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OCCUPATION TIMES FOR CRITICAL BRANCHING
BROWNIAN MOTIONS

BY J. THEODORE COX! AND DAVID GRIFFEATH?2

Syracuse University and University of Wisconsin

We prove central limit theorems, strong laws, large deviation results, and *
a weak convergence theorem for suitably normalized occupation times of
critical binary branching Brownian motions started from Poisson random
fields on RY, d > 2. The results are strongly dimension dependent. The main
result (Theorem 2) asserts that in two dimensions, as opposed to all other
dimensions, the average occupation time of a bounded set with positive
measure converges in distribution to a nondegenerate limit.

1. Introduction. The infinite particle system known as critical branching
Brownian motion has been widely studied. Sawyer [19] and Fleischman [10]
connect the model with problems in mathematical genetics, and give a number of
references to the early literature. Dawson and Ivanoff [7] provide a more recent
survey with some additional references. Probably the simplest version of this
system can be described as follows. Particles are initially situated in R according
to a Poisson random field with uniform density one. Letting £, denote the
countable set of sites in R occupied by particles at time ¢, the particle at each
x € §, undergoes Brownian motion until it either splits into two particles at
exponential rate one or disappears at exponential rate one. This process is density
preserving and exhibits clustering in dimension one or two, but stability in three
or more dimensions. The precise formulation of the dichotomy is

(1.1) £,-V'0 as t— oo, d=1lor2,
(1.1) ->V¢, as t— o0, d=3,

where — "V denotes vague convergence in distribution (cf., [7], pp. 63—4), 0 is the
“no particles” random field, and £ is a nontrivial infinitely divisible field.
Conceptually, (1.1) indicates that the extant particles pack into smaller and
smaller regions of space while preserving the overall density; (1.1) is the more
familiar convergence to equilibrium. Proofs of (1.1) and (1.1’) are indicated in [7]
and [6]. Letting N,(A) denote the number of particles in A at time ¢, (1.1)
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amounts to the assertion that

lim P(N,(A)=0)=1, A bounded Borel,
t— 0

for d = 1,2. Fleischman [10] has some interesting normalized limit laws for
N,(A) in these cases of clustering. Additional results concerning N,(A) can be
found in the nice paper by Holley and Stroock [12]. Rather similar models are
the critical “shower processes” of [17] and [15], Durrett’s 8 = 1 infinite particle
system on R? with additive interaction [8], and Dawson’s critical measure
diffusion process [6]. Somewhat less closely related is the interacting particle
system known as the voter model [3], [11].

Our object here is to study the occupation times of critical binary branching
Brownian motion:

T(4) = ['N(A4)ds

= the total time particles spend in A up to time ¢,

A (nonempty) bounded Borel. As far as we are aware, only two papers have
considered such occupation times to date. The first, by Sawyer and Fleischman
[20], deals primarily with dimension one. They prove that

(1.2) lim T(A) < o as., d=1,
t— o0

(1.2) =o00 as, A open, d > 2.

This intriguing result implies that in one dimension the clustering is so strong
that any bounded set is eventually vacated with probability one. In two dimen-
sions, on the other hand, even though the chance that a particle occupies a given
bounded set at large times becomes arbitrarily small, still the set is visited
recurrently with probability one. Of course for d > 3, (1.2") is to be expected in
light of (1.1’). The second paper, by Iscoe [13], deals with occupation times for
Dawson’s measure-valued branching diffusions. In the case analogous to ours
(a = 2,8 = 1), Iscoe proves central limit theorems for dimensions d > 3. The
normalization is standard for d > 5, but is larger if d = 3 or 4. He has no results
when d = 2.

In a density preserving particle system one expects the average density of
particles on A up to time ¢, ¢ 'T,(A), to converge almost surely except in rare
cases. For instance (1.2) implies

(1.3) tlir{.lo t'T(A)=0 as, d=1,

and in light of (1.1’) we expect
(1.3") lim ¢ 'T,(A) = |A| as., d=>3.
’ t— o0

(JA| denotes the Lebesgue measure of A; henceforth assume |A| > 0.) As another
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example, consider the voter model with density 6 € (0,1). We showed in [4] that
lim ¢7'T,v%(A) = §#A as., d=>2
t— o0

(A C Z9, #A = the cardinality of A). Thus the limit is constant even in
dimension two, the case of critical clustering. For the one-dzmenszonal voter
model, on the other hand, it turns out that

" =Y as t-> o0, d=1,

(= denotes convergence in distribution), where Y is a nontrivial random variable
which can be represented in terms of coalescing Brownian motions, by means of
Arratia’s invariance principle [1]. Again, see [4].

Our primary goal in this paper is to fill the gap between (1.3) and (1.3’) by
proving a limit theorem for ¢~ 'T,(A) in dimension two. First though, to warm up,
we derive central limit theorems analogous to Iscoe’s, and the corresponding
strong laws (1.3’), in dimensions d > 3. The preliminary results are as follows.

THEOREM 1. For d > 3, A bounded Borel, as t - oo,

TLA) AL o o)
bt
where

b, = t3/4, d=3,

tlogt, d=4,

= /2, d > 5,

02 =8(v2 — 1)|A4)%/(37?), d=3,

= |4%/(27?), d =4,

= 2[ fA[A(l + S)ps(x y)dxdyds d> 5’

and p(x, y) = (2ms)~ % %exp{ —|x — y|?/2s}. Also, (1.3’) holds.

We do not know whether Iscoe’s methods can be modified to yield Theorem 1.
Our proof is rather different from his, following instead the lead of [4], where
more difficult results with the same scalings are proved for the voter model. (One
could undoubtedly extend Theorem 1 to the normalized occupation time random
field setting of [4], but we will not do so.)

Turning next to our main result, it will be shown that for critical branching
Brownian motion in two dimensions ¢ 'T,(A) converges in distribution to a
nontrivial limit, so the limit is not a.s. constant in this instance of critical
clustering.
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THEOREM 2. Letd = 2. Thenast — oo,
T.(A
A _
|AJt

where ¥ is a nontrivial infinitely divisible random variable, mdependent of A,
with Var(¥") = (log2) /7, and with moments of all orders.

Unfortunately we are not able to identify the limit ¥~ in any satisfactory
sense. It does not seem to have a standard distribution, nor can we give a
functional representation in the spirit of Arratia’s invariance principle for the
one-dimensional voter model. In fact we cannot even resolve the simplest ques-
tions, e.g., whether ¥"> 0 ass.

What we will do is give the cumulants of ¥". The proof of Theorem 2 and
indeed all the results of this paper are based on the so-called method of
cumulants. At the crudest level this method can be used to prove central limit
theorems and strong laws as in Theorem 1. A more refined application of the
same method (cf., [18], [9]) gives large deviation theorems of the form

T,(A)
P > a| « exp{—I(a)a,} as t— oo,
|Al¢
or more precisely,
T,(A)
(1.4) hm at log P Al >a|l=—I(a) € (—,0),

for a > 1, with analogous statements for deviations below the mean. This
program was carried out completely in [5] for Poisson systems of independent
random walks. Our final theorems give similar results for critical branching
Brownian motion in dimensions d > 3. The proper normalizations are

a,= \/Zy d= 3,
(1.5) = t/logt, d=4,
=t, d > 5.

Moreover our main result, Theorem 2, is essentially a special case of (1.4) with
a, =1, d=2.

For clarity and aesthetic reasons this special case will be presented first. The
subsequent large deviation theorems are not entirely. satisfactory because the
method of cumulants only establishes (1.4) for levels a sufficiently close to 1. (We
were able to overcome this obstacle in [5] by using transforms on the simpler
systems.) To make matters worse, in dimension four we have not been able to
carry out the exact asymptotics necessary to prove the existence of I(a), and so
have to settle for a weaker result. These are undoubtedly technical shortcomings;
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(1.4) and the corresponding result below the mean should hold for all a > 0 in
each d > 3, with a, as in (1.5). The large deviation results we will prove are as
follows. For brevity only results above the mean are stated; strictly analogous
statements can be proved below the mean.

THEOREM 3. Letd = 3. Then there is an o, € (1, ) such that

T(A
lim ¢~ 2log P {4) >a|=—I(a) € (—,0)
t— o0 |A|t

forl < a < a,, with a, and I(«a) independent of A.

THEOREM 4. Let d = 4. Then there is an a € (1, ) such that

logt (Tt(A) N )

— 00 < liminf — log Al

t— o0
logt T(A
< limsup Tg logP( Itzfllt) > a) <0

t— o0

for1 <a < a,.(Our a, depends on |A|.)

THEOREM 5. Let d > 5. Then there is an «_ € (1, ) such that

lim ¢ 'log P >a|=—-I(a) € (—,0)
t— o0 IAIt

forl < a < a,.(Our a, depends on A.)

The remainder of the paper is organized as follows. Section 2 contains a
standard reduction of cumulants for the infinite system £, to corresponding
moments for finite systems £F of critical branching Brownian motions starting
with a single particle at x. The basic formulas we use to compute the camulants
of T,(A) are then derived. Next, in Section 3 we prove Theorem 1. The main
result, Theorem 2, is proved in Section 4. This may be read independently of
Section 3, although Theorem 1 is a good trial run. Finally, Section 5 contains the
proofs of the large deviation Theorems 3, 4, and 5.

To keep matters as simple as possible, all our theorems are proved only for the
basic critical binary branching Brownian motion described in the first paragraph
above. Various extensions are doubtless possible without qualitative change, e.g.,

(i) to more general branching mechanisms,
(ii) to more general diffusions,
(iii) to more general initial states,
ﬁ(iv) to branching random walks, shower processes, etc.,

(v) to measure-valued branching diffusions.



OCCUPATION TIMES FOR BROWNIAN BRANCHING 1113

Many of the papers cited in the references study one or more of these generaliza-
tions. It would be interesting to see the extensions of some of our results worked
out in detail.

2. Preliminaries. Let T,(A), ¢t > 0, A bounded Borel with |A| > 0, be the
occupation times of critical (binary) branching Brownian motion, as described
above. The distribution of T,(A) is captured by its cumulant generating function

%(X) = log E [exp{AT,(A)}].

In this section we give an inductive procedure [formulas (2.2), (2.3), (2.5), and
(2.6) below] to evaluate #(A). The first ingredient is a familiar identity, some-
times called Campbell’s formula:

(2.1) ¢(\) = [[M(\) —1] d,
where M*(\) are the one particle moment generating functions
M*(A) = E[exp{AT(4)}],
Tr(A) = [‘#&: 0 Ads,
0
and
&7 = critical (binary) Brownian motion starting

with a single particle at x € R€.

(Throughout the paper we will write [ for [rs.) The easy computation for (2.1)
can be modelled on the proof of Lemma 2 in [5]. From (2.1) we see that when the
expansion of €(A) in terms of its cumulants

00 \?
(22) €)= T ()
n=1 *
converges absolutely, then one has
(2.3) mo(£) = [m(x, ) dx,

with
m,(x,t) = E[(T(A))"] = the nth moment of T;*( A).

(Here and below we often regard the set A as fixed and suppress it from the
notation.) So to get a handle on T,(A) one needs to compute the m,(x,t). A
heuristic evaluation can be made using the time of the first split or disappearance
to derive a simple differential equation. Namely, for n > 1 a little formal
calculation shows that one should have

dm,(x,t)

dt = ‘Pn(x’ t) + %Amn(x’ t)’

(2:4)
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where
9 el = 0100 + X (Fm e 0m, (5,0

[my(x,¢) =1 and A = Laplacian]. The key observation is that (due to the
criticality of the process) ¢, depends only on the m ; With j < n. Thus (2.4) can
be solved by means of the well known representation

(2:6) mo(x,0) = [ [pi-x, 3)0 3, 0) dy d,

p,(%, y) the Brownian transition kernel. Any reader willing to accept the validity
of (2.6) may proceed directly to the next section. For the skeptics we now outline
a rigorous derivation of (2.6), working directly from a paper by Kulperger [16]. In
the notation of [16], it is shown that forn > 1,0 <s, < --- <s,, y, € R? and
k;=0o0r1 (1 <i< n), there is a function

p(.’;el,...,k,,)(sl’ ey 83 Vireens yn)
giving the density for £* to have particles at y, at time s; whenever k; = 1.

[Ignore (y;,s;) such that k; = 0.] Moreover, using techniques from [14], he
derives the recursion formulas

p(ﬁ,...,l)(sly"'rsn; yl,""yn)
= ps,(x’ yl)p({:.,.,l)(s2 T 8150458, T 815 Yosee e, y,,)

) ["ds [dyp,(x,5)
j=1"0

Z p(JI/el,.‘.,k,,)(sl = 8...,8,—8; yl:'“ryn)
(kyy.ky)
ky+ o +k,=j

Y _ e
p(l—kl,...,l—k,,)(sl CIRRRPR s’y17""yn)

(2.7)

for n > 2, with pi(s,; y,) = Ps(x, y,). This last shows that (2.6) holds for n = 1.
To get (2.6) from (2.7) for n > 2, write

mn(x,t)=n!-/(;tdslj:dsz---fs:_ldsn‘/‘;dyl -~-[4dy,,

(2.8) 4
: p(.’i,.“,l)(sli ey sn; y17“~, yn)'

Substituting the first term on the right side of (2.7) into (2.8) yields

n!f()tdledylps,(x,yl)fot_s'duzf:"s‘dug“" [ du,
2

Up

f dy2 f dyn'p(}l'l,...,l)(u2,'~~aun; y2""ayn)
A A

t
=nj(;dsLdypt_s(xry)mn—l(y’s)7
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n > 2. For fixed j, a typical (k,,..., k,) in the sum from the second term of (2.7)
isk,=--- =k;=1,k;,, = -+ =k, = 0. Substituting into (2.8) yields

i [ o e

DL (81— 80y 8= 8 Vs s )

.Y _ — -
p(l,...,l)(3j+1 Syeees 8y s’yj+1’~~~’yn)

= n!/:ds _/:-sdu1 f:-sdu2 t_sdunfRddy_/:qdyl Ldy,,ps(x,y)

Up—1

'p({,...,l)(u17"'7uj; Yiseees yj)

4 .
p(l,...,l)(uj+1"“7 Ups yj+1:"' ’ yn)

- fotds fRddyps(x,y)

.Y .
p(l,...,l)(uj+1’ e Ups Yivrseees yn)]

t
=f0ds‘f1?ddypt_s(x, yIm(y,s)m,_(y,s),

n > 2. Each (k,,..., k,) with Xk, = j yields the same result. There are (;’) such
terms, so (2.6) follows for n > 2.

3. The proof of Theorem 1. To prove our central limit theorems by the
method of cumulants it suffices to show that if d > 3, then

(a) my(t) = |A|t for all ¢,
(b) my(t) ~ a2b? as t = oo, and
(c) m,(t) = o(b}*) as t - oo for each n > 3.

(This is a “combinatorial” variation on the usual method of moments; formally

one is checking that
{ (’-’}(A) - IAlt)}
exp{A| ————
bt

lim log E 02)2))

t—> 0

[N

For the strong law it is enough to have
(d) my(t) = O(t*7) as t = oo for some & > 0.

(Apply Chebyshev and Borel-Cantelli to a geometric subsequence; see Section 6
of [4] for a subtler version of the argument.) Let us now proceed to verify (a)—(d).
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Claim (a) is immediate from (2.3), (2.5), and (2.6) with n = 1:

my(£) = [mi(x, 0 dx = [du [ dx [ dyp(x, 7) = Al

The variance computations for claim (b) are more involved. First, some
notation. Set

G(A)= fo"dv [ @ [ depy2),  G(4)=G.(4);

Hu(A)=Ludv£ldy[4dzvpo(y,z), H(A) = H(A).

Observe that G(A) < oo for d > 3, H(A) < oo for d > 5 (A bounded Borel).
From (2.3), (2.5), and (2.6),

ma®) =2 [{au [ dvmi(30) + [ [ dymi(y,0)
= 2[[)tGu(A)du +/(;tdufdy /Oudv1 j;udv2[4dzlj;dzz po(5,2)

(3.1) Pul.22)

= 2[[0‘Gu(A)du +£tdu fAdzlfAdzZ ./Oudvl /()"dvzpvl+vz(zl,z2)]
= 2/0tGu(A) du + 4f()t(t — u)(Gy,(A) — G(A))du,

this last by a change of variables. Now suppose that d > 5. Then G, (A)1 G(A)
< 00 as u — oo and

4[7(Go(A) ~ G(A)) du=4["du [do [ dy [ dep(.2)
=2H(A) < o0.

By monotone convergence we see that

tlim t 'my(t) = 2(G(A) + H(A)) = o2,

as desired. If d = 3 or 4 one has to compute a bit more. As u - oo,
2 dv

u@/2-YG, (A) — G(A)) = [[——5 [ dx [ dye lx=>F /2w
( 2u( ) u( )) . (27"))(1/2[4 Ly
dv
. = (@27) a2
(32) (2m) 147 [~
2141° ap (1)
= 2 1-|= :
a—z ") (2)

Thus
Gy (A) — G, (A) ~ Cu'~“? as u— oo,
with C given by (3.2). Substituting in (3.1) one easily verifies claim (b) for d = 3
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and d = 4. [The first integral of (3.1) is of lower order than the second in these
cases.] In passing we alert the reader that the manipulations leading to (3.1)
constitute the basic trick of this paper. Many variations on that calculation will
appear below.

Claim (d) follows immediately from (b), so to finish the proof of Theorem 1 it
remains to verify (c). Let us write

G(¢t) = jl’pu(o,o)du, H(t) = ]1 ‘up,(0,0) du.

Note that E(t) <2forallt>1,d=>3,and as t > oo,
H(t) ~ 27 V2g=3/241/2 d=3,

1

~ Z;E logt, d= 4,

~ = 4(277)“”/2, d=>5.
We will prove the following key estimate: for d > 3
(3.3) m,(t) < C(n)tH(¢)"™', t=1,
where

C(n) =n!4""Y(|A| v 1)"

and

H(t) =12 + 2H(2t).

Since H(t) has the same growth rate as H(t), some easy calculations show that
(3.3) implies (c). Actually, (3.3) is a somewhat more careful estimate than one
needs for Theorem 1, but its full strength will be used in Section 5 for our large
deviation results. Write

on(t) = [ou(x,t)dr,  n=z1,020.

It is easy to verify by induction that @,(x, t), ¢,(t), m,(x,t), and m (t) are all
nondecreasing functions of ¢ for each n > 1. From (2.3) and (2.6),

m,(t) = [ @u(u) du.

So to get (3.3) it suffices to show by iﬁduction that for all 2 > 1

(3.4) sup @,(x, 8) V @4(t) < D(R)(1AI v 1) H(6)" ",

where D(k) < k!4*%1, Let D(1) = 1 and define D(k), k > 2, recursively by
k-1

(3.5) D(k)= ¥ (’;)D(I)D(k ~ ).

=1
Check that in closed form,
—9)1
(2k — 2)! - k!(z(k ~1)

D(k)=(k—1)! B—1

)s k14%1,
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We will demonstrate (3.4) for these D(k). Inequality (3.4) is obvious for & = 1.
Assume n > 2, and that (3.4) holds for 1 < & < n. Integrating separately over
(0,1) and [1, ¢] in (2.6), and using monotonicity, one has
my(x,t) < sup @u(y,t) + G(t)pu(t)
(3.6) Y
< 3D(R)(JA| v 1) H(t)" .
Use this bound in (2.5) to find that
@u(x,t) < 3nD(n — 1)(JA| v 1)" " H(£)"

+9:§(Z)D(k)p(n —k)(1Al v 1)"H(t)"*

< D(n)(1A1 v 1)"[128(2)" 7]

< D(n)(14] v 1)"H(2)"",
proving the first part of (3.4). For the second part write

o) =n [ m, (%, t)dx + | kZi(Z Jmace, tym, (x, ) d

= Ii(t) + Iy(®).
By (3.6),
I(t) < 3nD(n — 1)(JA| v 1)"H(t)" >
To estimate I,(t), first substitute for m;, and m, , using (2.6), then use
monotonicity and the basic trick to see that
n—1
L(0) s T () [fde [ldo [y [ depic 32030000 (2:).

The right side is majorized by IX(¢) + 212(¢), where
n—1

1(6) = L () [ e [ do [y [dep,. (32043, )00 i(2,0)

IA

z (Z)Slip Pr(x,t) - 9, (2)

k=1
< D(n)(|AlV 1)"H(t)"®
and

1

() =5 () [fau ['do [ b [ depy. (30200l )00 (2:0)

—

(%) or(O00ns(0) ['du [ dop,.,(0,0)

1
1

M T T

IA

(Z)D(k)D(n —k)(JA] v 1)”ﬁ(t)”‘2f12’upu(o,o) du

bl
I

(n)(JA] v 1)"H(¢)" °H(2¢).

S

<
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Putting the pieces together, we conclude that
ou(t) < D(n)(|A| v 1)"[4H ()" % + 2H(¢)" 2H(2¢)]
< D(n)(j4] v 1)"H(8)"",
as desired. The proof of Theorem 1 is finished. O
4. The proof of Theorem 2. Throughout this section d = 2. To prove

Theorem 2 by the method of cumulants, one needs to show the existence of finite
constants m, such that

_omy(t)
(4.1) lim =m, forall n>1
t— o0
and
(4.2) the sequence m,, is distribution determining.

Again, this is a variation on the method of moments; cf., for example, Section
8.12 of [2]. A sufficient condition for (4.2) is

(4.3) |m,| < n!M" forsome M < oo n>1.
(If X has cumulants m,, and (4.3) holds, then

mn
log E[e**] = Z—n—;—)\” < o0

for small positive A, and so E[e**] < oo for small positive A. Hence the law of X
is uniquely determined by Proposition 8.49 of [2].)

We will prove (4.1) and (4.3). The idea for (4.1) is to use the self-similarity
property of Brownian motion,

pst(x\/zy y\/z) = t_lps(x) y)7
by setting

q)n(x‘/Z!St) mn(x‘/zast)
P s) =~ mi(xe) =~ mi(s) = [mi(x,s)dx,

n>1¢t>0,x € R*- {0},0 < s < 1. The equations (2.5) and (2.6) become
(08)  oilxis) = nyxmo(20) + 2 (f)micno)mt ()
and i

mi(x,) = ["du [ dyp,_(x, 7)okl 7, ),

respectively (x # 0, m(x,s) = t). Consequently (4.1) is equivalent to the ex-
istence of m, such that :

(4.5) lim m!(1)=m, forall n=x>1.
t— o0 3

As t — oo, the first term in (4.4) concentrates near the origin, so one is led to the
following recursive scheme for evaluating the m,. Let

m{P(x,s) = |A|j;)pu(x,0) du
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and for n > 2,

n—1

7 (x,8) = B (i o)mip (. 9),

m(x,s) = [ du [ dyp,_u(x, )e(3,u),
0
x € R? — {0},0 < s < 1. We will show below that (4.5) holds with
(4.6) M, = [me(x,1)ds.
First, though, let us dispense with (4.3) by proving the following result.

LEMMA 1. For h > 0, set m,(h) = sup,,, ,My(x, 1), and define m,, as above.
Then for all n > 1,

0<m,(h) <o foreach h>0
and
0 <m, < (n—1)A4]"[4(log2)/=]""".
Proor oF LEMMA 1. This parallels the proof of the key estimate (3.3). The
calculations here are cleaner, but a little more delicate. Clearly m, (k) < oo for

each A > 0, and m, = |A|. It is also easy to see by induction that m}(x, -) and
@2 (x, -) are nonegative nondecreasing. So, writing ¢, = |A| and

Fu(h) = sup g2(x,1),  §, = [or(x,1)dx

|x|=h
for n > 2 we have
_ 1
ma(h) < sup [ duf dyp,_ (%, 7)o, 1)
jx|=h "0 ly—x|=|x|/2
1
+ sup [“du [ dyp,— (%, )97 (7,1)
|x|=h "0 ly—x|<|x|/2

<

sup pv(o,'x/z)]a,,

|x|=h,v<1

1
+sup [duf  dyp(x 3)er(x.1)
jx|=h 0 |y|=h/2 .

< C(h)o, + 3,(h/2),
with C(h) < oo for each A > 0. Also,

m, < fdxfoldufdypl_u(x,y)qo;?(y,l) =
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and
n—1 n
Fu() < sup ¥ (f )mi(x, miz(x,1)
|x|=h k=1

n—1

< ¥ (3)mm), _(h).

k=1

So to prove the lemma it suffices to show by induction that

log2\~!
(4.7) P, < D(n)|A|"( ) , n>1,

T
with D(n) as in (3.5). This is trivial if n = 1. For n = 2,
1 1
Q,=2(dx||A x,0)dul||A ,(x,0) dv
g.=2 [| | Px,0) ][| [ Po(x,0) }

|2

2|4
= 2|A|2f01folpu+u(0,0) dudv = log2,

b

this last by a little calculus, and (4.7) holds. For n > 3,

P, = andx[.{)ldupu(x,O)”foldvfdzpl_o(x,z)q>;°l(z,v)J
+ :g:(g)fdx[foldufdypl_.,(x,y)w‘}?(y,u)]
-[foldvfdzpl_u(x, y)w;?_k(z,v)]

< T (M)t [ s 0.0 dudo
k=1 00

log2\n!
< D(n)|A|"(T) ,

by induction. Lemma 1 is proved. O

To complete the proof of Theorem 2 we need to show (4.5). Consider the error
terms:

el(x,8) = mi(x,s) — m?(x, s), ' x#0

= fosf(p.,(x, ¥) = pLx, 001, i () dydu, n=1,

= fsfpsfu(x, )8y, ) dy du, n=2,
0
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where

8a(x,8) = nm_(x,5)14 (%)

n—1
+2 ) (Z)s;(x, s)m®_,(x,s)
k=1

+ni1(z)sz(x,8)sfz—k(x,s), n>2.
k=1
Then (4.5) is equivalent to
(4.8) lim fsf,(x,1)dx =0, n>1.
In analogy with the m and ¢ above, we introduce

si(h)= sup lei(x,s)l, &= [suplei(x,s)ldx, (h>0,n>1),

s<1,|x|>h s<1
§ih)= sup |84x,s),  B8i+ [supldi(x,s)ldx, (h>0,n>2).
s<1,|x|=h s<1
By convention 8¢ = 0. The convergence (4.8) is an immediate consequence of the
following result.
LEMMA 2. Foralln > 1,

lim &(h) =0 foreach h>0 and limé& =0.
t— oo

t— o0

The proof of Lemma 2 follows the same outline as the proof of Lemma 1, but is
more involved. For clarity we divide it into three parts.

LEMMA 3.
lim &(h)=0 forall h>0 and lim & =0.
P t— o0
LEMMA 4. Ifn>2, and foreveryk <n —1
lim &(h) =0 forall h>0 and lim & =0
t— 00

t— o0
and
lim 8{(h) =0 forall h>0 and lim §}=0,
. t— o0 t— 0
then

lim §(h) =0 forall h>0 and lim§!=0.
t— o0

t— o0
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LEMMA 5. Forn > 2, if

lim 8§(h)=0 forall h>0 and lim § =0,
t— o0

t— o0

then
lim &(h)=0 forall h>0 and lim & =0.
t— o0

t— oo
Clearly Lemmas 3 through 5 will prove Lemma 2 by induction.

Proor orF LEMMA 3.
1
&(h) < sup | du dy|p(x,y) — p(x,0)|t.
' |x|2h'/(; fyeA/ﬁ

Divide (0, 1) into (0,q) and [gq, 1) to get

g(h)<|Al  sup |pSx,¥)~p,x,0)|

|x|>h, yEA/\t
g<u<l

+|Alg  sup  [pJfx,¥) +p,(x,0)].
lx|=h, yEA/VE
u<l

For fixed g the first term on the right tends to 0 and the second is at most C(4)q
as t > oo, where C(h) < 0. Let ¢ — 0 to find that lim,&i(h) = 0. Similarly,

B<|Alfdc sup |p(x,) = pu(x,0)| + 2|Alq.
yeANE
g<uc<l

The first term on the right tends to 0 as ¢ » oo by dominated convergence. Let
q — 0 to get lim,& = 0. O

PrOOF OF LEMMA 4. Write
n—1
n
18:(x,5)1 < nad(x,8) + L () (281 a(x,8) + 44 4(x,9)),
k=1
where )
ap(x,8) = my,_1(x,5)14 (%),

Bri,k(x7 s) = |£;e(x’ s)""’f—k(x’ S),

v w(x,8) = |ef(x,8)el,_4(x, ).
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Define

a'(h)= sup di(x,s), a,= fsup al(x,s)dx
s<1,|x|>h s<1
and define ,B,f W{(h), ,Bn s k(h), and yn & analogously. It suffices to show that
these six types of terms tend to 0 as ¢ — oo. We will use the fact that ¢/(x, -) and
m!(x, -) are monotone, which is easily checked by induction.

A
a) a'(h) =0 for ¢ large enough that 7 c {|z| < h}.
1
al = dx | dy | dup,(x, ¢ (y,1— u).
=) i / yfo p%, Y) (¥ )

Integrate u separately over (0,¢ ') and [¢™',1) to get

B 1 |A|logt
n—( )/(pn l(y’l)dy

t

al <
The last integral is bounded uniformly in ¢ for each n, as a consequence of (3.4).
So a‘, — 0 as ¢t —» oo as desired.
B) Bi w(h) < & (h)m, (k) >0 as t— o
by Lemma 1 and the induction hypothesis. Next suppose 2 < £ < n — 1. Then

B = fdx sup ffps (%, 2) 97 4(2,0) dzdv

s<1

< [ [[ dyaz supld(y, DD [ [ 1ol P10, 2) dude

ffps %, 7)84(y, u) dy du

11
— [[ dvdz supli(y, D)oz (2,1) [ [ Puvel 7,2) dudo
T7<1 0 Y0
. w 11 1
< f/dydz 2};|8k(y,7)|<pn_k(z,1)/0 /o ———27,(“ o) dudv

log2_
(Sktpn r—>0 as t—- o0

by induction. If 2 < £ = n — 1 a similar estimate gives

Bin-1<\4If dx [dys supld;- (0l fp.,(x 7)p(,0) dudy

s|A|—7;—3,ﬁ_l—>O as t— oo.
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It remains to check thecase k =1,n > 2. If n > 3,

11 < [dx [Ndu [ dyipx, ) ~ P, 0)1EL4i( )
[ do [depy_ (%, 2)971(2,0)

<|Alf dx [ dzez (2, 1)ff sup |p(x,¥) = p.%,0)|p,(x, 2) dudv

yeANt

+ [dy [dzgiz (1)

f/ [pu+u(y’2) +pu+o(0,2)] tlA/ﬁ(y) dudv

{u<gorv<g}

AL
< or Pne fde sup |px, y) ~ pu=,0)

q yeA/t

g<u<l
2|A| 1

+ dudu.
q)n 1‘/:/(’u<q orv<q} U + v

As in the proof of Lemma 3, induction and dominated convergence show that the
first term on the right tends to 0 as ¢t — oo for fixed ¢ > 0, and that the second
tends to 0 as ¢ — 0. Thus lim, , ,E,fl = 0. A similar argument yields the last
inequality when n = 2 as well (with ¢, = |A|), so lim,_, , 85, = 0.

Y) Vo, k(h) < &(R)e,_w(h) >0 as t— o0

by induction. Supposing n > 2 and 2 < k£ < n — 1, and proceeding as in ),

Yn,x < n-t >0 as t— o0,

again by induction. Finally, as in 8), to conclude that lim,_, ¥, ; = 0, it suffices
to show that as ¢t » oo,

s 1,1
(Al f dx [ dzsupld;_ (2,01 [ [ sup [p(x, ) = P, 0)Ip.(x, 2) dudo
<1 9°9 yeA/t

+fdy/dz sup|8!_,(z,7)|

T<1

/] [Pur(3:2) + Pus0,2)] 1 () dudo
u<qgorv<g

-0 for n>3
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and
A2 ax [ f sup_|p,(%,¥) = P.(x,0)| sup |p(x,2) — p,(x,0)|dudv
779 yeayt zeA/Nt
+4fdyfdz/j;u<qmD<q}pu+v(0,O)tlA/‘/;(y)tlA/‘/;(z)dudv - 0.

The last two expressions are bounded by
St

8, 28
Al dx sup |pu(x, ¥) = pu(x,0) +

1
n—1
A dudv
| |fj{.u<qor v<q)l + 0

2mq yeANt
g<u<l
and
|47
S [dx s Ip(x,3) - pux, 0)|+——/f du do,
T yeANt {(u<gorv<g)U + 0
g<u<l

respectively. The desired conclusion follows. O

Proor or LEMMA 5. We easily obtain the estimates
g (h) < C(h)8t + 8i(h/2), & <8, C(h)< . i
The proof of Lemma 2 is finished. O

Two remarks and a computation will now complete the proof of Theorem 2.
We have shown that ¢ 'T)(A) converges in distribution. The limit is infinitely
divisible because the initial mean 1 Poisson field is an independent sum of n
mean n~! Poisson fields, which evolve independently and which each satisfy an
analogous limit law. Also, an easy induction shows that the cumulants m,, in (4.6)
are of the form |A|"m,, with m, independent of A. In other words,

T,(A)
t|A|

= ¥~ independentof A as ¢ — oo.

Finally, we compute

Var(¥) =y = 2fdxf‘du'/dyp1_u(x,y)[/o”pu(y,O)dvr

—2/ duff 277(vl+02) dv, dv,

1 210g2
= / udu = log2/x. O
o 7 )

5. Large deviation theorems. This final section proves large deviation
results in dimensions d > 3. Theorems 3, 4, and 5 constitute the second phase of a
project initiated in [5] to study large deviations for occupation times of some
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simple infinite particle systems. The reader would do well to look at [5] before
proceeding, because the results given there for Poisson systems of independent
random walks are more complete and transparent. There the large deviation tails
are “fat” in dimensions d = 1, 2, and “usual” for d > 3. Here the tails are fat if
d = 3, 4, and usual for d > 5. (The third phase of our program, in a subsequent
paper, will study an interacting particle system, the voter model, whose occupa-
tion time large deviations behave pretty much like those of critical branching.)

Theorems 3 and 5 are applications of a general large deviations result due to
Plachky and Steinebach [18]. In our cases the normalized cumulants converge
individually, and so the normalized cumulant generating function converges in a
neighborhood of 0. We formulate this special case of the Plachky-Steinebach
theorem as a lemma.

LEMMA 6. Let Y, t >0, be a sequence of random variables, and a, > « a
normalizing sequence, such that for some A, € (0, ©0),

V() = at_IIOgE[eAY] < 00, Al < Ao,

and such that the power series expansion
[o0) Aﬂ
1) = T ale(t)—
et n!

converges absolutely for |\| < A,. Suppose that

(i) lim,_, a; ', (t)=c, € (— o0, ) foreachn > 1,
(il) ¢, > 0, and
(iii) sup,|c,(t)/a, = O(n!Ay™) as n — oo.

Put
\I, A - E C A "4! a,= lilll \I, A a_= lilll \I, A .
( ) n / ) + \ ( )’ A - AO ( )

n=1

Then ¢, € (a_,a.), and

Y,
lim a[llogP(—t>a) = -I(a) € (—0,0), ac(c,a,),
a

t— o0 t

Y,
lim a; 'log P o <«l= —I(a) € (—0,0), ac(a_,c),
t— o0 t
where

I(a) = ak, — ¥(A,),
and A, € (—Ay, Ay) is the unique solution of ¥/(A) = a.
LPROOF. Conditions (i)-(iii) ensure that the hypotheses of the main result in

[18] apply. [(iii) implies that ¥(A) is real analytic and (ii) gives strict convexity
on (—Ay, Ay).] See [5], [9], and [18] for more details. O
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ProOF OF THEOREM 3. We simply mimic the proof of Theorem 2, but now
with d = 3. Define a, = Vt,Y, = T(A)/Vt. Then c,(t) = m,(t)/t"/?, so accord-
ing to Lemma 5 we need only show that

@) lim,_  m,(t)/t"*V? = m, € [0, o) for each n,
(ii) m, > 0, and
(iii) sup,m(t)/t"*D/2 = O(n!A\,") as n > oo for some A, > 0.
The proper scalings in three dimensions are
9%, ) = Gu(2VE, 58) /60072, mi(x,5) = m(aE, 5t) /DN,

With this modification (4.4) assumes essentially the same form, and the remainder
of the proof of (i) goes through very much as before. There is an added factor of V¢
in the a terms, but analogous estimates go through. As before m, = |A|, now

0<7i, = 2|A1 [ du do, dv,
0

u pu 1
[)[) [27 (v, +1)2)]3/2

8| A2
= 3,”3/2'(\/5 —1) <o  (cf. Theorem 1),

and all applications of the basic trick involve similar integrals. Again m, =
|A|"m,, which gives the independence of A in the statement of the theorem.
Finally, (ii) is immediate from (3.3) for a suitable A, > 0. Further details are left
to the reader. O

ProoF oF THEOREM 5. Put a,=t,Y, = T,(A). To apply Lemma 6 we check
that:
@) lim,_ ,m,(t)/t=m, € [0, o) for each n,
(i) m, > 0, and
(iii) sup,m,(t)/t = O(n!A;") as n = oo for some A, > 0.

Use (3.3) to get (iii). Claim (i) follows easily from monotonicity: Since ¢,(x, t) and
@,(t) are increasing in ¢, letting @,(x) and @, be the respective limits as ¢ — oo,
we have

M, = lim m,(t)/t = lim t—lf‘%(s)ds =3,
t t 0

In fact it is easy to check that the m, are determined by the inductive recipe:
¢(x) = 14(x), and for n > 2,

#n(x) = nLa(x) [ [P, 3)Fu-y) dy

()L e300 258 2) oo,
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m, =@, = [@,(x)dx. In particular,
[o o]
m, =@, = 1+s x,y)dxdyds >0
2<P2f0fAfA( )p,(x, y) dx dy
(cf. Theorem 1), so (ii) holds. Further details are left to the reader. O

There remains the problem of dimension four. In this case the scaling argu-
ment of Theorems 2 and 3 does not work because

1 1
j(;j;mdudv=oo.

Nor do the properly normalized cumulant generating functions ¥,(A) enjoy any
obvious monotonicity or subadditivity properties. This is an example where it
may be very difficult to prove convergence of the ¥,(A) to a limit ¥(A). In such
cases one wants at least a technique that captures the order of magnitude of the
large deviation tails. The idea is that by getting good upper and lower bounds on
the ¥,(A) one should be able to obtain positive and finite bounds on the
ostensible I function I(a), as in Theorem 4. In the notation of Lemma 6, for
d = 4 we take a, = t/logt and Y, = T,(A)/|Allogt, so that

* m,(t) A”
Y(N)= Y ———— 5.
n=1 IAlnt(IOgt) n.
Below we discuss only the situation above the mean (A > 0); similar techniques
give analogous results below the mean. Clearly, for A > 0,

my(t)N\?

V(A2 A+ ————
{(A) 2|A|%tlog t

> A+ M/47% as t— oo,

by the mean and variance calculations of Theorem 1. Using the key estimate
(3.3), on the other hand,

© #Klogt)" '
v sa+gy AEE)
n=2 t(IOgt)

JK N2
1- KX\’

for suitable finite positive constants J and K. Thus the normalized cumulant
generating functions ¥,(A) are sandwiched between strictly convex ¥(A) and
¥(A) with the same right derivative at 0. To prove Theorem 4 we can now apply
the following general comparison result. We suspect that this last result may be
useful for other complex large deviation problems where one is unable to prove
existence of the limiting ¥(A).

=A+ 0<A< K}
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LEMMA 7. LetY,, t > 0, be a sequence of random variables, and a, = « a
normalizing sequence, with

V,(N) = a; log E[ e*Y].
Let ¥ and ¥ be two functions such that for some t, > 0,0 < A, < oo,
(i) ¥ and ¥ are strictly convex on [0,)\,), and ¥ is differentiable on [0,),),
(i) ¥(0) = ¥(0) = 0,¥'(0) = ¥(0) = p, and
(ii) ¥ < ¥, < ¥ on[0,A) forall t > t,
Then there exists an o > p such that for all a € (u, @),
— o0 < liminfa, 'log P(a; 'Y, > a)

t— o0

5.3
(5.3) < limsupa; 'log P(a; 'Y, > a) < 0.

t— o0

PROOF. Let &,=lim,,, ¥(\)/A, with &, > p. For a € (p,a,) let I(a) =
al, — ¥(A,), where A, is the unique solution of ¥/ (A ) = @, and A, € (0, ).
For a € (p, @), by Chebyshev’s inequality and (iii),

P(a;'Y,> a) < exp{—a,[ah — ¥(N)]}, t=1¢,0<A<A,.
Set A = A, to obtain
(5.4) P(a;'Y, > a) < exp{ —a,(a)},

and the last inequality in (5.3) is now obvious.
The first inequality in (5.3) is also a consequence of Chebyshev’s inequality,
but requires more work. Let
1(a) ¥()N)

B—=>\0/\lim , a=lim ——.
ata, & — [ ATB A

Then 0 < 8 <Ay, p<a <a,, and for each a € (p, @) there exist unique A* €
0, B),a* € (a,a,) such that
F(A*) ) I(a*)

I a, A*.

5.5 =
(5.5) e
These facts follow from convexity arguments.

Fix a € (p,a) for the remainder of the argument. For any M € (a*,a.),
integrate e separately over {a;'Y, < a}, {a < a;'Y, < M}, and (by parts)

{M < a,;'Y,}. The result is

E[e)\Y,] < ea,a)\ + ea,MAP(at—ly't> a)

(56) +ea‘M)\P(a;1th > M) + a,)xfwe”‘)‘pp(azﬂYz > p)dp,
M
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0 < A < A,. By convexity and (5.4) we have
g Pk
tM _ ‘u

P(a;'Y,>p) < exp{ T(M)}, p>M.

With this estimate we find that

MM —p)
I(M) — MM - p)
provided that I(M) — A(M — p) > 0. Rearranging (5.6) now yields

lim a; 'log P(a;'Y,> a)
t— oo

00 . - .
a‘)\fM eat)\pP(at—lYl > p)dp < e @[ MA=I(M))

> —AM + liminfa; 'log| e*¥® — guar _ palMA=I(M)]
t— o0

AM
I(M) = MM - p)
In order to prove that for appropriate A the first term in the parentheses

dominates, i.e., that
(5.7) lim inf a;log P(a;'Y,> a) = —MN\ + ¥(A),

ealMA-T(M)] |

it suffices to show that
(5.8)  W¥(N)>Aa, I(M)>XNM-yp), ¥(A)>M\-I(M).
Since ¥(A)> aA for all A > A* (strict convexity of ¥), and since A* <
[I(M)]/(M — pn) for any M > o* (strict convexity of I), the first two require-
ments in (5.8) hold for all A € (A*, I(M)/(M — p)). To deal with the third
requirement in (5.8), let A | A* to obtain

Y(N) — MM+ I(M) - ¥(N*) — MM + I(M)

=al* — MM + I(M) > aN* — MN + (M — p)

= A*(a - M),
which is clearly positive. Thus for all A sufficiently close to A*, (5.8) is satisfied.
Let A | A* and M | a* in (5.7) to obtain
liminfa; 'log P(a;'Y,> a) > —Ma* + ¥(A*)
t— o0

= —N(a* — a) > — o0,

which finishes the proof of (5.3). O
PROOF OF THEOREM 4. Use (5.1), (5.2), and Lemma 7. O
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