m® Then
from Corollary 2 we have for 82 < m,
(m —1)82\2
m — 8?2 )

Next let by , = (Ly-,m*/?)"'m*/% Then again from Corollary 2 we have,

limsupo~W(ry) "/? Z 8*[Zn— -1y — mZN_k] = (
N—- k=1

N
limsupo~Y(ry) V2N"1/2 Z m*2[Zy_ -1y — mZy_4] = (m — 1)

N- o

Finally for 8% > m let by , = (Z}-,8%)7'6% Then

_12( d Ne N
limsupo ™'y (7y) (;) )y 6k[ZN—(k—l) - mZN—k]
k=1

N- oo

(m—1)82\'?
|l 82-m )
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